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GLOBAL DYNAMICS OF A REACTION-DIFFUSION SYSTEM

YUNCHENG YOU

Abstract. In this work the existence of a global attractor for the semiflow
of weak solutions of a two-cell Brusselator system is proved. The method
of grouping estimation is exploited to deal with the challenge in proving the
absorbing property and the asymptotic compactness of this type of coupled
reaction-diffusion systems with cubic autocatalytic nonlinearity and linear cou-
pling. It is proved that the Hausdorff dimension and the fractal dimension of
the global attractor are finite. Moreover, the existence of an exponential at-
tractor for this solution semiflow is shown.

1. Introduction

Consider a reaction-diffusion systems consisting of four coupled two-cell Brusse-
lator equations associated with cubic autocatalytic kinetics [12, 17, 19, 30],

∂u

∂t
= d1∆u+ a− (b+ 1)u+ u2v +D1(w − u), (1.1)

∂v

∂t
= d2∆v + bu− u2v +D2(z − v), (1.2)

∂w

∂t
= d1∆w + a− (b+ 1)w + w2z +D1(u− w), (1.3)

∂z

∂t
= d2∆z + bw − w2z +D2(v − z), (1.4)

for t > 0, on a bounded domain Ω ⊂ <n, n ≤ 3, that has a locally Lipschitz
continuous boundary, with the homogeneous Dirichlet boundary condition

u(t, x) = v(t, x) = w(t, x) = z(t, x) = 0, t > 0, x ∈ ∂Ω, (1.5)

and an initial condition

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), z(0, x) = z0(x), x ∈ Ω,
(1.6)

where d1, d2, a, b,D1, and D2 are positive constants. In this work, we shall study
the asymptotic dynamics of the solution semiflow generated by this problem.

The Brusselator model is originally a system of two ordinary differential equa-
tions describing kinetics of cubic autocatalytic chemical or biochemical reactions,
proposed by the scientists in the Brussels school led by the renowned Nobel Prize
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laureate (1977), Ilya Prigogine, cf. [26, 2]. Brusselator kinetics describes the fol-
lowing scheme of chemical reactions

A −→ U,
B + U −→ V + D,
2U + V −→ 3U,

U −→ E,

where A, B, D, E, U, and V are chemical reactants or products. Let u(t, x) and
v(t, x) be the concentrations of U and V, and assume that the concentrations of the
input compounds A and B are held constant during the reaction process, denoted by
a and b respectively. Then by the law of mass action and the Fick’s law one obtains
a system of two nonlinear reaction-diffusion equations called (diffusive) Brusselator
equations,

∂u

∂t
= d1∆u+ u2v − (b+ 1)u+ a, (1.7)

∂v

∂t
= d2∆v − u2v + bu, (1.8)

Several known examples of autocatalysis which can be modelled by the Brussela-
tor equations, such as ferrocyanide-iodate-sulphite reaction, chlorite-iodide-malonic
acid reaction, arsenite-iodate reaction, and some enzyme catalytic reactions, cf.
[1, 2, 5].

Numerous studies by numerical simulations or by mathematical analysis, es-
pecially after the seminal publications [21, 24] in 1993, have shown that the au-
tocatalytic reaction-diffusion systems such as the Brusselator equations and the
Gray-Scott equations [13, 14] exhibit rich spatial patterns (including but not re-
stricted to Turing patterns) and complex bifurcations [1, 4, 5, 8, 27, 25, 36] as well
as interesting dynamics [6, 11, 16, 20, 28, 29, 37] on 1D or 2D domains.

For Brusselator equations and the other cubic autocatalytic model equations of
space dimension n ≤ 3, however, we have not seen substantial research results in
the front of global dynamics until recently [38, 39, 40, 41].

In this paper, we shall prove the existence of a global attractor in the product
L2 phase space for the solution semiflow of the coupled two-cell Brusselator system
(1.1)–(1.4) with homogeneous Dirichlet boundary conditions (1.5).

This study of global dynamics of such a reaction-diffusion system of two cells
or two compartments consisting of four coupled components is a substantial ad-
vance from the one-cell model of two-component reaction-diffusion systems toward
the biological network dynamics [12, 18]. Multi-cell or multi-compartment models
generically mean the coupled ODEs or PDEs with large number of unknowns (in-
terpreted as components in chemical kinetics or species in ecology), which appear
widely in the literature of systems biology as well as cell biology. Here understand-
ably ”cell” is a generic term that may not be narrowly or directly interpreted as a
biological cell. Coupled cells with diffusive reaction and mutual mass exchange are
often adopted as model systems for description of processes in living cells and tis-
sues, or in distributed chemical reactions and transport for compartmental reactors
[35, 30].

In this regard, unfortunately, the problems with high dimensionality can occur
and puzzle the research, when the number of molecular species in the system turns
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out to be very large, which makes the behavior simulation extremely difficult or
computationally too inefficient. Thus theoretical research results on multi-cell dy-
namics can give insights to deeper exploration of various signal transductions and
spatio-temporal pattern formations or chaos.

For most reaction-diffusion systems consisting of two or more equations arising
from the scenarios of autocatalytic chemical reactions or biochemical activator-
inhibitor reactions, such as the Brusselator equations and the coupled two-cell
Brusselator systems here, the asymptotically dissipative sign condition in vector
version

lim
|s|→∞

F (s) · s ≤ C,

where C ≥ 0 is a constant, is inherently not satisfied by the opposite-signed and
coupled nonlinear terms, see (1.11) later. Besides serious challenge arises in dealing
with the coupling of the two groups of variables u, v and w, z. The novel mathe-
matical feature in this paper is to overcome this coupling obstacle and make the
a priori estimates by a method of grouping estimation combined with the other
techniques to show the globally dissipative and attractive dynamics.

We start with the formulation of an evolutionary equation associated with the
two-cell Brusselator equations. Define the product Hilbert spaces as follows,

H = [L2(Ω)]4, E = [H1
0 (Ω)]4, and Π = [(H1

0 (Ω) ∩H2(Ω))]4.

The norm and inner-product of H or the component space L2(Ω) will be denoted by
‖·‖ and 〈·, ·〉, respectively. The norm of Lp(Ω) will be denoted by ‖·‖Lp if p 6= 2. By
the Poincaré inequality and the homogeneous Dirichlet boundary condition (1.5),
there is a constant γ > 0 such that

‖∇ϕ‖2 ≥ γ‖ϕ‖2, for ϕ ∈ H1
0 (Ω) or E, (1.9)

and we shall take ‖∇ϕ‖ to be the equivalent norm ‖ϕ‖E of the space E and of the
component space H1

0 (Ω). We use | · | to denote an absolute value or a vector norm
in a Euclidean space.

It is easy to check that, by the Lumer-Phillips theorem and the analytic semi-
group generation theorem [33], the linear operator

A =


d1∆ 0 0 0
0 d2∆ 0 0
0 0 d1∆ 0
0 0 0 d2∆

 : D(A)(= Π) −→ H (1.10)

is the generator of an analytic C0-semigroup on the Hilbert space H, which will be
denoted by {eAt, t ≥ 0}. It is known [23, 33, 34] that A in (1.10) is extended to be
a bounded linear operator from E to E∗. By the fact that H1

0 (Ω) ↪→ L6(Ω) is a
continuous embedding for n ≤ 3 and using the generalized Hölder inequality,

‖u2v‖ ≤ ‖u‖2L6‖v‖L6 , ‖w2z‖ ≤ ‖w‖2L6‖z‖L6 , for u, v, w, z ∈ L6(Ω),

one can verify that the nonlinear mapping

F (g) =


a− (b+ 1)u+ u2v +D1(w − u)

bu− u2v +D2(z − v)
a− (b+ 1)w + w2z +D1(u− w)

bw − w2z +D2(v − z)

 : E −→ H, (1.11)
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where g = (u, v, w, z), is well defined on E and is locally Lipschitz continuous.
Thus the initial-boundary value problem (1.1)–(1.6) is formulated into the following
initial value problem,

dg

dt
= Ag + F (g), t > 0, (1.12)

g(0) = g0 = col(u0, v0, w0, z0).

where g(t) = col(u(t, ·), v(t, ·), w(t, ·), z(t, ·)), which is simply written as
(u(t, ·), v(t, ·), w(t, ·), z(t, ·)). We shall also simply write g0 = (u0, v0, w0, z0).

The local existence of solution to a multi-component reaction-diffusion system
such as (1.12) with certain regularity requirement is not a trivial issue. There
are two different approaches to get a solution. One is the mild solution provided
by the ”variation-of-constant formula” in terms of the associated linear semigroup
{eAt}t≥0 but the the parabolic theory of mild solution requires that g0 ∈ E instead
of g0 ∈ H assumed here. The other is the weak solution obtained through the
Galerkin approximation (the spectral approximation) and the Lions-Magenes type
of compactness approach, cf. [7, 22, 33].

Definition 1.1. A function g(t, x), (t, x) ∈ [0, τ ] × Ω, is called a weak solution
to the initial value problem of the parabolic evolutionary equation (1.12), if the
following two conditions are satisfied:

(i) d
dt (g, ζ) = (Ag, ζ)+(F (g), ζ) is satisfied for a.e. t ∈ [0, τ ] and for any ζ ∈ E;

(ii) g(t, ·) ∈ L2(0, τ ;E) ∩ Cw([0, τ ];H) such that g(0) = g0.

Here (·, ·) stands for the dual product of E∗ (the dual space of E) and E, Cw stands
for the weakly continuous functions valued in H, and (1.12) is satisfied in the space
E∗.

Proposition 1.2. For any given initial data g0 ∈ H, there exists a unique, lo-
cal weak solution g(t) = (u(t), v(t), w(t), z(t)), t ∈ [0, τ ] for some τ > 0, of the
Brusselator evolutionary equation (1.12), which becomes a strong solution on (0, τ ],
namely, it satisfies

g ∈ C([0, τ ];H) ∩ C1((0, τ);H) ∩ L2(0, τ ;E) (1.13)

and (1.12) is satisfied in the space H for t ∈ (0, τ ].

The proof of Proposition 1.2 is made by conducting a priori estimates on the
Galerkin approximate solutions of the initial value problem (1.12) (these estimates
are similar to what we shall present in Section 2) and by the weak/weak∗ con-
vergence argument, as well as the use of the properties of the function space, cf.
[7, 22],

Φ(0, τ) = {ϕ(·) : ϕ ∈ L2(0, τ ;E), (distributional) ∂tϕ ∈ L2(0, τ ;E∗)},

with the norm
‖ϕ‖Φ = ‖ϕ‖L2(0,τ ;E) + ‖∂tϕ‖L2(0,τ ;E∗).

The detail is omitted here.
We refer to [15, 33, 34] and many references therein for the concepts and basic

facts in the theory of infinite dimensional dynamical systems, including few given
below for clarity.
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Definition 1.3. Let {S(t)}t≥0 be a semiflow on a Banach space X. A bounded
subset B0 of X is called an absorbing set in X if, for any bounded subset B ⊂ X,
there is some finite time t0 ≥ 0 depending on B such that S(t)B ⊂ B0 for all t > t0.

Definition 1.4. A semiflow {S(t)}t≥0 on a Banach space X is called asymptot-
ically compact if for any bounded sequences {xn} in X and {tn} ⊂ (0,∞) with
tn → ∞, there exist subsequences {xnk

} of {xn} and {tnk
} of {tn}, such that

limk→∞ S(tnk
)xnk

exists in X.

Definition 1.5. Let {S(t)}t≥0 be a semiflow on a Banach space X. A subset A
of X is called a global attractor for this semiflow, if the following conditions are
satisfied:

(i) A is a nonempty, compact, and invariant set in the sense that

S(t)A = A for any t ≥ 0.

(ii) A attracts any bounded set B of X in terms of the Hausdorff distance, i.e.

dist(S(t)B,A ) = sup
x∈B

inf
y∈A

‖S(t)x− y‖X → 0, as t→∞.

Now we state the main result of this paper. We emphasize that this result
is established unconditionally, neither assuming initial data or solutions are non-
negative, nor imposing any restriction on any positive parameters involved in the
equations (1.1)–(1.4).

Theorem 1.6 (Main Theorem). For any positive parameters d1, d2, a, b,D1, D2,
there exists a global attractor A in the phase space H for the solution semiflow
{S(t)}t≥0 generated by the Brusselator evolutionary equation (1.12).

The following proposition states concisely the basic result on the existence of a
global attractor for a semiflow, cf. [15, 33, 34].

Proposition 1.7. Let {S(t)}t≥0 be a semiflow on a Banach space X. If the fol-
lowing conditions are satisfied:

(i) {S(t)}t≥0 has a bounded absorbing set B0 in X, and
(ii) {S(t)}t≥0 is asymptotically compact,

then there exists a global attractor A in X for this semiflow, which is given
by

A = ω(B0)
def= ∩τ≥0 ClX ∪t≥τ (S(t)B0).

In Section 2 we shall prove the global existence of the weak solutions of the
Brusselator evolutionary equation (1.12) and the absorbing property of this so-
lution semiflow. In Section 3 we shall prove the asymptotic compactness of this
solutions semiflow. In Section 4 we show the existence of a global attractor in
space H for this Busselator semiflow and its properties as being the (H,E) global
attractor and the L∞ regularity. We also prove that the global attractor has a finite
Hausdorff dimension and a finite fractal dimension. In Section 5, the existence of
an exponential attractor for this semiflow is shown.

As a remark, with some adjustment in proof, these results are also valid for the
homogeneous Neumann boundary condition. Furthermore, corresponding results
can be shown for the coupled two-cell Gray-Scott equations, Selkov equations, and
Schnackenberg equations.
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2. Global solutions and absorbing property

In this article, we shall write u(t, x), v(t, x), w(t, x), and z(t, x) simply as u(t),
v(t), w(t), and z(t), or even as u, v, w, and z, and similarly for other functions of
(t, x).

Lemma 2.1. For any initial data g0 = (u0, v0, w0, z0) ∈ H, there exists a unique,
global weak solution g(t) = (u(t), v(t), w(t), z(t)), t ∈ [0,∞), of the Brusselator
evolutionary equation (1.12) and it becomes a strong solution on the time interval
(0,∞).

Proof. By Proposition 1.2, the local weak solution g(t) = (u(t), v(t), w(t), z(t))
exists uniquely on [0, Tmax), the maximal interval of existence. Taking the inner
products 〈(1.2), v(t)〉 and 〈(1.4), z(t)〉 and summing up, we obtain

1
2

( d

dt
‖v‖2 +

d

dt
‖z‖2

)
+ d2

(
‖∇v‖2 + ‖∇z‖2

)
=

∫
Ω

(
−u2v2 + buv − w2z2 + bwz −D2[v2 − 2vz + z2]

)
dx

=
∫

Ω

−
[(
uv − b

2
)2 +

(
wz − b

2
)2 +D2(v − z)2

]
dx+

1
2
b2|Ω|

≤ 1
2
b2|Ω|.

(2.1)

It follows that
d

dt

(
‖v‖2 + ‖z‖2

)
+ 2γd2

(
‖v‖2 + ‖z‖2

)
≤ b2|Ω|,

which yields

‖v(t)‖2 + ‖z(t)‖2 ≤ e−2γd2t
(
‖v0‖2 + ‖z0‖2

)
+
b2|Ω|
2γd2

, for t ∈ [0, Tmax). (2.2)

Let y(t, x) = u(t, x)+v(t, x)+w(t, x)+z(t, x). In order to treat the u-component
and the w-component, first we add up (1.1), (1.2), (1.3) and (1.4) altogether to get
the following equation satisfied by y(t) = y(t, x),

∂y

∂t
= d1∆y − y + [(d2 − d1)∆(v + z) + (v + z) + 2a] . (2.3)

Taking the inner-product 〈(2.3), y(t)〉 we obtain

1
2
d

dt
‖y‖2 + d1‖∇y‖2 + ‖y‖2

=
∫

Ω

[(d2 − d1)∆(v + z) + (v + z) + 2a] y dx

≤ |d1 − d2|‖∇(v + z)‖‖∇y‖+ ‖v + z‖‖y‖+ 2a|Ω|1/2‖y‖

≤ d1

2
‖∇y‖2 +

|d1 − d2|2

2d1
‖∇(v + z)‖2 +

1
2
‖y‖2 + ‖v + z‖2 + 4a2|Ω|,

so that

d

dt
‖y‖2+d1‖∇y‖2+‖y‖2 ≤ |d1 − d2|2

d1
‖∇(v+z)‖2+4

(
‖v‖2 + ‖z‖2

)
+8a2|Ω|. (2.4)
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By substituting (2.2) for ‖v‖2 + ‖z‖2 in the above inequality, we obtain

d

dt
‖y‖2 + d1‖∇y‖2 + ‖y‖2 ≤ |d1 − d2|2

d1
‖∇(v + z)‖2 + C1(v0, z0, t), (2.5)

where

C1(v0, z0, t) = 4e−2γd2t
(
‖v0‖2 + ‖z0‖2

)
+

( 4b2

γd2
+ 8a2

)
|Ω|.

Integrate the inequality (2.5). Then the weak solution y(t) of (2.3) satisfies the
estimate

‖y(t)‖2 ≤ ‖u0 + v0 + w0 + z0‖2 +
|d1 − d2|2

d1

∫ t

0

‖∇(v(s) + z(s))‖2 ds

+
2
γd2

(
‖v0‖2 + ‖v0‖2

)
+

( 4b2

γd2
+ 8a2

)
|Ω|t, t ∈ [0, Tmax).

(2.6)

From (2.1) we also have

d2

∫ t

0

‖∇(v(s) + z(s))‖2 ds ≤ 2d2

∫ t

0

(
‖∇v(s)‖2 + ‖∇z(s)‖2

)
ds

≤
(
‖v0‖2 + ‖z0‖2

)
+ b2|Ω|t.

Substitute this into (2.6) to obtain

‖y(t)‖2 ≤ ‖u0 + v0 + w0 + z0‖2 +
( |d1 − d2|2

d1 d2
+

2
γd2

) (
‖v0‖2 + ‖z0‖2

)
+

[( |d1 − d2|2

d1 d2
+

4
γd2

)
b2 + 8a2

]
|Ω| t, t ∈ [0, Tmax).

(2.7)

Let p(t) = u(t) + w(t). Then by (2.2) and (2.7) we have shown that

‖p(t)‖2 = ‖u(t) + w(t)‖2 = ‖y(t)− (v(t) + z(t))‖2

≤ 2
(
‖u0 + v0 + w0 + z0‖2 +

(
1 +

|d1 − d2|2

d1 d2
+

2
γd2

)
(‖v0‖2 + ‖z0‖2)

)
+ C2 t,

(2.8)

for t ∈ [0, Tmax), where C2 is a constant independent of the initial data g0.
On the other hand, let ψ(t, x) = u(t, x)+v(t, x)−w(t, x)−z(t, x), which satisfies

the equation

∂ψ

∂t
= d1∆ψ− (1+2D1)ψ+[(d2 − d1)∆(v − z) + (1 + 2(D1 −D2))(v − z)] . (2.9)

Taking the inner-product 〈(2.9), ψ(t)〉 we obtain

1
2
d

dt
‖ψ‖2 + d1‖∇ψ‖2 + ‖ψ‖2 ≤ 1

2
d

dt
‖ψ‖2 + d1‖∇ψ‖2 + (1 + 2D1)‖ψ‖2

≤ (d1 − d2)‖∇(v − z)‖‖∇ψ‖+ |1 + 2(D1 −D2)|‖v − z‖‖ψ‖

≤ d1

2
‖∇ψ‖2 +

|d1 − d2|2

2d1
‖∇(v − z)‖2 +

1
2
‖ψ‖2 +

1
2
|1 + 2(D1 −D2)|2‖v − z‖2,

so that
d

dt
‖ψ‖2 + d1‖∇ψ‖2 + ‖ψ‖2 ≤ |d1 − d2|2

d1
‖∇(v − z)‖2 + C3(v0, z0, t), (2.10)
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where

C3(v0, z0, t) = 2|1 + 2(D1 −D2)|2
(
e−2γd2t

(
‖v0‖2 + ‖z0‖2

)
+

b2

2γd2
|Ω|

)
.

Integration of (2.10) yields

‖ψ‖2 ≤ ‖u0 + v0 − w0 − z0‖2 +
|d1 − d2|2

d1

∫ t

0

‖∇(v(s)− z(s))‖2 ds

+ |1 + 2(D1 −D2)|2
( 1
γd2

(‖v0‖2 + ‖z0‖2) +
b2|Ω|
γd2

t
)
, t ∈ [0, Tmax).

(2.11)

Note that

d2

∫ t

0

‖∇(v(s)− z(s))‖2 ds ≤ 2d2

∫ t

0

(
‖∇v(s)‖2 + ‖∇z(s)‖2

)
ds

≤
(
‖v0‖2 + ‖z0‖2

)
+ b2|Ω|t.

From (2.11) it follows that

‖ψ‖2 ≤ ‖u0 + v0 − w0 − z0‖2 +
|d1 − d2|2

d1 d2

(
‖v0‖2 + ‖z0‖2 + b2|Ω| t

)
+ |1 + 2(D1 −D2)|2

( 1
γd2

(‖v0‖2 + ‖z0‖2) +
b2|Ω|
γd2

t
)
, t ∈ [0, Tmax).

(2.12)

Let q(t) = u(t)− w(t). Then by (2.2) and (2.12) we find that

‖q(t)‖2 = ‖u(t)− w(t)‖2 = ‖ψ(t)− (v(t)− z(t))‖2 ≤ 2‖u0 + v0 − w0 − z0‖2

+ 2
(
1 +

|d1 − d2|2

d1d2
+
|1 + 2(D1 −D2)|2

γd2

)
(‖v0‖2 + ‖z0‖2) + C4t,

(2.13)

for t ∈ [0, Tmax), where C4 is a constant independent of the initial data g0.
Finally combining (2.8) and (2.13) we can conclude that for each initial data

g0 ∈ H, the components u(t) = (1/2)(p(t) + q(t)) and w(t) = (1/2)(p(t) − q(t))
are bounded if Tmax of the maximal interval of existence of the solution is finite.
Together with (2.2), it shows that, for each g0 ∈ H, the weak solution g(t) =
(u(t), v(t), w(t), z(t)) of the Brusselator evolutionary equation (1.12) will never blow
up in H at any finite time and it exists globally. �

By the global existence and uniqueness of the weak solutions and their continuous
dependence on initial data shown in Proposition 1.2 and Lemma 2.1, the family of
all the global weak solutions {g(t; g0) : t ≥ 0, g0 ∈ H} defines a semiflow on H,

S(t) : g0 7→ g(t; g0), g0 ∈ H, t ≥ 0,

which is called the two-cell Brusselator semiflow, or simply the Brusselator semi-
flow, generated by the Brusselator evolutionary equation (1.12).

Lemma 2.2. There exists a constant K1 > 0, such that the set

B0 =
{
‖g‖ ∈ H : ‖g‖2 ≤ K1

}
(2.14)

is an absorbing set in H for the Brusselator semiflow {S(t)}t≥0.
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Proof. For this two-cell Brusselator semiflow, from (2.2) we obtain

lim sup
t→∞

(‖v(t)‖2 + ‖z(t)‖2) < R0 =
b2|Ω|
γd2

(2.15)

and that for any given bounded set B ⊂ H and g0 ∈ B there is a finite time
t1(B) ≥ 0 such that

‖v(t; g0)‖2 + ‖z(t; g0)‖2 < R0, for any t > t1(B). (2.16)

Moreover, for any t ≥ 0, (2.1) also implies that∫ t+1

t

(‖∇v(s)‖2 + ‖∇z(s)‖2) ds

≤ 1
d2

(‖v(t)‖2 + ‖z(t)‖2 + b2|Ω|)

≤ 1
d2

(
e−2γd2t(‖v0‖2 + ‖z0‖2) +

b2|Ω|
2γd2

)
+
b2|Ω|
d2

.

(2.17)

which is for later use.
From (2.5) we can deduce that

d

dt

(
et‖y(t)‖2

)
≤ |d1 − d2|2

d1
et‖∇(v(t) + z(t))‖2 + etC1(v0, z0, t).

Integrate this differential inequality to obtain

‖y(t)‖2 ≤ e−t‖u0 + v0 + w0 + z0‖2

+
|d1 − d2|2

d1

∫ t

0

e−(t−τ)‖∇(v(τ) + z(τ))‖2 dτ + C5(v0, z0, t),
(2.18)

where

C5(v0, z0, t) = e−t

∫ t

0

4e(1−2γd2)τ dτ (‖v0‖2 + ‖z0‖2) +
( 4b2

γd2
+ 8a2

)
|Ω|

≤ 4α(t)(‖v0‖2 + ‖z0‖2) +
( 4b2

γd2
+ 8a2

)
|Ω|,

in which

α(t) = e−t

∫ t

0

e(1−2γd2)τ dτ =

{
1

|1−2γd2| |e
−2γd2t − e−t|, if 1− 2γd2 6= 0;

te−t ≤ 2e−1e−t/2, if 1− 2γd2 = 0.
(2.19)

On the other hand, multiplying (2.1) by et and then integrating each term of the
resulting inequality, we obtain

1
2

∫ t

0

eτ d

dτ

(
‖v(τ)‖2 + ‖z(τ)‖2

)
dτ + d2

∫ t

0

eτ (‖∇v(τ)‖2 + ‖z(τ)‖2) dτ ≤ 1
2
b2|Ω|et,
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so that, by integration by parts and using (2.2), we obtain

d2

∫ t

0

eτ (‖∇v(τ)‖2 + ‖∇z(τ)‖2) dτ

≤ 1
2
b2|Ω|et − 1

2

∫ t

0

eτ d

dτ

(
‖v(τ)‖2 + ‖∇z(τ)‖2

)
dτ

=
1
2
b2|Ω|et − 1

2

[
et(‖v(t)‖2 + ‖z(t)‖2)− (‖v0‖2 + ‖z0‖2)

−
∫ t

0

eτ (‖v(τ)‖2 + ‖z(τ)‖2) dτ
]

≤ b2|Ω|et + (‖v0‖2 + ‖z0‖2) +
∫ t

0

e(1−2γd2)τ (‖v0‖2 + ‖z0‖2) dτ +
b2|Ω|
2γd2

et

≤
(
1 +

1
2γd2

)
b2|Ω|et +

(
1 + α(t)et

)
(‖v0‖2 + ‖z0‖2), for t ≥ 0.

(2.20)

Substituting (2.20) into (2.18), we obtain that for t ≥ 0,

‖y(t)‖2

≤ e−t‖u0 + v0 + w0 + z0‖2 + C5(v0, z0, t)

+
2|d1 − d2|2

d1 d2
e−t

[(
1 +

1
2γd2

)
b2|Ω|et +

(
1 + etα(t)

)
(‖v0‖2 + ‖z0‖2)

]
≤ e−t‖u0 + v0 + w0 + z0‖2 + 4α(t)(‖v0‖2 + ‖z0‖2) +

( 4b2

γd2
+ 8a2

)
|Ω|

+
2|d1 − d2|2

d1 d2
e−t

[(
1 +

1
2γd2

)
b2|Ω|et +

(
1 + etα(t)

)
(‖v0‖2 + ‖z0‖2)

]
.

(2.21)

Note that (2.19) shows α(t) → 0, as t→ 0. From (2.21) we find that

lim sup
t→∞

‖y(t)‖2 < R1 = 1 +
( 4b2

γd2
+ 8a2

)
|Ω|+ 2|d1 − d2|2

d1 d2

(
1 +

1
2γd2

)
b2|Ω|. (2.22)

The combination of (2.15) and (2.22) gives us

lim sup
t→∞

‖u(t) + w(t)‖2 = lim sup
t→∞

‖y(t)− (v(t) + z(t))‖2 < 4R0 + 2R1. (2.23)

Similarly, from the inequality (2.10) satisfied by ψ(t) = u(t) + v(t)−w(t)− z(t),
we obtain

d

dt

(
et‖ψ(t)‖2

)
≤ |d1 − d2|2

d1
et‖∇(v(t)− z(t))‖2 + etC3(v0, z0, t).

Integrate this differential inequality to obtain

‖ψ(t)‖2 ≤ e−t‖u0 + v0 − w0 − z0‖2

+
|d1 − d2|2

d1

∫ t

0

e−(t−τ)‖∇(v(τ)− z(τ))‖2 dτ + C6(v0, z0, t),
(2.24)

where

C6(v0, z0, t) = 2|1 + 2(D1 −D2)|2
(
e−t

∫ t

0

e(1−2γd2)τ dτ (‖v0‖2 + ‖z0‖2) +
b2

γd2
|Ω|

)
≤ 2|1 + 2(D1 −D2)|2

(
α(t)(‖v0‖2 + ‖z0‖2) +

b2

γd2
|Ω|

)
.
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Using (2.20) to treat the integral term in (2.24), we obtain that

‖ψ(t)‖2

≤ e−t‖u0 + v0 − w0 − z0‖2 + C6(v0, z0, t)

+
2|d1 − d2|2

d1 d2
e−t

∫ t

0

eτ (‖∇v(τ)‖2 + ‖∇z(τ)‖2) dτ

≤ e−t‖u0 + v0 − w0 − z0‖2 + 2|1 + 2(D1 −D2)|2

×
(
α(t)(‖v0‖2 + ‖z0‖2) +

b2

γd2
|Ω|

)
+

2|d1 − d2|2

d1 d2
e−t

[(
1 +

1
2γd2

)
b2|Ω|et +

(
1 + etα(t)

)
(‖v0‖2 + ‖z0‖2)

]
,

(2.25)

for t ≥ 0. Therefore, since α(t) → 0 as t→ 0, from (2.25) we obtain

lim sup
t→∞

‖ψ(t)‖2 < R2 = 1 + 2b2|Ω|
[ |1 + 2(D1 −D2)|2

γd2
+
|d1 − d2|2

d1 d2

(
1 +

1
2γd2

)]
.

(2.26)
The combination of (2.15) and (2.26) gives us

lim sup
t→∞

‖u(t)− w(t)‖2 = lim sup
t→∞

‖ψ(t)− (v(t)− z(t))‖2 < 4R0 + 2R2. (2.27)

Finally, putting together (2.23) and (2.27), we assert that

lim sup
t→∞

(‖u(t)‖2 + ‖w(t)‖2) < 8R0 + 2(R1 +R2). (2.28)

Moreover, from (2.2), (2.21) and (2.25) we see that for any given bounded set
B ⊂ H and g0 ∈ B there is a finite time t2(B) ≥ 0 such that

‖u(t; g0)‖2 + ‖w(t; g0)‖2 < 8R0 + 2(R1 +R2), for any t > t2(B). (2.29)

Then assembling (2.15) and (2.28), we end up with

lim sup
t→∞

‖g(t)‖2 = lim sup
t→∞

(‖u(t)‖2+‖v(t)‖2+‖w(t)‖2+‖z(t)‖2) < 9R0+2(R1+R2).

Moreover, (2.16) and (2.29) show that for any given bounded set B ⊂ H and g0 ∈ B
the solution g(t; g0) satisfies

‖g(t; g0)‖2 < 9R0 + 2(R1 +R2), for any t > max{t1(B), t2(B)}.

Thus this lemma is proved with K1 = 9R0 + 2(R1 + R2) in (2.14). And K1 is a
universal positive constant independent of initial data. �

Next we show the absorbing properties of the (v, z) components of this Brusse-
lator semiflow in the product Banach spaces [L2p(Ω)]2, for any integer 1 ≤ p ≤ 3.

Lemma 2.3. For any given integer 1 ≤ p ≤ 3, there exists a positive constant Kp

such that the absorbing inequality

lim sup
t→∞

‖(v(t), z(t))‖2p
L2p < Kp (2.30)

is satisfied by the (v, z) components of the Brusselator semiflow {S(t)}t≥0 for any
initial data g0 ∈ H.
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Proof. The case p = 1 has been shown in Lemma 2.2. According to the solution
property (1.13) satisfied by all the global weak solutions on [0,∞), we know that
for any given initial status g0 ∈ H there exists a time t0 ∈ (0, 1) such that

S(t0)g0 ∈ E = [H1
0 (Ω)]6 ↪→ L6(Ω) ↪→ L4(Ω). (2.31)

Then the weak solution g(t) = S(t)g0 becomes a strong solution on [t0,∞) and
satisfies

S(·)g0 ∈ C([t0,∞);E) ∩ L2(t0,∞; Π) ⊂ C([t0,∞); L6(Ω)) ⊂ C([t0,∞); L4(Ω)),
(2.32)

for n ≤ 3. Based on this observation, without loss of generality, we can simply
assume that g0 ∈ L6(Ω) for the purpose of studying the long-time dynamics. Thus
parabolic regularity (2.32) of strong solutions implies the S(t)g0 ∈ E ⊂ L6(Ω), t ≥
0. Then by the bootstrap argument, again without loss of generality, one can
assume that g0 ∈ Π ⊂ L8(Ω) so that S(t)g0 ∈ Π ⊂ L8(Ω), t ≥ 0.

Take the L2 inner-product 〈(1.2), v5〉 and 〈(1.4), z5〉 and sum up to obtain

1
6
d

dt

(
‖v(t)‖6L6 + ‖z(t)‖6L6

)
+ 5d2

(
‖v(t)2∇v(t)‖2 + ‖z(t)2∇z(t)‖2

)
=

∫
Ω

(
bu(t, x)v5(t, x)− u2(t, x)v6(t, x) + bw(t, x)z5(t, x)− w2(t, x)z6(t, x)

)
dx

+D2

∫
Ω

[
(z(t, x)− v(t, x))v5(t, x) + (v(t, x)− z(t, x))z5(t, x)

]
dx.

(2.33)

By Young’s inequality, we have∫
Ω

[(
buv5 − u2v6

)
+

(
bwz5 − w2z6

)]
dx

≤ 1
2

( ∫
Ω

b2(v4 + z4) dx−
∫

Ω

(u2v6 + w2z6) dx
)
,

and∫
Ω

[
(z − v)v5 + (v − z)z5

]
dx ≤

∫
Ω

[
−v6 +

(1
6
z6 +

5
6
v6

)
+

(1
6
v6 +

5
6
z6

)
−z6

]
dx = 0.

Substitute the above two inequalities into (2.33) and use Poincaré inequality, we
obtain the following inequality relating ‖(v, z)‖6L6 to ‖(v, z)‖4L4 ,

d

dt

(
‖v(t)‖6L6 + ‖z(t)‖6L6

)
+ 10γd2

(
‖v(t)‖6L6 + ‖z(t)‖6L6

)
≤ d

dt

(
‖v(t)‖6L6 + ‖z(t)‖6L6

)
+ 10d2

(
‖∇v3(t)‖2 + ‖∇z3(t)‖2

)
≤ 3b2(‖(v(t))‖4L4 + ‖(z(t))‖4L4).

Similarly we can get the corresponding inequality relating ‖(v, z)‖4L4 to ‖(v, z)‖2,

d

dt

(
‖(v(t))‖4L4 + ‖(z(t))‖4L4

)
+ 6γd2

(
‖(v(t))‖4L4 + ‖(z(t))‖4L4

)
≤ d

dt

(
‖(v(t))‖4L4 + ‖(z(t))‖4L4

)
+ 6d2

(
‖∇v2(t)‖2 + ‖∇z2(t)‖2

)
≤ 2b2(‖v(t)‖2 + ‖z(t)‖2).
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Applying Gronwall inequality to the above two inequalities and using (2.2), we
obtain

‖(v(t))‖4L4 + ‖(z(t))‖4L4

≤ e−6γd2t
(
‖v0‖4L4 + ‖z0‖4L4

)
+

∫ t

0

e−6γd2(t−τ)2b2(‖v(τ)‖2 + ‖z(τ)‖2)dτ

≤ e−6γd2t
(
‖v0‖4L4 + ‖z0‖4L4

)
+

∫
Ω

e−6γd2(t−τ)−2γd2τ2b2(‖v0‖2 + ‖z0‖2) dτ +
b4|Ω|
6γ2d2

2

≤ e−2γd2tC7

(
‖v0‖6L6 + ‖z0‖6L6

)
+
b4|Ω|
6γ2d2

2

, t ≥ 0,

where C7 is a uniform positive constant, and then

‖v(t)‖6L6 + ‖z(t)‖6L6

≤ e−10γd2t
(
‖v0‖6L6 + ‖z0‖6L6

)
+

∫ t

0

e−10γd2(t−τ)3b2(‖v(τ)‖4L4 + ‖z(τ)‖4L4)dτ

≤ e−10γd2t
(
‖v0‖6L6 + ‖z0‖6L6

)
+

∫
Ω

e−10γd2(t−τ)−2γd2τ3b2C7(‖v0‖6L6 + ‖z0‖6L6) dτ

+
b6|Ω|

20γ3d3
2

≤ e−2γd2t
(
1 +

3b2C7

8γd2

) (
‖v0‖6L6 + ‖z0‖6L6

)
+

b6|Ω|
20γ3d3

2

, t ≥ 0.

It follows that

lim sup
t→∞

(
‖v(t)‖4L4 + ‖z(t)‖4L4

)
< K2 = 1 +

b4|Ω|
6γ2d2

2

, (2.34)

lim sup
t→∞

(
‖v(t)‖6L6 + ‖z(t)‖6L6

)
< K3 = 1 +

b6|Ω|
20γ3d3

2

. (2.35)

Thus (2.30) is proved. �

3. Asymptotic compactness

The lack of inherent dissipation and the appearance of cross-cell coupling make
the attempt of showing the asymptotic compactness of the two-cell Brusselator
semiflow also challenging. In this section we shall prove this asymptotic compact-
ness through the following two lemmas.

Since H1
0 (Ω) ↪→ L4(Ω) and H1

0 (Ω) ↪→ L6(Ω) are continuous embeddings, there
are constants δ > 0 and η > 0 such that ‖ · ‖2L4 ≤ δ‖∇(·)‖2 and ‖ · ‖2L6 ≤ η‖∇(·)‖2.
We shall use the notation ‖(y1, y2)‖2 = ‖y1‖2 +‖y2‖2 and ‖∇(y1, y2)‖2 = ‖∇y1‖2 +
‖∇y2‖2 for conciseness. The following proposition is about the uniform Gronwall
inequality, which is an instrumental tool in the analysis of asymptotic compactness,
cf. [23, 33, 34].

Proposition 3.1. Let β, ζ, and h be nonnnegative functions in L1
loc([0,∞); R).

Assume that β is absolutely continuous on (0,∞) and the following differential
inequality is satisfied,

dβ

dt
≤ ζβ + h, for t > 0.
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If there is a finite time t1 > 0 and some r > 0 such that∫ t+r

t

ζ(τ) dτ ≤ A,

∫ t+r

t

β(τ) dτ ≤ B,

∫ t+r

t

h(τ) dτ ≤ C,

for any t > t1, where A,B, and C are some positive constants, then

β(t) ≤
(B
r

+ C
)
eA, for any t > t1 + r.

Lemma 3.2. For any given initial data g0 ∈ B0, the (u,w) components of the
solution trajectories g(t) = S(t)g0 of the IVP (1.12) satisfy

‖∇(u(t), w(t))‖2 ≤M1, for t > T1, (3.1)

where M1 > 0 is a uniform constant depending on K1 and |Ω| but independent of
initial data, and T1 > 0 is finite and only depends on the absorbing ball B0.

Proof. Take the inner-products 〈(1.1),−∆u(t)〉 and 〈(1.3),−∆w(t)〉 and then sum
up the two equalities to obtain

1
2
d

dt
‖∇(u,w)‖2 + d1‖∆(u,w)‖2 + (b+ 1)‖∇(u,w)‖2

= −
∫

Ω

a(∆u+ ∆w) dx−
∫

Ω

(u2v∆u+ w2z∆w) dx

−D1

∫
Ω

(|∇u|2 − 2∇u · ∇w + |∇w|2) dx

≤
(d1

4
+
d1

4
+
d1

2
)
‖∆(u,w)‖2 +

a2

d1
|Ω|+ 1

2d1

∫
Ω

(
u4v2 + w4v2

)
dx.

It follows that
d

dt
‖∇(u,w)‖2 + 2(b+ 1)‖∇(u,w)‖2

≤ 2a2

d1
|Ω|+ 1

d1

(
‖u2‖2‖v‖2 + ‖w2‖2‖z‖2

)
≤ 2a2

d1
|Ω|+ δ2

d1

(
‖v‖2‖∇u‖4 + ‖z‖2‖∇w‖4

)
.

(3.2)

By the absorbing property shown in Lemma 2.2, there is a finite time T0 = T0(B0) ≥
0 such that S(t)B0 ⊂ B0 for all t > T0. Therefore, for any g0 ∈ B0, by (2.14) we
have

‖(u(t), w(t))‖2 + ‖(v(t), z(t))‖2 ≤ K1, for t > T0. (3.3)
Substitute (3.3) into (3.2) to obtain

d

dt
‖∇(u,w)‖2 ≤ d

dt
‖∇(u,w)‖2 + 2(b+ 1)‖∇(u,w)‖2

≤ δ2K1

d1
‖∇(u,w)‖4 +

2a2

d1
|Ω|,

(3.4)

which can be written as the inequality

dρ

dt
≤ βρ+

2a2

d1
|Ω|, (3.5)

where

ρ(t) = ‖∇(u(t), w(t))‖2 and β(t) =
δ2K1

d1
ρ(t).
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In view of the inequality (2.4), (2.17) and (3.3), we have∫ t+1

t

‖∇y(τ)‖2 dτ

≤ 2|d1 − d2|2

d2
1

∫ t+1

t

‖∇(v + z)‖2dτ

+
1
d1

(
‖y(t)‖2 +

∫ t+1

t

8
γ

(‖v(τ)‖2 + ‖z(τ)‖2 + 2a2|Ω|) dτ
)
≤ C8,

(3.6)

for t > T0, where

C8 =
4|d1 − d2|2

d2
1d2

[
K1 +

(
1 +

1
2γd2

)
b2|Ω|

]
+

1
d1

(
K1 +

8
γ

(K1 + 2a2|Ω|)
)
.

From the inequality (2.10), (2.17) and (3.3) and with a similar estimation, there
exists a uniform constant C9 > 0 such that∫ t+1

t

‖∇ψ(τ)‖2 dτ ≤ C9, for t > T0. (3.7)

Then we can put together (2.17), (3.6) and (3.7) to get∫ t+1

t

ρ(τ) dτ

=
∫ t+1

t

(‖∇u(τ)‖2 + ‖∇w(τ)‖2) dτ

≤ 1
2

∫ t+1

t

(
‖∇(y(τ)− (v(τ) + z(τ))‖2 + ‖∇(ψ(τ)− (v(τ)− z(τ))‖2

)
dτ

≤
∫ t+1

t

(
‖∇y(τ)‖2 + ‖∇ψ(τ)‖2 + ‖∇(v + z)‖2 + ‖∇(v − z)‖2

)
dτ

≤ C8 + C9 +
4
d2

[
K1 +

(
1 +

1
2γd2

)
b2|Ω|

] def= C10, for t > T0.

(3.8)

Now we can apply the uniform Gronwall inequality in Proposition 3.1 where r = 1
to (3.5) and use (3.8) to reach the conclusion (3.1) with

M1 =
(
C10 +

2a2

d1
|Ω|

)
eδ2K1C10/d1

and T1 = T0(B0) + 1. The proof is completed. �

Lemma 3.3. For any given initial data g0 ∈ B0, the (v, z) components of the
trajectory g(t) = S(t)g0 of the IVP (1.12) satisfy

‖∇(v(t), z(t))‖2 ≤M2, for t > T2, (3.9)

where M2 > 0 is a uniform constants depending on K1 and |Ω| but independent of
initial data, and T2 (> T1 > 0) is finite and only depends on the absorbing ball B0.

Proof. Take the inner-products 〈(1.2),−∆v(t)〉 and 〈(1.4),−∆z(t)〉 and sum up the
two equalities to obtain

1
2
d

dt
‖∇(v, z)‖2 + d2‖∆(v, z)‖2

= −
∫

Ω

b(u∆v + w∆z) dx
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+
∫

Ω

(u2v∆v + w2z∆z) dx−D2

∫
Ω

[(z − v)∆v + (v − z)∆z] dx

≤ d2

2
‖∆(v, z)‖2 +

b2

d2
‖(u,w)‖2 +

1
d2

∫
Ω

(u4v2 + w4z2) dx

−D2

∫
Ω

(|∇v|2 − 2∇v · ∇z + |∇z|2) dx

≤ d2

2
‖∆(v, z)‖2 +

b2

d2
‖(u,w)‖2 +

1
d2

∫
Ω

(u4v2 + w4z2) dx, t > T0.

Since

‖∇(v(t), z(t))‖2

= −(〈v,∆v〉+ 〈z,∆z〉) ≤ 1
2

(
‖v(t)‖2 + ‖z(t)|2‖+ ‖∆v(t)‖2 + ‖∆z(t)‖2

)
,

by using Hölder inequality and the embedding inequality mentioned in the begin-
ning of this section and by Lemma 3.2, from the above inequality we obtain

d

dt
‖∇(v, z)‖2 + d2‖∇(v, z)‖2

≤ d2‖(v, z)‖2 +
2b2

d2
‖(u,w)‖2 +

2
d2

(‖u‖4L6‖v‖2L6 + ‖w‖4L6‖z‖2L6)

≤
(
d2 +

2b2

d2

)
K1 +

2η6

d2
(‖∇u‖4 + ‖∇w‖4)‖∇(v, z)‖2

≤ K1

(
d2 +

2b2

d2

)
+

2η6M2
1

d2
‖∇(v, z)‖2, t > T1.

(3.10)

Applying the uniform Gronwall inequality in Proposition 3.1 to (3.10) and using
(2.17), we can assert that

‖∇(v(t), z(t))‖2 ≤M2, for t > T1 + 1, (3.11)

where

M2 =
( 1
d2

[
K1 +

(
1 +

1
2γd2

)
b2|Ω|

]
+K1

[
d2 +

2b2

d2

])
e2η6M2

1 /d2 .

Thus (3.9) is proved with this M2 and T2 = T1 + 1. �

4. The existence of a global attractor and its properties

In this section we finally prove Theorem 1.6 on the existence of a global attractor,
which will be denoted by A , for the Brusselator semiflow {S(t)}t≥0 and we shall
investigate the properties of A , including its finite fractal dimensionality.

Proof of Theorem 1.6. In Lemma 2.2, we have shown that the Brusselator semiflow
{S(t)}t≥0 has a bounded absorbing set B0 inH. Combining Lemma 3.2 and Lemma
3.3 we proved that

‖S(t)g0‖2E ≤M1 +M2, for t > T2 and for g0 ∈ B0,

which implies that {S(t)B0 : t > T2} is a bounded set in space E and consequently
a precompact set in space H. Therefore, the Brusselator semiflow {S(t)}t≥0 is
asymptotically compact in H. Finally we apply Proposition 1.7 to reach the con-
clusion that there exists a global attractor A in H for this Brusselator semiflow
{S(t)}t≥0. �
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Now we show that the global attractor A of the Brusselator semiflow is an
(H,E) global attractor with the regularity A ⊂ L∞(Ω). The concept of (H,E)
global attractor was introduced in [3].

Definition 4.1. Let {Σ(t)}t≥0 be a semiflow on a Banach space X and let Y be
a compactly imbedded subspace of X. A subset A of Y is called an (X,Y ) global
attractor for this semiflow if A has the following properties,

(i) A is a nonempty, compact, and invariant set in Y .
(ii) A attracts any bounded set B ⊂ X with respect to the Y -norm; namely,

there is a τ = τ(B) such that Σ(t)B ⊂ Y for t > τ and distY (Σ(t)B,A) →
0, as t→∞.

Lemma 4.2. Let {gm} be a sequence in E such that {gm} converges to g0 ∈ E
weakly in E and {gm} converges to g0 strongly in H, as m→∞. Then

lim
m→∞

S(t)gm = S(t)g0 strongly in E,

where the convergence is uniform with respect to t in any given compact interval
[t0, t1] ⊂ (0,∞).

The proof of this lemma is found in [41, Lemma 10].

Theorem 4.3. The global attractor A in H for the Brusselator semiflow {S(t)}t≥0

is indeed an (H,E) global attractor and A is a bounded subset in L∞(Ω).

Proof. By Lemmas 2.2, 3.2 and 3.3, we can assert that for the Brusselator semiflow
{S(t)}t≥0 defined on H there exists a bounded absorbing set B1 ⊂ E and this
absorbing is in the E-norm. Indeed,

B1 = {g ∈ E : ‖g‖2E = ‖∇g‖2 ≤M1 +M2}.
Now we show that the Brusselator semiflow {S(t)}t≥0 is asymptotically compact

with respect to the strong topology in E. For any time sequence {tn}, tn → ∞,
and any bounded sequence {gn} ⊂ E, there exists a finite time t0 ≥ 0 such that
S(t){gn} ⊂ B0, for any t > t0. Then for an arbitrarily given T > t0 + T2, where T2

is the time specified in Lemma 3.3, there is an integer n0 ≥ 1 such that tn > 2T
for all n > n0. By Lemma 3.2 and Lemma 3.3,

{S(tn − T )gn}n>n0 is a bounded set in E.

Since E is a Hilbert space, there is an increasing sequence of integers {nj}∞j=1 with
n1 > n0, such that

lim
j→∞

S(tnj
− T )gnj

= g∗ weakly in E.

By the compact imbedding E ↪→ H, there is a further subsequence of {nj}, but
relabeled as the same as {nj}, such that

lim
j→∞

S(tnj
− T )gnj

= g∗ strongly in H.

Then by Lemma 4.2, we have the following convergence with respect to the E-norm,

lim
j→∞

S(tnj
)gnj

= lim
j→∞

S(T )S(tnj
− T )gnj

= S(T )g∗ strongly in E.

This proves that {S(t)}t≥0 is asymptotically compact in E.
Therefore, by Proposition 1.7, there exists a global attractor AE for the extended

Brusselator semiflow {S(t)}t≥0 in the space E. According to Definition 4.1 and the
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fact that B1 attracts B0 in the E-norm due to the combination of Lemma 3.2 and
Lemma 3.3, we see that this global attractor AE is an (H,E) global attractor.
Moreover, the invariance and the boundedness of A in H and the invariance and
boundedness of AE in E imply that

AE attracts A in E, so that A ⊂ AE , and
A attracts AE in H, so that AE ⊂ A .

Therefore, A = AE and we proved that the global attractor A in H is itself an
(H,E) global attractor for this Brusselator semiflow.

Next we show that A is a bounded subset in L∞(Ω). By the (Lp, L∞) regularity
of the analytic C0-semigroup {eAt}t≥0 stated in [33, Theorem 38.10], one has eAt :
Lp(Ω) → L∞(Ω) for t > 0, and there is a constant C(p) > 0 such that

‖eAt‖L(Lp,L∞) ≤ C(p) t−
n
2p , t > 0, where n = dim Ω. (4.1)

By the variation-of-constant formula satisfied by the mild solutions (of course by
strong solutions), for any g ∈ A (⊂ E), we have

‖S(t)g‖L∞ ≤ ‖eAt‖L(L2,L∞)‖g‖+
∫ t

0

‖eA(t−σ)‖L(L2,L∞)‖f(S(σ)g)‖ dσ

≤ C(2)t−3/4‖g‖+
∫ t

0

C(2)(t− σ)−3/4L(M1,M2)‖S(σ)g‖E dσ,

(4.2)

t ≥ 0, where C(2) is in the sense of (4.1) with p = 2, and L(M1,M2) is the Lipschitz
constant of the nonlinear map f on the closed, bounded ball with radius M1 +M2

in E. By the invariance of the global attractor A , surely we have

{S(t)A : t ≥ 0} ⊂ B0 (⊂ H) and {S(t)A : t ≥ 0} ⊂ B1 (⊂ E).

Then from (4.2) we obtain

‖S(t)g‖L∞ ≤ C(2)K1t
−3/4 +

∫ t

0

C(2)L(M1,M2)(M1 +M2)(t− σ)−3/4 dσ

= C(2)[K1t
−3/4 + 4L(M1,M2)(M1 +M2)t1/4], for t > 0.

(4.3)

Specifically one can take t = 1 in (4.3) and use the invariance of A to obtain

‖g‖L∞ ≤ C(2)(K1 + 4L(M1,M2)(M1 +M2)), for any g ∈ A .

Thus the global attractor A is a bounded subset in L∞(Ω). �

Now consider the Hausdorff dimension and fractal dimension of the global at-
tractor of the Brusselator semiflow {S(t)}t≥0 in H. Let qm = lim supt→∞ qm(t),
where

qm(t) = sup
g0∈A

sup
gi∈H,‖gi‖=1

i=1,...,m

(1
t

∫ t

0

Tr (A+ F ′(S(τ)g0)) ◦Qm(τ) dτ
)
, (4.4)

in which Tr (A + F ′(S(τ)g0)) is the trace of the linear operator A + F ′(S(τ)g0),
with F (g) being the nonlinear map in (1.12), and Qm(t) stands for the orthogonal
projection of space H on the subspace spanned by G1(t), . . . , Gm(t), with

Gi(t) = L(S(t), g0)gi, i = 1, . . . ,m. (4.5)

Here F ′(S(τ)g0) is the Fréchet derivative of the map F at S(τ)g0, and L(S(t), g0)
is the Fréchet derivative of the map S(t) at g0, with t being fixed.



EJDE-2011/25 A REACTION-DIFFUSION SYSTEM 19

Next we study Hausdorff and fractal dimensions of the global attractor A . The
following proposition is seen in [34, Chapter 5].

Proposition 4.4. If there is an integer m such that qm < 0, then the Hausdorff
dimension dH(A ) and the fractal dimension dF (A ) of A satisfy

dH(A ) ≤ m, and dF (A ) ≤ m max
1≤j≤m−1

(
1 +

(qj)+
|qm|

)
≤ 2m. (4.6)

It is standard to show that for any given t > 0, S(t) on H is Fréchet differentiable
and its Fréchet derivative at g0 is the bounded linear operator L(S(t), g0) given by

L(S(t), g0)G0
def= G(t) = (U(t), V (t),W (t), Z(t)),

for any G0 = (U0, V0,W0, Z0) ∈ H, where (U(t), V (t),W (t), Z(t)) is the strong
solution of the following initial-boundary value problem of the variational equations

∂U

∂t
= d1∆U + 2u(t)v(t)U + u2(t)V − (b+ 1)U +D1(W − U),

∂V

∂t
= d2∆V − 2u(t)v(t)U − u2(t)V + bU +D2(Z − V ),

∂W

∂t
= d1∆W + 2w(t)z(t)W + w2(t)Z − (b+ 1)W +D1(U −W ),

∂Z

∂t
= d2∆Z − 2w(t)z(t)W − w2(t)Z + bW +D2(V − Z),

U |∂Ω= V |∂Ω= W |∂Ω= Z |∂Ω= 0, t > 0,

U(0) = U0, V (0) = V0, W (0) = W0, Z(0) = Z0.

(4.7)

Here g(t) = (u(t), v(t), w(t), z(t)) = S(t)g0 is the solution of (1.12) with the initial
condition g(0) = g0. The initial-boundary value problem (4.7) can be written as

dG

dt
= (A+ F ′(S(t)g0))G, G(0) = G0. (4.8)

From Lemma 3.2, Lemma 3.3 and the invariance of A it follows that

sup
g0∈A

‖S(t)g0‖2E ≤M1 +M2. (4.9)

Theorem 4.5. The global attractors A for the Brusselator semiflow {S(t)}t≥0 has
a finite Hausdorff dimension and a finite fractal dimension.

Proof. By Proposition 4.4, we shall estimate Tr(A+ F ′(S(τ)g0)) ◦Qm(τ). At any
given time τ > 0, let {ϕj(τ) : j = 1, . . . ,m} be an H-orthonormal basis for the
subspace

Qm(τ)H = span{G1(τ), . . . , G,(τ)},

where G1(t), . . . , Gm(t) satisfy (4.8) with the respective initial values G1,0, . . . , Gm,0

and, without loss of generality, assuming that G1,0, . . . , Gm,0 are linearly indepen-
dent in H. By Gram-Schmidt orthogonalization scheme,

ϕj(τ) = (ϕ1
j (τ), ϕ

2
j (τ), ϕ

3
j (τ), ϕ

4
j (τ)) ∈ E, j = 1, . . . ,m,
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and ϕj(τ) are strongly measurable in τ . Let d0 = min{d1, d2}. Then

Tr(A+ F ′(S(τ)g0) ◦Qm(τ)

=
m∑

j=1

(〈Aϕj(τ), ϕj(τ)〉+ 〈F ′(S(τ)g0)ϕj(τ), ϕj(τ)〉)

≤ −d0

m∑
j=1

‖∇ϕj(τ)‖2 + J1 + J2 + J3,

(4.10)

where

J1 =
m∑

j=1

∫
Ω

2u(τ)v(τ)
(
|ϕ1

j (τ)|2 − ϕ1
j (τ)ϕ

2
j (τ)

)
dx

+
m∑

j=1

∫
Ω

2w(τ)z(τ)
(
|ϕ3

j (τ)|2 − ϕ3
j (τ)ϕ

4
j (τ)

)
dx,

J2 =
m∑

j=1

∫
Ω

(
u2(τ)

(
ϕ1

j (τ)ϕ
2
j (τ)− |ϕ2

j (τ)|2
)

+ w2(τ)
(
ϕ3

j (τ)ϕ
4
j (τ)− |ϕ4

j (τ)|2
))
dx

≤
m∑

j=1

∫
Ω

(
u2(τ)|ϕ1

j (τ)||ϕ2
j (τ)|+ w2(τ)|ϕ3

j (τ)||ϕ4
j (τ)|

)
dx,

and

J3 =
m∑

j=1

∫
Ω

(
−(b+ 1)(|ϕ1

j (τ)|2 + |ϕ3
j (τ)|2) + b(ϕ1

j (τ)ϕ
2
j (τ) + ϕ3

j (τ)ϕ
4
j (τ))

)
dx

−
m∑

j=1

∫
Ω

(
D1

(
ϕ1

j (τ)− ϕ3
j (τ)

)2
+D2

(
ϕ3

j (τ)− ϕ4
j (τ)

)2
)
dx

≤
m∑

j=1

∫
Ω

b
(
ϕ1

j (τ)ϕ
2
j (τ) + ϕ3

j (τ)ϕ
4
j (τ)

)
dx.

By the generalized Hölder inequality and the Sobolev embedding H1
0 (Ω) ↪→ L4(Ω)

for n ≤ 3, and using (4.9), we obtain

J1 ≤ 2
m∑

j=1

‖u(τ)‖L4‖v(τ)‖L4

(
‖ϕ1

j (τ)‖2L4 + ‖ϕ1
j (τ)‖L4‖ϕ2

j (τ)‖L4

)
+ 2

m∑
j=1

‖w(τ)‖L4‖z(τ)‖L4

(
‖ϕ3

j (τ)‖2L4 + ‖ϕ3
j (τ)‖L4‖ϕ4

j (τ)‖L4

)
≤ 4

m∑
j=1

‖S(τ)g0‖2L4‖ϕj(τ)‖2L4 ≤ 4δ(M1 +M2)
m∑

j=1

‖ϕj(τ)‖2L4 ,

(4.11)

where δ is the Sobolev embedding coefficient given at the beginning of Section 3.
Now we apply the Garliardo-Nirenberg interpolation inequality, cf. [33, Theorem
B.3],

‖ϕ‖W k,p ≤ C‖ϕ‖θ
W m,q‖ϕ‖1−θ

Lr , for ϕ ∈Wm,q(Ω), (4.12)
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provided that p, q, r ≥ 1, 0 < θ ≤ 1, and

k − n

p
≤ θ

(
m− n

q

)
− (1− θ)

n

r
, where n = dim Ω.

Here let W k,p(Ω) = L4(Ω),Wm,q(Ω) = H1
0 (Ω), Lr(Ω) = L2(Ω), and θ = n/4 ≤ 3/4.

It follows from (4.12) that

‖ϕj(τ)‖L4 ≤ C‖∇ϕj(τ)‖n/4‖ϕj(τ)‖1−
n
4 = C‖∇ϕj(τ)‖n/4, j = 1, . . . ,m, (4.13)

since ‖ϕj(τ)‖ = 1, where C is a uniform constant. Substitute (4.13) into (4.11) to
obtain

J1 ≤ 4δ(M1 +M2)C2
m∑

j=1

‖∇ϕj(τ)‖n/2. (4.14)

Similarly, by the generalized Hölder inequality, we can get

J2 ≤ δ(M1 +M2)
m∑

j=1

‖ϕj(τ)‖2L4 ≤ δ(M1 +M2)C2
m∑

j=1

‖∇ϕj(τ)‖n/2. (4.15)

Moreover, we have

J3 ≤
m∑

j=1

b‖ϕj(τ)‖2 = bm. (4.16)

Substituting (4.14), (4.15) and (4.16) into (4.10), we obtain

Tr(A+ F ′(S(τ)g0) ◦Qm(τ)

≤ −d0

m∑
j=1

‖∇ϕj(τ)‖2 + 5δ(M1 +M2)C2
m∑

j=1

‖∇ϕj(τ)‖n/2 + bm.
(4.17)

By Young’s inequality, for n ≤ 3, we have

5δ(M1 +M2)C2
m∑

j=1

‖∇ϕj(τ)‖n/2 ≤ d0

2

m∑
j=1

‖∇ϕj(τ)‖2 + Γ(n)m,

where Γ(n) is a uniform constant depending only on n = dim(Ω) and the involved
constants δ, C, d0,M1 and M2. Hence,

Tr(A+F ′(S(τ)g0) ◦Qm(τ) ≤ −d0

2

m∑
j=1

‖∇ϕj(τ)‖2 +(Γ(n) + b)m, τ > 0, g0 ∈ A .

According to the generalized Sobolev-Lieb-Thirring inequality [34, Appendix, Cor.
4.1], since {ϕ1(τ), . . . , ϕm(τ)} is an orthonormal set in H, so there exists a constant
Ψ > 0 only depending on the shape and dimension of Ω, such that

m∑
j=1

‖∇ϕj(τ)‖2 ≥
Ψm1+ 2

n

|Ω|2/n
. (4.18)

Therefore, we end up with

Tr(A+ F ′(S(τ)g0) ◦Qm(τ) ≤ − d0Ψ
2|Ω|2/n

m1+ 2
n + (Γ(n) + b)m, (4.19)
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for τ > 0 and g0 ∈ A . Then we can conclude that

qm(t) = sup
g0∈A

sup
gi∈H,‖gi‖=1

i=1,...,m

(1
t

∫ t

0

Tr (A+ F ′(S(τ)g0)) ◦Qm(τ) dτ
)

≤ − d0Ψ
2|Ω|2/n

m1+ 2
n + (Γ(n) + b)m, for any t > 0,

(4.20)

so that

qm = lim sup
t→∞

qm(t) ≤ − d0Ψ
2|Ω|2/n

m1+ 2
n + (Γ(n) + b)m < 0, (4.21)

if the integer m satisfies the condition

m− 1 ≤
(2(Γ(n) + b)

d0Ψ

)n/2

|Ω| < m. (4.22)

According to Proposition 4.4, we have shown that the Hausdorff dimension and the
fractal dimension of the global attractor A are finite and their upper bounds are
given by

dH(A ) ≤ m and dF (A ) ≤ 2m,

respectively, where m satisfies (4.22). �

5. Existence of an exponential attractor

In this final section, we shall prove the existence of an exponential attractor for
the Brusselator semiflow {S(t)}t≥0.

Definition 5.1. Let X be a real Banach space and {Σ(t)}t≥0 be a semiflow on X.
A set E ⊂ X is an exponential attractor for the semiflow {Σ(t)}t≥0 in X, if the
following conditions are satisfied:

(i) E is a nonempty, compact, positively invariant set in X,
(ii) E has a finite fractal dimension, and
(iii) E attracts every bounded set B ⊂ X exponentially: there exist positive

constants µ and C(B) which depends on B, such that

distX(Σ(t)B,E ) ≤ C(B)e−µt, for t ≥ 0.

The basic theory and construction of exponential attractors were established in
[10] for discrete and continuous semiflows on Hilbert spaces. The existence theory
was generalized to semiflows on Banach spaces in [9] and extended to some nonlinear
reaction-diffusion equations on unbounded domains and other equations including
chemotaxis equations and some quasilinear parabolic equations.

Global attractors, exponential attractors, and inertial manifolds are the three
major research topics in the area of infinite dimensional dynamical systems. For a
continuous semiflow on a Hilbert space, if all the three objects (a global attractor
A , an exponential attractor E , and an inertial manifold M of the same exponential
attraction rate) exist, then the following inclusion relationship holds,

A ⊂ E ⊂ M .

Here we shall tackle the existence of exponential attractor for the Brusselator
semiflow by the argument of squeezing property [10, 23].
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Definition 5.2. For a spectral (orthogonal) projection PN relative to a nonnega-
tive, self-adjoint, linear operator Λ : D(Λ) → H with a compact resolvent, which
maps the Hilbert space H onto the N -dimensional subspace HN spanned by a set
of the first N eigenvectors of the operator Λ, we defined a cone

CPN
= {y ∈ X : ‖(I − PN )(y)‖H ≤ ‖PN (y)‖H}.

A continuous mapping S∗ satisfies the discrete squeezing property relative to a set
B ⊂ H if there exist a constant κ ∈ (0, 1/2) and a spectral projection PN on H
such that for any pair of points y0, z0 ∈ B, if

S∗(y0)− S∗(z0) /∈ CPN
,

then
‖S∗(y0)− S∗(z0)‖H ≤ κ‖y0 − z0‖H.

We first present the following lemma, which is a modified version of the basic
result [23, Theorem 4.5] on the sufficient conditions for the existence of an exponen-
tial attractor of a semiflow on a Hilbert space. In some sense, this lemma provides
a more accessible way to check these sufficient conditions if we are sure there exists
an (X,Y ) global attractor, such as the (H,E) global attractor for the Brusselator
semiflow here. The following lemma was proved in [42, Lemma 6.1].

Lemma 5.3. Let X be a real Banach space and Y be a compactly embedded subspace
of X. Consider a semilinear evolutionary equation

dϕ

dt
+ Λϕ = g(ϕ), t > 0, (5.1)

where Λ : D(Λ) → X is a nonnegative, self-adjoint, linear operator with compact
resolvent, and g : Y = D(Λ1/2) → W is a locally Lipschitz continuous mapping.
Suppose that the weak solution of (5.1) for each initial point w(0) = w0 ∈ W
uniquely exists for all t ≥ 0, which turn out to be a strong solution for t > 0 and
altogether form a semiflow denoted by {Σ(t)}t≥0. Assume that the following four
conditions are satisfied:

(i) There exist a compact, positively invariant, absorbing set Bc in X.
(ii) There is a positive integer N such that the norm quotient Q(t) defined by

Q(t) =
‖Λ1/2 (ϕ1(t)− ϕ2(t)) ‖2X

‖ϕ1(t)− ϕ2(t)‖2X
(5.2)

for any two trajectories ϕ1(·) and ϕ2(·) of (5.1) starting from the set
Bc\CPN

satisfies a differential inequality

dQ

dt
≤ ρ (Bc)Q(t), t > 0,

where ρ (Bc) is a positive constant only depending on Bc.
(iii) For any given finite T > 0 and any given ϕ ∈ Bc, Σ(·)ϕ : [0, T ] → Bc

is Hölder continuous with exponent θ = 1/2 and the coefficient of Hölder
continuity, K(ϕ) : Bc → (0,∞), is a bounded function.

(iv) For any t ∈ [0, T ], where T > 0 is arbitrarily given, Σ(t)(·) : Bc → Bc is
a Lipschitz continuous mapping and the Lipschitz constant L(t) : [0, T ] →
(0,∞) is a bounded function.

Then there exists an exponential attractor E in X for this semiflow {Σ(t)}t≥0.
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The next theorem is another main result in this paper and it shows the existence
of an exponential attractor for the solution semiflow {S(t)}t≥0 inH by the approach
through the existence of an (H,E) global attractor and Lemma 5.3.

Theorem 5.4. For any positive parameters d1, d2, a, b,D1 and D2, there exists an
exponential attractor E in H for the solution semiflow {S(t)}t≥0 generated by the
Brusselator evolutionary equation (1.12).

Proof. By Theorem 4.3, there exists an (H,E) global attractor A , which is exactly
the global attractor of the Brusselator semiflow {S(t)}t≥0 in H. Consequently, by
[42, Corollary 5.7], there exists a compact, positively invariant, absorbing set BE

in H, which is a bounded set in E, for this semiflow.
Next we prove that the second condition in Lemma 5.3 is satisfied by this

Brusselator semiflow. Consider any two points g1(0), g2(0) ∈ BE and let gi(t) =
(ui(t), vi(t), wi(t), zi(t)), i = 1, 2, be the corresponding solutions, respectively. Let
y(t) = g1(t)− g2(t), t ≥ 0. The associated norm quotient of the difference g1 − g2
of two trajectories, where g1(0) 6= g2(0), is given by

Q(t) =
‖(−A)1/2y(t)‖2

‖y(t)‖2
, t ≥ 0.

Directly we can calculate
1
2
d

dt
Q(t)

=
1

‖y(t)‖4
[
〈(−A)1/2y(t), (−A)1/2yt〉‖y(t)‖2 − ‖(−A)1/2y(t)‖2〈y(t), yt〉

]
=

1
‖y(t)‖2

[〈(−A)y(t), yt〉 −Q(t)〈y(t), yt〉]

=
1

‖y(t)‖2
〈(−A)y(t)−Q(t)y(t), Ay(t) + F (g1(t))− F (g2(t))〉

=
1

‖y(t)‖2
〈(−A)y(t)−Q(t)y(t), Ay(t) +Q(t)y(t) + F (g1(t))− F (g2(t))〉

=
1

‖y(t)‖2
[
−‖Ay(t) +Q(t)y(t)‖2 − 〈Ay(t) +Q(t)y(t), F (g1(t))− F (g2(t))〉

]
≤ 1
‖y(t)‖2

(
− 1

2
‖Ay(t) +Q(t)y(t)‖2 +

1
2
‖F (g1(t))− F (g2(t)) ‖

)
(5.3)

where we used the identity −〈Ay(t) + Q(t)y(t), Q(t)y(t)〉 = 0. Note that BE is a
bounded set in E and that E ↪→ [L6(Ω)]4 is a continuous imbedding so that there
is a uniform constant R > 0 only depending on BE such that

‖(u, v, w, z)‖2L6(Ω) ≤ R, for any (u, v, w, z) ∈ BE . (5.4)

It is seen that
‖F (g1(t))− F (g2(t)) ‖
≤ ‖ − (b+ 1) (u1 − u2) +

(
u2

1v1 − u2
2v2

)
−D1 ((u1 − u2)− (w1 − w2)) ‖

+ ‖b (u1 − u2)−
(
u2

1v1 − u2
2v2

)
−D2 ((v1 − v2)− (z1 − z2)) ‖

+ ‖ − (b+ 1) (w1 − w2) +
(
w2

1z1 − w2
2z2

)
+D1 ((u1 − u2)− (w1 − w2)) ‖

+ ‖b (w1 − w2)−
(
w2

1z1 − w2
2z2

)
+D2 ((v1 − v2)− (z1 − z2)) ‖.

(5.5)
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Using the Hölder inequality, the imbedding inequality ‖·‖2
L6 ≤ η‖·‖2

E , and Poincaré
inequality orderly, we have

‖u1 − u2‖2 ≤ |Ω|2/3‖u1 − u2‖2L6(Ω)

≤ |Ω|2/3η‖∇(u1 − u2)‖2

= c1‖(−A)1/2 (g1 − g2) ‖2,

where c1 = |Ω|2/3η d1. Similarly, we have

‖w1 − w2‖2 ≤ c1‖(−A)1/2 (g1 − g2) ‖2,

and

‖v1 − v2‖2 ≤ c2‖(−A)1/2 (g1 − g2) ‖2, ‖z1 − z2‖2 ≤ c2‖(−A)1/2 (g1 − g2) ‖2,

where c2 = |Ω|2/3η d2. By the generalized Hölder inequality and (5.4), we have

‖u2
1v1 − u2

2v2‖2

≤ 2‖u1 − u2‖2L6(Ω)‖u1 + u2‖2L6(Ω)‖v2‖
2
L6(Ω) + 2‖v1 − v2‖2L6(Ω)‖u1‖4L6(Ω)

≤ 8R2‖u1 − u2‖2L6(Ω) + 2R2‖v1 − v2‖2L6(Ω)

≤ c3(R)‖(−A)1/2 (g1 − g2) ‖2,

and similarly,
‖w2

1z1 − w2
2z2‖2 ≤ c3(R)‖(−A)1/2 (g1 − g2) ‖2,

where c3(R) = 2η (4d1 + d2)R2.
Substituting these inequalities into (5.5), we obtain

‖F (g1(t))− F (g2(t)) ‖

≤ 2
(√

c1(b+ 1 +D1) +
√
c2D2 +

√
c3(R)

)
‖(−A)1/2y(t)‖.

(5.6)

Then substitution of (5.6) into (5.3) yields

d

dt
Q(t) ≤ 1

‖y(t)‖2
‖F (g1(t))− F (g2(t)) ‖ ≤ ρ(BE)Q(t), t > 0, (5.7)

where
ρ(BE) = 2

(√
c1(b+ 1 +D1) +

√
c2D2 +

√
c3(R)

)
is a positive constant only depending on R which depends on BE . Thus the second
condition in Lemma 5.3 is satisfied.

Now check the Hölder continuity of S(·)g : [0, T ] → BE for any given g ∈ BE

and any given compact interval [0, T ]. By the mild solution formula, for any 0 ≤
t1 < t2 ≤ T we obtain

‖S(t2)g − S (t1) g‖ ≤ ‖
(
eA(t2−t1) − I

)
eAt1g‖+

∫ t2

t1

‖eA(t2−σ)F (S(σ)g)‖dσ

+
∫ t1

0

‖
(
eA(t2−t1) − I

)
eA(t1−σ)F (S(σ)g)‖dσ.

(5.8)

Since BE is positively invariant with respect to the Brusselator semiflow {S(t)}t≥0

and BE is bounded in E, there exists a constant KBE
> 0 such that for any g ∈ BE ,

we have
‖S(t)g‖E ≤ KBE

, t ≥ 0.
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Since F : E → H is locally Lipschitz continuous, there is a Lipschitz constant
LBE

> 0 of F relative to this positively invariant set BE . Moreover, by [33, Theorem
37.5], for the analytic, contracting, linear semigroup {eAt}t≥0, there exist positive
constants N0 and N1 such that

‖eAtg − g‖H ≤ N0 t
1/2‖g‖E , for t ≥ 0, w ∈ E,

and
‖eAt‖L(H,E) ≤ N1t

−1/2, for t > 0.
It follows that

‖
(
eA(t2−t1) − I

)
eAt1g‖ ≤ N0(t2 − t1)1/2KBE

and∫ t2

t1

‖eA(t2−σ)F (S(σ)g)‖dσ ≤
∫ t2

t1

N1LBE
KBE√

t2 − σ
dσ = 2KBE

LBE
N1(t2 − t1)1/2.

Moreover,∫ t1

0

‖
(
eA(t2−t1) − I

)
eA(t1−σ)F (S(σ)g)‖dσ ≤ N0(t2 − t1)1/2

∫ t1

0

N1LBE
KBE√

t1 − σ
dσ

= 2KBE
LBE

N0N1

√
T (t2 − t1)1/2.

Substituting the above three inequalities into (5.8), we obtain

‖S(t2)g − S (t1) g‖ ≤ KBE

(
N0 + 2LBE

N1(1 +N0

√
T )

)
(t2 − t1)1/2, (5.9)

for 0 ≤ t1 < t2 ≤ T . Thus the third condition in Lemma 5.3 is satisfied. Namely,
for any given T > 0, the mapping S(·)g : [0, T ] → BE is Hölder continuous with the
exponent 1/2 and with a uniformly bounded coefficient independent of g ∈ BE .

We can use Theorem 47.8 (specifically (47.20) therein) in [33] to confirm the
Lipschitz continuity of the mapping S(t)(·) : BE → BE for any t ∈ [0, T ] where
T > 0 is arbitrarily given. Thus the fourth condition in Lemma 5.3 is also satisfied.
Finally, we apply Lemma 5.3 to reach the conclusion of this theorem. �
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