Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 26, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONEXISTENCE OF RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE PROBLEM

SAID HAKIMI, ABDERRAHIM ZERTITI

Abstract

In this article we study the nonexistence of radial positive solutions for a nonpositone problem when the nonliearity is superlinear and has more than one zero.

1. Introduction

We study the nonexistence of radial positive solutions for the boundary-value problem

$$
\begin{gather*}
-\Delta u(x)=\lambda f(u(x)) \quad x \in \Omega, \\
u(x)=0 \quad x \in \partial \Omega \tag{1.1}
\end{gather*}
$$

where $\lambda>0, f:[0,+\infty) \rightarrow \mathbb{R}$ is a continuous nonlinear function that has more than one zero, and $\Omega \subset \mathbb{R}^{N}$; is the annulus: $\Omega=C(0, R, \widehat{R})=\left\{x \in \mathbb{R}^{N}: R<|x|<\widehat{R}\right\}$ $(N>2,0<R<\widehat{R})$.

When f is a nondecreasing satisfying $f(0)<0$ (the nonpositone case) and has only one zero, problem (1.1) has been studied by Brown, Castro and Shivaji [2] in the ball, and by Arcoya and Zertiti [1] in the annulus.

We observe that the nonexistence of radial positive solutions of 1.1 is equivalent to the nonexistence of positive solutions of the problem

$$
\begin{gather*}
-u^{\prime \prime}(r)-\frac{N-1}{r} u^{\prime}(r)=\lambda f(u(r)) \quad R<r<\widehat{R} \tag{1.2}\\
u(R)=u(\widehat{R})=0,
\end{gather*}
$$

where $\lambda>0$.
Our main objective in this article is to prove that the result of nonexistence of radial positive solutions of (1.1) remains valid when f has more than one zero and is not increasing entirely on $[0,+\infty)$; see [1, Theorem 3.1]. More precisely we assume that the map $f:[0,+\infty) \rightarrow \mathbb{R}$ satisfies the following hypotheses
(H1) $f \in C^{1}([0,+\infty), \mathbb{R})$ such that f has three zeros $\beta_{1}<\beta_{2}<\beta_{3}$ with $f^{\prime}\left(\beta_{i}\right) \neq$ 0 for all $i \in\{1,2,3\}$. Moreover, $f^{\prime} \geq 0$ on $\left[\beta_{3},+\infty\right)$.
(H2) $f(0)<0$.
(H3) $\lim _{u \rightarrow+\infty} f(u) / u=+\infty$,

[^0]
2. The main result

In this section, we give the main result in this work. More precisely we shall prove the following theorem.

Theorem 2.1. Assume that the hypotheses $(\mathrm{H} 1)-(\mathrm{H} 3)$ are satisfied. Then there exists a positive real number λ_{0} such that if $\lambda>\lambda_{0}$, problem (1.1) has no radial positive solution.

Remark. We do not know for what radius $r \in(R, \widehat{R})$ the solution u attains its maximum. In addition, f changes sign in $\left(\beta_{1},+\infty\right)$. These two facts make our study more difficult, and change the proof of nonexistence in [1].

To prove Theorem 2.1, we need the next three technical lemmas. We note that the proofs of the first and the last lemma are analogous to those of [1, Lemma 3.2, Lemma 3.4]. On the other hand, the proof of the second lemma is different from that of [1, Lemma 3.3]. This is so because our f has no constant sign in $\left(\beta_{1},+\infty\right)$.

Denote by $u_{\lambda}(r)$ a positive solution of (1.1) (if it exists) and let $R_{0}=(R+$ $\widehat{R}) / 2$. Following the work [1], we introduce the following notation: $\beta=\beta_{1}, \theta=$ $\min \left\{\beta_{2}, \min \theta_{i}\right\}$ where θ_{i} are the zeros of $F\left(F(x)=\int_{0}^{x} f(t) d t\right)$.
Remark. In [3, Theorem B iii], F has at most one zero. On the opposite, in our case F may have more than one zero because f has a finite number of zeros. In this paper we assume, with out loss of generality, that f has three zeros. In fact, the number of zeros of F depends on f, but F has at most three zeros.
Lemma 2.2. Let $f \in C^{1}([0,+\infty))$ satisfying (H3) and consider $\lambda>2$. If u_{λ} is a positive solution of (1.2), then for every $r \in\left(R_{0}, \widehat{R}\right]$ there exists a positive number $M=M(r)>0$ (independent of λ) such that $u_{\lambda}(r) \leq M$.

Proof. Let φ_{1} be a positive eigenfunction associated to the first eigenvalue $\mu_{1}>0$ of the eigenvalue problem

$$
\begin{gathered}
-\left(r^{N-1} v^{\prime}\right)^{\prime}=\mu r^{N-1} v, \quad R<r<\widehat{R} \\
v(R)=0=v(\widehat{R}),
\end{gathered}
$$

Multiplying the equation in 1.2 by $r^{N-1} \varphi_{1}(r)$ and integrating from R to \widehat{R}, we obtain

$$
\int_{R}^{\widehat{R}} r^{N-1} u_{\lambda}^{\prime}(r) \varphi_{1}^{\prime}(r) d r=-\int_{R}^{\widehat{R}}\left(r^{N-1} u_{\lambda}^{\prime}(r)\right)^{\prime} \varphi_{1}(r) d r
$$

hence

$$
\begin{equation*}
\int_{R}^{\widehat{R}} r^{N-1} u_{\lambda}^{\prime}(r) \varphi_{1}^{\prime}(r) d r=\lambda \int_{R}^{\widehat{R}} r^{N-1} f\left(u_{\lambda}(r)\right) \varphi_{1}(r) d r \tag{2.1}
\end{equation*}
$$

On the other hand, multiplying the equation $-\left(r^{N-1} \varphi_{1}^{\prime}(r)\right)^{\prime}=\mu_{1} r^{N-1} \varphi_{1}(r),(R<$ $r<\widehat{R})$ by u_{λ} and integrating from R to \widehat{R}, we obtain

$$
\int_{R}^{\widehat{R}} r^{N-1} u_{\lambda}^{\prime}(r) \varphi_{1}^{\prime}(r) d r=-\int_{R}^{\widehat{R}}\left(r^{N-1} \varphi_{1}^{\prime}(r)\right)^{\prime} u_{\lambda}(r) d r,
$$

hence

$$
\begin{equation*}
\int_{R}^{\widehat{R}} r^{N-1} u_{\lambda}^{\prime}(r) \varphi_{1}^{\prime}(r) d r=\mu_{1} \int_{R}^{\widehat{R}} r^{N-1} \varphi_{1}(r) u_{\lambda}(r) d r \tag{2.2}
\end{equation*}
$$

Combining (2.1), 2.2 and choosing $\mu>\mu_{1} / 2, c>0$ such that

$$
f(\zeta) \geq \mu \zeta-c, \quad \forall \zeta \geq 0
$$

(because f is superlinear), we deduce

$$
\begin{aligned}
\mu_{1} \int_{R}^{\widehat{R}} r^{N-1} \varphi_{1}(r) u_{\lambda}(r) d r & =\lambda \int_{R}^{\widehat{R}} r^{N-1} f\left(u_{\lambda}(r)\right) \varphi_{1}(r) d r \\
& \geq \lambda \mu \int_{R}^{\widehat{R}} r^{N-1} \varphi_{1}(r) u_{\lambda}(r) d r-\lambda c \int_{R}^{\widehat{R}} r^{N-1} \varphi_{1}(r) d r,
\end{aligned}
$$

from which

$$
\int_{R}^{\widehat{R}} r^{N-1} \varphi_{1}(r) u_{\lambda}(r) d r \leq \frac{\lambda k}{\lambda \mu-\mu_{1}} \leq \frac{k}{\mu-\frac{\mu_{1}}{2}}:=A, \quad \forall \lambda>2
$$

with $k=c \int_{R}^{\widehat{R}} r^{N-1} \varphi_{1}(r) d r>0$ and $A>0$ is independent of λ. Now, let $r \in\left(R_{0}, \widehat{R}\right]$ and choosing $\delta>0$ such that $R_{0}<r-\delta$ and using the fact that u_{λ} is non-increasing in $\left(R_{0}, \widehat{R}\right)$ (see [4]) implies

$$
\begin{aligned}
u_{\lambda}(r) & \leq \frac{\int_{r-\delta}^{r} t^{N-1} u_{\lambda}(t) \varphi_{1}(t) d t}{\int_{r-\delta}^{r} t^{N-1} \varphi_{1}(t) d t} \\
& \leq \frac{\int_{R}^{\widehat{R}} t^{N-1} u_{\lambda}(t) \varphi_{1}(t) d t}{\int_{r-\delta}^{r} t^{N-1} \varphi_{1}(t) d t} \\
& \leq \frac{A}{\int_{r-\delta}^{r} t^{N-1} \varphi_{1}(t) d t}=M, \quad \forall \lambda>2 .
\end{aligned}
$$

The proof is complete.
Lemma 2.3. Assume (H1)-(H3) and let $R_{1} \in\left(R_{0}, \widehat{R}\right), c \in(\beta, \theta)$. Then there exists $\lambda_{1}>0$ such that for all positive solutions u_{λ} of 1.2 with $\lambda \geq \lambda_{1}$, there exists $t_{1}=t_{1}(\lambda) \in\left(R_{0}, R_{1}\right)$ satisfying $u_{\lambda}\left(t_{1}\right)<c$.
Proof. We argue by contradiction. Suppose that there exists a sequence $\left\{\lambda_{n}\right\} \subset$ $(0,+\infty)$ converging to $+\infty$ such that

$$
u_{\lambda_{n}}(r) \geq c, \quad \forall r \in\left(R_{0}, R_{1}\right], \forall n \in \mathbb{N} .
$$

Consider $\bar{t}_{n}=\max \left\{r \in(R, \widehat{R}): u_{\lambda_{n}}^{\prime}(r)=0\right\}$. Then $u_{\lambda_{n}}^{\prime}(r)<0$ for all $r \in\left(\bar{t}_{n}, \widehat{R}\right)$, and we deduce

$$
u_{\lambda_{n}}(r) \leq u_{\lambda_{n}}\left(\bar{t}_{n}\right), \quad \forall r \in\left(\bar{t}_{n}, \widehat{R}\right)
$$

It follows that $u_{\lambda_{n}}^{\prime}\left(\bar{t}_{n}\right)=0$ and $u_{\lambda_{n}}^{\prime \prime}\left(\bar{t}_{n}\right) \leq 0$. So $f\left(u_{\lambda_{n}}\left(\bar{t}_{n}\right)\right) \geq 0$ by 1.2. Hence

$$
u_{\lambda_{n}}\left(\bar{t}_{n}\right) \leq \beta_{2} \quad \text { or } \quad u_{\lambda_{n}}\left(\bar{t}_{n}\right) \geq \beta_{3} .
$$

Now, we study the following two cases:
Case 1: $u_{\lambda_{n}}\left(\bar{t}_{n}\right) \leq \beta_{2}$.
(i) If $\sup _{n} u_{\lambda_{n}}\left(\bar{t}_{n}\right)<\beta_{2}$, then

$$
\begin{aligned}
-r^{N-1} u_{\lambda_{n}}^{\prime}(r) & =\lambda_{n} \int_{\bar{t}_{n}}^{r} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s, \quad \forall r \in\left(R_{0}, R_{1}\right) \\
& \geq \lambda_{n} \inf _{\xi \in\left(c, \sup _{n} u_{\lambda_{n}}\left(\bar{t}_{n}\right)\right)} f(\xi) \int_{R_{0}}^{r} s^{N-1} d s
\end{aligned}
$$

Since $\sup _{n} u_{\lambda_{n}}\left(\bar{t}_{n}\right)<\beta_{2}$, it follows that $\inf _{\xi \in\left(c, \sup _{n} u_{\lambda_{n}}\left(\bar{t}_{n}\right)\right)} f(\xi)>0$. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} u_{\lambda_{n}}^{\prime}(r)=-\infty, \text { uniformly on compact subsets of }\left(R_{0}, R_{1}\right) . \tag{2.3}
\end{equation*}
$$

Now, let $r_{1}, r_{2} \in\left(R_{0}, R_{1}\right)$ such that $R_{0}<r_{1}<r_{2}<R_{1}$. By the mean value theorem, there exists $r_{n} \in\left(r_{1}, r_{2}\right)$ such that

$$
u_{\lambda_{n}}\left(r_{2}\right)=u_{\lambda_{n}}\left(r_{1}\right)+\left(r_{2}-r_{1}\right) u_{\lambda_{n}}^{\prime}\left(r_{n}\right)
$$

Also, for all $r \in\left(R_{0}, R_{1}\right)$ we have $c \leq u_{\lambda_{n}}(r)<\beta_{2}$ for all n, and by (2.3) the second summand of the precedent equality tends to $-\infty$. Hence

$$
\lim _{n \rightarrow+\infty} u_{\lambda_{n}}\left(r_{2}\right)=-\infty
$$

This contradicts $u_{\lambda_{n}} \geq 0$ for all $n \in \mathbb{N}$.
(ii) If $\sup _{n} u_{\lambda_{n}}\left(\bar{t}_{n}\right)=\beta_{2}$. Consider the following two sets:

$$
\begin{gathered}
\Phi_{n}=\left\{r \in\left[R_{1}, \widehat{R}\right]: \beta \leq u_{\lambda_{n}}(r) \leq \frac{3 \beta+c}{4}\right\}, \\
\Psi_{n}=\left\{r \in\left[R_{1}, \widehat{R}\right]: \frac{2(\beta+c)}{4} \leq u_{\lambda_{n}}(r) \leq \frac{\beta+3 c}{4}\right\} .
\end{gathered}
$$

Since $\left(\beta, \frac{3 \beta+c}{4}\right),\left(\frac{2(\beta+c)}{4}, \frac{\beta+3 c}{4}\right) \subset u_{\lambda_{n}}\left(\left(R_{1}, \widehat{R}\right)\right)$, by the intermediate value theorem, Φ_{n} and Ψ_{n} are not empty. Consider $\underline{a}(n), \bar{a}(n), \underline{b}(n)$ and $\bar{b}(n)$ such that $\underline{a}(n)=\inf _{r} \Psi_{n}, \bar{a}(n)=\sup _{r} \Psi_{n}, \underline{b}(n)=\inf _{r} \Phi_{n}$ and $\bar{b}(n)=\sup _{r} \Phi_{n}$. Let $r_{0} \in[\underline{a}(n), \bar{b}(n)]$. Then

$$
\begin{aligned}
-r_{0}^{N-1} u_{\lambda_{n}}^{\prime}\left(r_{0}\right) & =\lambda_{n} \int_{\bar{t}_{n}}^{r_{0}} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s \\
& \geq \lambda_{n} R^{N-1} \int_{R_{0}}^{r_{0}} f\left(u_{\lambda_{n}}(s)\right) d s \\
& \geq \lambda_{n} R^{N-1} \int_{u_{\lambda_{n}}\left(R_{0}\right)}^{u_{\lambda_{n}}\left(r_{0}\right)} \frac{f(t)}{u_{\lambda_{n}}^{\prime}\left(u_{\lambda_{n}}^{-1}(t)\right)} d t \\
& =\lambda_{n} R^{N-1} \int_{u_{\lambda_{n}}\left(r_{0}\right)}^{u_{\lambda_{n}}\left(R_{0}\right)} \frac{f(t)}{-u_{\lambda_{n}}^{\prime}\left(u_{\lambda_{n}}^{-1}(t)\right)} d t
\end{aligned}
$$

hence

$$
\begin{aligned}
-r_{0}^{N-1} u_{\lambda_{n}}^{\prime}\left(r_{0}\right)\left(-u_{\lambda_{n}}^{\prime}\left(s_{0}\right)\right) & \geq \lambda_{n} R^{N-1} \int_{u_{\lambda_{n}}\left(r_{0}\right)}^{u_{\lambda_{n}}\left(R_{0}\right)} f(t) d t \\
& \geq \lambda_{n} R^{N-1} \int_{\frac{\beta+3 c}{4}}^{c} f(t) d t
\end{aligned}
$$

where s_{0} satisfies $u_{\lambda_{n}}^{\prime}\left(s_{0}\right)=\inf _{\left[R_{0}, r_{0}\right]} u_{\lambda_{n}}^{\prime}(s)$. Since the function $r \longmapsto-r^{N-1} u_{\lambda_{n}}^{\prime}(r)$ is increasing on $(\underline{a}(n), \bar{b}(n))$,

$$
-r_{0}^{N-1} u_{\lambda_{n}}^{\prime}\left(r_{0}\right)\left(-u_{\lambda_{n}}^{\prime}\left(s_{0}\right)\right) \leq\left(-r_{0}^{N-1} u_{\lambda_{n}}^{\prime}\left(r_{0}\right)\right)^{2} \frac{1}{s_{0}^{N-1}} .
$$

Then

$$
\left(-r_{0}^{N-1} u_{\lambda_{n}}^{\prime}\left(r_{0}\right)\right)^{2} \frac{1}{s_{0}^{N-1}} \geq \lambda_{n} R^{N-1} \int_{\frac{\beta+3 c}{4}}^{c} f(t) d t
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} u_{\lambda_{n}}^{\prime}\left(r_{0}\right)=-\infty \tag{2.4}
\end{equation*}
$$

Now, Let $r_{1} \in[\underline{a}(n), \bar{a}(n)]$ and $r_{2} \in[\underline{b}(n), \bar{b}(n)]$, then by the mean value theorem, there exists $r * \in\left(r_{1}, r_{2}\right)$ such that

$$
\begin{aligned}
u_{\lambda_{n}}\left(r_{2}\right) & =u_{\lambda_{n}}\left(r_{1}\right)+\left(r_{2}-r_{1}\right) u_{\lambda_{n}}^{\prime}(r *) \\
& <u_{\lambda_{n}}\left(R_{1}\right)+(\underline{b}(n)-\bar{a}(n)) u_{\lambda_{n}}^{\prime}(r *) \\
& \leq u_{\lambda_{n}}\left(R_{1}\right)+\inf _{n}(\underline{b}(n)-\bar{a}(n)) u_{\lambda_{n}}^{\prime}(r *) .
\end{aligned}
$$

Since $u_{\lambda_{n}}\left(R_{1}\right) \leq M$, for all n and some $M=M\left(R_{1}\right)>0$ (see Lemma 2.2 and $\inf _{n}(\underline{b}(n)-\bar{a}(n))>0$ and $\lim _{n \rightarrow+\infty} u_{\lambda_{n}}^{\prime}(r *)=-\infty$ (by 2.4), it follows that $\lim _{n \rightarrow+\infty} u_{\lambda_{n}}\left(r_{2}\right)=-\infty$, which contradicts $u_{\lambda_{n}} \geq 0$ for all $n \in \mathbb{N}$.

Case 2: $u_{\lambda_{n}}\left(\bar{t}_{n}\right) \geq \beta_{3}$. Let $r_{0} \in[\underline{a}(n), \bar{b}(n)]$, then

$$
-r_{0}^{N-1} u_{\lambda_{n}}^{\prime}\left(r_{0}\right)=\lambda_{n} \int_{\bar{t}_{n}}^{r_{0}} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s
$$

Consider $t_{\beta_{2}}$ such that $t_{\beta_{2}}=\max \left\{r_{n} \in(R, \widehat{R}]: u_{\lambda_{n}}\left(r_{n}\right)=\beta_{2}\right\}$. Then

$$
\begin{aligned}
-r_{0}^{N-1} u_{\lambda_{n}}^{\prime}\left(r_{0}\right) & =\lambda_{n} \int_{\bar{t}_{n}}^{r_{0}} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s \\
& =\lambda_{n}\left[\int_{\bar{t}_{n}}^{t_{\beta_{2}}} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s+\int_{t_{\beta_{2}}}^{r_{0}} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s\right] \\
& \geq \lambda_{n} \int_{t_{\beta_{2}}}^{r_{0}} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s,
\end{aligned}
$$

because $\int_{\bar{t}_{n}}^{t_{\beta_{2}}} s^{N-1} f\left(u_{\lambda_{n}}(s)\right) d s \geq 0$. Then as in Case 1 , we obtain a contradiction with the positivity of $u_{\lambda_{n}}$.
Lemma 2.4. Assume (H2). Let $R_{2} \in\left(R_{0}, \widehat{R}\right)$ and $\bar{c}>1$. Then there exists $\lambda_{2}>0$ such that every positive solution u_{λ} of 1.2$)$ satisfies $\frac{\beta}{\bar{c}} \in u_{\lambda}\left(\left[R_{2}, \widehat{R}\right]\right)$, for all $\lambda \geq \lambda_{2}$. Where $b_{\lambda}=\max \left\{r \in(R, \widehat{R}): u_{\lambda}(r)=\frac{\beta}{\bar{c}}\right\}$.
Proof. This lemma will be proved if we show that

$$
\begin{equation*}
\lim _{\lambda \rightarrow+\infty} b_{\lambda}=\widehat{R} \tag{2.5}
\end{equation*}
$$

To do this, we multiply the equation in (1.2) by r^{N-1}, integrate it from b_{λ} to \widehat{R} and use that $u_{\lambda}(r)<\frac{\beta}{\bar{c}}$, for all $r \in\left(b_{\lambda}, \widehat{R}\right]$, to deduce that

$$
\int_{b_{\lambda}}^{\widehat{R}}\left(r^{N-1} u_{\lambda}^{\prime}(r)\right)^{\prime} d r \geq \int_{b_{\lambda}}^{\widehat{R}} \lambda r^{N-1} K d r
$$

where $K=-\max \left\{f(\zeta): \zeta \in\left[0, \frac{\beta}{\bar{c}}\right]\right\}>0$. Hence

$$
\begin{equation*}
\widehat{R}^{N-1} u_{\lambda}^{\prime}(\widehat{R})-b_{\lambda}^{N-1} u_{\lambda}^{\prime}\left(b_{\lambda}\right) \geq \frac{\lambda}{N} K\left(\widehat{R}^{N}-b_{\lambda}^{N}\right)>0 \tag{2.6}
\end{equation*}
$$

On the other hand, multiplying the same equation by $r^{2(N-1)} u_{\lambda}^{\prime}(r)$ and integrating from b_{λ} to \widehat{R}, we have

$$
-\int_{b_{\lambda}}^{\widehat{R}}\left[r^{N-1} u_{\lambda}^{\prime}(r)\right]^{\prime} u_{\lambda}^{\prime}(r) r^{N-1} d r=\lambda \int_{b_{\lambda}}^{\widehat{R}}\left[F\left(u_{\lambda}(r)\right)\right]^{\prime} r^{2(N-1)} d r
$$

Computing the two integrals by parts, we obtain

$$
\begin{aligned}
& \frac{1}{2}\left[b_{\lambda}^{2(N-1)} u_{\lambda}^{\prime}\left(b_{\lambda}\right)^{2}-\widehat{R}^{2(N-1)} u_{\lambda}^{\prime}(\widehat{R})^{2}\right] \\
& =-\lambda b_{\lambda}^{2(N-1)} F\left(\frac{\beta}{\bar{c}}\right)-2(N-1) \lambda \int_{b_{\lambda}}^{\widehat{R}} F\left(u_{\lambda}(r)\right) r^{2 N-3} d r
\end{aligned}
$$

Since $u_{\lambda}(r)<\frac{\beta}{\bar{c}}$, for all $r \in\left(b_{\lambda}, \widehat{R}\right]$ and F is decreasing in $(0, \beta)$ by (H2), we deduce that

$$
\begin{aligned}
& \frac{1}{2}\left[b_{\lambda}^{2(N-1)} u_{\lambda}^{\prime}\left(b_{\lambda}\right)^{2}-\widehat{R}^{2(N-1)} u_{\lambda}^{\prime}(\widehat{R})^{2}\right] \\
& \leq-\lambda b_{\lambda}^{2(N-1)} F\left(\frac{\beta}{\bar{c}}\right)-2(N-1) F\left(\frac{\beta}{\bar{c}}\right) \lambda \int_{b_{\lambda}}^{\widehat{R}} r^{2 N-3} d r \\
& =-\lambda \widehat{R}^{2(N-1)} F\left(\frac{\beta}{\bar{c}}\right)
\end{aligned}
$$

By (2.6), the left hand of the precedent inequality is positive (because $u_{\lambda}^{\prime}\left(b_{\lambda}\right) \leq 0$ by definition of b_{λ} and $u_{\lambda}^{\prime}(\widehat{R}) \leq 0$ by [4). Consequently we can take square roots and using that $A-B \leq \sqrt{A^{2}-B^{2}}$ for all $A \geq B \geq 0$, we obtain (by 2.6) again)

$$
\frac{1}{N \sqrt{2}} K \frac{1}{\sqrt{-F\left(\frac{\beta}{\bar{c}}\right)}} \sqrt{\lambda}\left(\widehat{R}^{N}-b_{\lambda}^{N}\right) \leq \widehat{R}^{N-1}
$$

and as a consequence 2.5 is satisfied. So the proof is complete.
Proof of Theorem 2.1. Let $c \in(\beta, \theta), \bar{c}>1$ and $R_{1}, R_{2} \in\left(R_{0}, \widehat{R}\right)$ such that $R_{1}<$ R_{2}. Consider λ_{1}, λ_{2} given respectively by lemmas 2.3 and 2.4 , and choose $\lambda^{*} \geq$ $\max \left\{\lambda_{1}, \lambda_{2}\right\}$ such that

$$
\lambda^{*} L+\frac{\mu^{2}}{2}<0
$$

where

$$
L=\max \left\{F(\zeta): \frac{\beta}{\bar{c}} \leq \zeta \leq c\right\}
$$

Hence (1.2) has no positive solutions for $\lambda \geq \lambda^{*}$. Otherwise, there exists $\lambda \geq \lambda^{*}$ such that (1.2) has at least one positive solution u_{λ}.

Since $\lambda \geq \lambda_{i}, i=1,2$ we deduce from lemmas 2.3, 2.4 the existence of $t_{1} \in$ $\left(R_{0}, R_{1}\right]$ and $t_{2} \in\left[R_{2}, \widehat{R}\right]$ satisfying $u_{\lambda}\left(t_{1}\right)<c$ and $u_{\lambda}\left(t_{2}\right)=\frac{\beta}{\bar{c}}$. Then by the mean value theorem there exists $t_{3} \in\left[t_{1}, t_{2}\right]$ such that

$$
\left|u_{\lambda}^{\prime}\left(t_{3}\right)\right|=\frac{\left|u_{\lambda}\left(t_{2}\right)-u_{\lambda}\left(t_{1}\right)\right|}{t_{2}-t_{1}} \leq \mu
$$

where $\mu=\left(\frac{\beta}{\bar{c}}+c\right) /\left(R_{2}-R_{1}\right)$.
Consider the energy function $E(r)=\lambda F\left(u_{\lambda}(r)\right)+\frac{u_{\lambda}^{\prime}(r)^{2}}{2}$. Then for all $\lambda \geq \lambda^{*}$,

$$
E\left(t_{3}\right) \leq \lambda L+\frac{\mu^{2}}{2} \leq \lambda^{*} L+\frac{\mu^{2}}{2}<0
$$

(because $L<0$ and $u_{\lambda}\left(t_{3}\right) \in\left[\frac{\beta}{\bar{c}}, c\right]$). This is a contradiction, since E is a nonincreasing function (recall that $E^{\prime}(r)=-\frac{N-1}{r} u^{\prime}(r)^{2} \leq 0$) and $E(\widehat{R})=\frac{u^{\prime}(\widehat{R})^{2}}{2} \geq 0$. Hence the result follows.

References

[1] D. Arcoya and A. Zertiti; Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in annulus, Rendiconti di Mathematica, serie VII, Volume 14, Roma (1994), 625-646.
[2] K. J. Brown-A. Castro and R. Shivaji; Non-existence of radially symmetric non-negative solutions for a class of semi-positone problems, Diff. and Int. Equations,2. (1989), 541-545.
[3] X. Garaizar; Existence of Positive Radial Solutions for Semilinear Elliptic Equations in the Annulus, Journal of Differential Equations, 70 (1987), 69-92.
[4] B. Gidas, W.M. Ni, L. Nirenberg; Symmetry and related properties via the maximum principle, Commun. Maths Phys., 68 (1979), 209-243.

Said Hakimi
Université Abdelmalek Essaadi, Faculté des sciences, Département de Mathématiques, BP 2121, TÉtouan, Morocco

E-mail address: h_saidhakimi@yahoo.fr
Abderrahim Zertiti
Université Abdelmalek Essaadi, Faculté des sciences, Département de Mathématiques, BP 2121, Tétouan, Morocco

E-mail address: zertitia@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 35J25, 34B18.
 Key words and phrases. Nonpositone problem; radial positive solutions.
 (C) 2011 Texas State University - San Marcos.

 Submitted June 14, 2010. Published February 10, 2011.

