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NONEXISTENCE OF RADIAL POSITIVE SOLUTIONS FOR A
NONPOSITONE PROBLEM

SAID HAKIMI, ABDERRAHIM ZERTITI

Abstract. In this article we study the nonexistence of radial positive solu-
tions for a nonpositone problem when the nonliearity is superlinear and has
more than one zero.

1. Introduction

We study the nonexistence of radial positive solutions for the boundary-value
problem

−∆u(x) = λf(u(x)) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω,
(1.1)

where λ > 0, f : [0,+∞) → R is a continuous nonlinear function that has more than
one zero, and Ω ⊂ RN ; is the annulus: Ω = C(0, R, R̂) = {x ∈ RN : R < |x| < R̂}
(N > 2, 0 < R < R̂).

When f is a nondecreasing satisfying f(0) < 0 (the nonpositone case) and has
only one zero, problem (1.1) has been studied by Brown, Castro and Shivaji [2] in
the ball, and by Arcoya and Zertiti [1] in the annulus.

We observe that the nonexistence of radial positive solutions of (1.1) is equivalent
to the nonexistence of positive solutions of the problem

−u′′(r)− N − 1
r

u′(r) = λf(u(r)) R < r < R̂

u(R) = u(R̂) = 0,

(1.2)

where λ > 0.
Our main objective in this article is to prove that the result of nonexistence of

radial positive solutions of (1.1) remains valid when f has more than one zero and is
not increasing entirely on [0,+∞); see [1, Theorem 3.1]. More precisely we assume
that the map f : [0,+∞) → R satisfies the following hypotheses

(H1) f ∈ C1([0,+∞), R) such that f has three zeros β1 < β2 < β3 with f ′(βi) 6=
0 for all i ∈ {1, 2, 3}. Moreover, f ′ ≥ 0 on [β3,+∞).

(H2) f(0) < 0.
(H3) limu→+∞ f(u)/u = +∞,
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2. The main result

In this section, we give the main result in this work. More precisely we shall
prove the following theorem.

Theorem 2.1. Assume that the hypotheses (H1)–(H3) are satisfied. Then there
exists a positive real number λ0 such that if λ > λ0, problem (1.1) has no radial
positive solution.

Remark. We do not know for what radius r ∈ (R, R̂) the solution u attains its
maximum. In addition, f changes sign in (β1,+∞). These two facts make our
study more difficult, and change the proof of nonexistence in [1].

To prove Theorem 2.1, we need the next three technical lemmas. We note that
the proofs of the first and the last lemma are analogous to those of [1, Lemma 3.2,
Lemma 3.4]. On the other hand, the proof of the second lemma is different from
that of [1, Lemma 3.3]. This is so because our f has no constant sign in (β1,+∞).

Denote by uλ(r) a positive solution of (1.1) (if it exists) and let R0 = (R +
R̂)/2. Following the work [1], we introduce the following notation: β = β1, θ =
min{β2,min θi} where θi are the zeros of F (F (x) =

∫ x

0
f(t)dt).

Remark. In [3, Theorem B iii], F has at most one zero. On the opposite, in our
case F may have more than one zero because f has a finite number of zeros. In
this paper we assume, with out loss of generality, that f has three zeros. In fact,
the number of zeros of F depends on f , but F has at most three zeros.

Lemma 2.2. Let f ∈ C1([0,+∞)) satisfying (H3) and consider λ > 2. If uλ is a
positive solution of (1.2), then for every r ∈ (R0, R̂] there exists a positive number
M = M(r) > 0 (independent of λ) such that uλ(r) ≤ M .

Proof. Let ϕ1 be a positive eigenfunction associated to the first eigenvalue µ1 > 0
of the eigenvalue problem

−(rN−1v′)′ = µrN−1v, R < r < R̂

v(R) = 0 = v(R̂),

Multiplying the equation in (1.2) by rN−1ϕ1(r) and integrating from R to R̂, we
obtain ∫ bR

R

rN−1u′λ(r)ϕ′1(r)dr = −
∫ bR

R

(rN−1u′λ(r))′ϕ1(r)dr,

hence ∫ bR
R

rN−1u′λ(r)ϕ′1(r)dr = λ

∫ bR
R

rN−1f(uλ(r))ϕ1(r)dr. (2.1)

On the other hand, multiplying the equation −(rN−1ϕ′1(r))
′ = µ1r

N−1ϕ1(r), (R <

r < R̂) by uλ and integrating from R to R̂, we obtain∫ bR
R

rN−1u′λ(r)ϕ′1(r)dr = −
∫ bR

R

(rN−1ϕ′1(r))
′uλ(r)dr,

hence ∫ bR
R

rN−1u′λ(r)ϕ′1(r)dr = µ1

∫ bR
R

rN−1ϕ1(r)uλ(r)dr. (2.2)
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Combining (2.1), (2.2) and choosing µ > µ1/2, c > 0 such that

f(ζ) ≥ µζ − c, ∀ζ ≥ 0

(because f is superlinear), we deduce

µ1

∫ bR
R

rN−1ϕ1(r)uλ(r)dr = λ

∫ bR
R

rN−1f(uλ(r))ϕ1(r)dr

≥ λµ

∫ bR
R

rN−1ϕ1(r)uλ(r)dr − λc

∫ bR
R

rN−1ϕ1(r)dr,

from which∫ bR
R

rN−1ϕ1(r)uλ(r)dr ≤ λk

λµ− µ1
≤ k

µ− µ1
2

:= A, ∀λ > 2,

with k = c
∫ bR

R
rN−1ϕ1(r)dr > 0 and A > 0 is independent of λ. Now, let r ∈ (R0, R̂]

and choosing δ > 0 such that R0 < r−δ and using the fact that uλ is non-increasing
in (R0, R̂) (see [4]) implies

uλ(r) ≤
∫ r

r−δ
tN−1uλ(t)ϕ1(t)dt∫ r

r−δ
tN−1ϕ1(t)dt

≤
∫ bR

R
tN−1uλ(t)ϕ1(t)dt∫ r

r−δ
tN−1ϕ1(t)dt

≤ A∫ r

r−δ
tN−1ϕ1(t)dt

= M, ∀λ > 2 .

The proof is complete. �

Lemma 2.3. Assume (H1)–(H3) and let R1 ∈ (R0, R̂), c ∈ (β, θ). Then there
exists λ1 > 0 such that for all positive solutions uλ of (1.2) with λ ≥ λ1, there
exists t1 = t1(λ) ∈ (R0, R1) satisfying uλ(t1) < c.

Proof. We argue by contradiction. Suppose that there exists a sequence {λn} ⊂
(0,+∞) converging to +∞ such that

uλn(r) ≥ c, ∀r ∈ (R0, R1], ∀n ∈ N.

Consider tn = max{r ∈ (R, R̂) : u′λn
(r) = 0}. Then u′λn

(r) < 0 for all r ∈ (tn, R̂),
and we deduce

uλn(r) ≤ uλn(tn), ∀r ∈ (tn, R̂).
It follows that u′λn

(tn) = 0 and u′′λn
(tn) ≤ 0. So f(uλn(tn)) ≥ 0 by (1.2). Hence

uλn(tn) ≤ β2 or uλn(tn) ≥ β3.

Now, we study the following two cases:
Case 1: uλn(tn) ≤ β2.
(i) If supn uλn(tn) < β2, then

−rN−1u′λn
(r) = λn

∫ r

tn

sN−1f(uλn(s))ds, ∀r ∈ (R0, R1)

≥ λn inf
ξ∈(c,supn uλn (tn))

f(ξ)
∫ r

R0

sN−1ds.



4 S. HAKIMI, A. ZERTITI EJDE-2011/26

Since supn uλn(tn) < β2, it follows that infξ∈(c,supn uλn (tn)) f(ξ) > 0. Therefore,

lim
n→+∞

u′λn
(r) = −∞, uniformly on compact subsets of (R0, R1) . (2.3)

Now, let r1, r2 ∈ (R0, R1) such that R0 < r1 < r2 < R1. By the mean value
theorem, there exists rn ∈ (r1, r2) such that

uλn(r2) = uλn(r1) + (r2 − r1)u′λn
(rn).

Also, for all r ∈ (R0, R1) we have c ≤ uλn(r) < β2 for all n, and by (2.3) the second
summand of the precedent equality tends to −∞. Hence

lim
n→+∞

uλn(r2) = −∞.

This contradicts uλn ≥ 0 for all n ∈ N.
(ii) If supn uλn(tn) = β2. Consider the following two sets:

Φn = {r ∈ [R1, R̂] : β ≤ uλn(r) ≤ 3β + c

4
},

Ψn = {r ∈ [R1, R̂] :
2(β + c)

4
≤ uλn(r) ≤ β + 3c

4
}.

Since (β, 3β+c
4 ), ( 2(β+c)

4 , β+3c
4 ) ⊂ uλn((R1, R̂)), by the intermediate value theorem,

Φn and Ψn are not empty. Consider a(n), a(n), b(n) and b(n) such that
a(n) = infr Ψn, a(n) = supr Ψn, b(n) = infr Φn and b(n) = supr Φn.
Let r0 ∈

[
a(n), b(n)

]
. Then

−rN−1
0 u′λn

(r0) = λn

∫ r0

tn

sN−1f(uλn(s))ds

≥ λnRN−1

∫ r0

R0

f(uλn
(s))ds

≥ λnRN−1

∫ uλn (r0)

uλn (R0)

f(t)
u′λn

(u−1
λn

(t))
dt

= λnRN−1

∫ uλn (R0)

uλn (r0)

f(t)
−u′λn

(u−1
λn

(t))
dt,

hence

−rN−1
0 u′λn

(r0)(−u′λn
(s0)) ≥ λnRN−1

∫ uλn (R0)

uλn (r0)

f(t)dt

≥ λnRN−1

∫ c

β+3c
4

f(t)dt,

where s0 satisfies u′λn
(s0) = inf

[R0,r0]
u′λn

(s). Since the function r 7−→ −rN−1u′λn
(r) is

increasing on
(
a(n), b(n)

)
,

−rN−1
0 u′λn

(r0)(−u′λn
(s0)) ≤ (−rN−1

0 u′λn
(r0))2

1
sN−1
0

.

Then

(−rN−1
0 u′λn

(r0))2
1

sN−1
0

≥ λnRN−1

∫ c

β+3c
4

f(t)dt.
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Therefore,
lim

n→+∞
u′λn

(r0) = −∞. (2.4)

Now, Let r1 ∈ [a(n), a(n)] and r2 ∈
[
b(n), b(n)

]
, then by the mean value theorem,

there exists r∗ ∈ (r1, r2) such that

uλn(r2) = uλn(r1) + (r2 − r1) u′λn
(r∗)

< uλn
(R1) + (b(n)− a(n))u′λn

(r∗)
≤ uλn

(R1) + inf
n

(b(n)− a(n))u′λn
(r∗).

Since uλn(R1) ≤ M, for all n and some M = M(R1) > 0 (see Lemma 2.2) and
infn (b(n)− a(n)) > 0 and limn→+∞ u′λn

(r∗) = −∞ (by (2.4)), it follows that
limn→+∞ uλn

(r2) = −∞, which contradicts uλn
≥ 0 for all n ∈ N.

Case 2: uλn(tn) ≥ β3. Let r0 ∈
[
a(n), b(n)

]
, then

−rN−1
0 u′λn

(r0) = λn

∫ r0

tn

sN−1f(uλn(s))ds.

Consider tβ2 such that tβ2 = max{rn ∈ (R, R̂] : uλn(rn) = β2}. Then

−rN−1
0 u′λn

(r0) = λn

∫ r0

tn

sN−1f(uλn(s))ds

= λn

[ ∫ tβ2

tn

sN−1f(uλn
(s))ds +

∫ r0

tβ2

sN−1f(uλn(s))ds
]

≥ λn

∫ r0

tβ2

sN−1f(uλn(s))ds,

because
∫ tβ2

tn
sN−1f(uλn(s))ds ≥ 0. Then as in Case 1, we obtain a contradiction

with the positivity of uλn
. �

Lemma 2.4. Assume (H2). Let R2 ∈ (R0, R̂) and c > 1. Then there exists
λ2 > 0 such that every positive solution uλ of (1.2) satisfies β

c ∈ uλ([R2, R̂]), for
all λ ≥ λ2. Where bλ = max{r ∈ (R, R̂) : uλ(r) = β

c }.
Proof. This lemma will be proved if we show that

lim
λ→+∞

bλ = R̂ (2.5)

To do this, we multiply the equation in (1.2) by rN−1, integrate it from bλ to R̂

and use that uλ(r) < β
c , for all r ∈ (bλ, R̂], to deduce that∫ bR

bλ

(rN−1u′λ(r))′dr ≥
∫ bR

bλ

λrN−1Kdr

where K = −max{f(ζ) : ζ ∈ [0, β
c ]} > 0. Hence

R̂N−1u′λ(R̂)− bN−1
λ u′λ(bλ) ≥ λ

N
K(R̂N − bN

λ ) > 0 . (2.6)

On the other hand, multiplying the same equation by r2(N−1)u′λ(r) and integrating
from bλ to R̂, we have

−
∫ bR

bλ

[rN−1u′λ(r)]′u′λ(r)rN−1dr = λ

∫ bR
bλ

[F (uλ(r))]′r2(N−1)dr
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Computing the two integrals by parts, we obtain
1
2
[b2(N−1)

λ u′λ(bλ)2 − R̂2(N−1)u′λ(R̂)2]

= −λb
2(N−1)
λ F (

β

c
)− 2(N − 1)λ

∫ bR
bλ

F (uλ(r))r2N−3dr

Since uλ(r) < β
c , for all r ∈ (bλ, R̂] and F is decreasing in (0, β) by (H2), we deduce

that
1
2
[b2(N−1)

λ u′λ(bλ)2 − R̂2(N−1)u′λ(R̂)2]

≤ −λb
2(N−1)
λ F (

β

c
)− 2(N − 1)F (

β

c
)λ

∫ bR
bλ

r2N−3dr

= −λR̂2(N−1)F (
β

c
)

By (2.6), the left hand of the precedent inequality is positive (because u′λ(bλ) ≤ 0
by definition of bλ and u′λ(R̂) ≤ 0 by [4]). Consequently we can take square roots
and using that A−B ≤

√
A2 −B2 for all A ≥ B ≥ 0, we obtain (by (2.6) again)

1
N
√

2
K

1√
−F (β

c )

√
λ(R̂N − bN

λ ) ≤ R̂N−1

and as a consequence (2.5) is satisfied. So the proof is complete. �

Proof of Theorem 2.1. Let c ∈ (β, θ), c > 1 and R1, R2 ∈ (R0, R̂) such that R1 <
R2. Consider λ1, λ2 given respectively by lemmas 2.3 and 2.4, and choose λ∗ ≥
max{λ1, λ2} such that

λ∗L +
µ2

2
< 0,

where

L = max{F (ζ) :
β

c
≤ ζ ≤ c}.

Hence (1.2) has no positive solutions for λ ≥ λ∗. Otherwise, there exists λ ≥ λ∗

such that (1.2) has at least one positive solution uλ.
Since λ ≥ λi, i = 1, 2 we deduce from lemmas 2.3, 2.4 the existence of t1 ∈

(R0, R1] and t2 ∈ [R2, R̂] satisfying uλ(t1) < c and uλ(t2) = β
c . Then by the mean

value theorem there exists t3 ∈ [t1, t2] such that

|u′λ(t3)| =
|uλ(t2)− uλ(t1)|

t2 − t1
≤ µ,

where µ = (β
c + c)/(R2 −R1).

Consider the energy function E(r) = λF (uλ(r)) + u′
λ(r)2

2 . Then for all λ ≥ λ∗,

E(t3) ≤ λL +
µ2

2
≤ λ∗L +

µ2

2
< 0

(because L < 0 and uλ(t3) ∈ [β
c , c]). This is a contradiction, since E is a non-

increasing function (recall that E′(r) = −N−1
r u′(r)2 ≤ 0) and E(R̂) = u′( bR)2

2 ≥ 0.
Hence the result follows. �
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