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EXISTENCE OF DOUBLY-WEIGHTED PSEUDO ALMOST
PERIODIC SOLUTIONS TO NON-AUTONOMOUS

DIFFERENTIAL EQUATIONS

TOKA DIAGANA

Abstract. First we show that if the doubly-weighted Bohr spectrum of an
almost periodic function exists, then it is either empty or coincides with the
Bohr spectrum of that function. Next, we investigate the existence of doubly-
weighted pseudo-almost periodic solutions to some non-autonomous abstract
differential equations.

1. Introduction

Motivated by the functional structure of the so-called weighted Morrey spaces
[16], in Diagana [10], a new concept called doubly-weighted pseudo-almost period-
icity, which generalizes in a natural fashion the notion of weighted pseudo-almost
periodicity is introduced and studied. Among other things, in [10], properties of
these new functions have been studied including the stability of the convolution
operator, the translation-invariance, the existence of a doubly-weighted mean for
almost periodic functions under some reasonable assumptions, the uniqueness of
the decomposition involving these new functions as well as some results on their
composition.

The main objective of this paper is twofold. We first show that if the doubly-
weighted Bohr spectrum of an almost periodic function exists, then it is either empty
or coincides with the Bohr spectrum of that function. Next, we investigate the
problem which consists of the existence of doubly-weighted pseudo-almost periodic
mild solutions to the non-autonomous abstract differential equations

u′(t) = A(t)u(t) + g(t, u(t)), t ∈ R, (1.1)

where A(t) for t ∈ R is a family of closed linear operators on D(A(t)) satisfying the
well-known Acquistapace-Terreni conditions, and g : R×X → X is doubly-weighted
pseudo-almost periodic in t ∈ R uniformly in the second variable.

It is well-known that in this case there exists an evolution family U = {U(t, s)}t≥s

associated with the family of linear operators A(t). Assuming that the evolution
family U = {U(t, s)}t≥s is exponentially dichotomic and under some additional
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assumptions it will be shown that (1.1) has a unique doubly-weighted pseudo-almost
periodic solution.

The existence of weighted pseudo-almost periodic, weighted pseudo-almost auto-
morphic, and pseudo-almost periodic solutions to differential equations constitutes
one of the most attractive topics in qualitative theory of differential equations due to
possible applications. Some contributions on weighted pseudo-almost periodic func-
tions, their extensions, and their applications to differential equations have recently
been made, among them are for instance [1, 5, 7, 8, 12, 13, 14, 15, 18, 20, 21, 28, 29]
and the references therein. However, the problem which consists of the existence
of doubly-weighted pseudo-almost periodic(mild) solutions to evolution equations
in the form (1.1) is quite new and untreated and thus constitutes one of the main
motivations of the present paper.

The paper is organized as follows: Section 2 is devoted to preliminaries results
related to the existence of an evolution family, intermediate spaces, properties of
weights, and basic definitions and results on the concept of doubly-weighted pseudo-
almost periodic functions. Section 3 is devoted to the existence of a doubly-weighted
Bohr spectral theory for almost periodic functions while Section 4 is devoted to the
existence of doubly-weighted pseudo-almost periodic solutions to (1.1).

2. Preliminaries

Let (X, ‖ · ‖) be a Banach space. If C is a linear operator on X, then D(C),
ρ(C), and σ(C) stand respectively for the domain, resolvent, and spectrum of C.
Similarly, one sets R(λ, C) := (λI − C)−1 for all λ ∈ ρ(C) where I is the identity
operator for X. Furthermore, we set Q = I − P for a projection P . We denote the
Banach algebra of bounded linear operators on X equipped with its natural norm
by B(X).

If Y is another Banach space, we then let BC(R, X) (respectively, BC(R×Y, X))
denote the collection of all X-valued bounded continuous functions and equip it
with the sup norm (respectively, the space of jointly bounded continuous functions
F : R× Y → X).

The space BC(R, X) equipped with the sup norm is a Banach space. Further-
more, C(R, Y) (respectively, C(R×Y, X)) denotes the class of continuous functions
from R into Y (respectively, the class of jointly continuous functions F : R×Y → X).

2.1. Evolution Families. The setting of this subsection follows that of Baroun et
al. [3] and Diagana [14]. Fix once and for all a Banach space (X, ‖ · ‖).

Definition 2.1. A family of closed linear operators A(t) for t ∈ R on X with
domain D(A(t)) (possibly not densely defined) satisfy the so-called Acquistapace
and Terreni conditions, if there exist constants ω ∈ R, θ ∈ (π/2, π), L > 0 and
µ, ν ∈ (0, 1] with µ + ν > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− ω) 3 λ, ‖R(λ, A(t)− ω)‖ ≤ K

1 + |λ|
for all t ∈ R, (2.1)

and

‖(A(t)− ω)R(λ, A(t)− ω) [R(ω, A(t))−R(ω, A(s))]‖ ≤ L
|t− s|µ

|λ|ν
(2.2)

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C \ {0} : | arg λ| ≤ θ}.
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For a given family of linear operators A(t), the existence of an evolution family
associated with it is not always guaranteed. However, if A(t) satisfies Acquistapace-
Terreni, then there exists a unique evolution family

U = {U(t, s) : t, s ∈ R such that t ≥ s}

on X associated with A(t) such that U(t, s)X ⊆ D(A(t)) for all t, s ∈ R with t ≥ s,
and

(a) U(t, s)U(s, r) = U(t, r) for t, s ∈ R such that t ≥ s ≥ s;
(b) U(t, t) = I for t ∈ R where I is the identity operator of X;
(c) (t, s) → U(t, s) ∈ B(X) is continuous for t > s;
(d) U(·, s) ∈ C1((s,∞), B(X)), ∂U

∂t (t, s) = A(t)U(t, s) and

‖A(t)kU(t, s)‖ ≤ K (t− s)−k

for 0 < t− s ≤ 1 and k = 0, 1.

Definition 2.2. An evolution family U = {U(t, s) : t, s ∈ R such that t ≥ s}
is said to have an exponential dichotomy (or is hyperbolic) if there are projections
P (t) (t ∈ R) that are uniformly bounded and strongly continuous in t and constants
δ > 0 and N ≥ 1 such that

(e) U(t, s)P (s) = P (t)U(t, s);
(f) the restriction UQ(t, s) : Q(s)X → Q(t)X of U(t, s) is invertible (we then

set ŨQ(s, t) := UQ(t, s)−1); and
(g) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖ŨQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and

t, s ∈ R.

This setting requires some estimates related to U = {U(t, s)}t≥s. For that, we
introduce the interpolation spaces for A(t).

Let A be a sectorial operator on X (in Definition 2.1, replace A(t) with A) and
let α ∈ (0, 1). Define the real interpolation space

XA
α :=

{
x ∈ X : ‖x‖A

α := supr>0 ‖rα(A− ω)R(r, A− ω)x‖ < ∞
}
,

which, by the way, is a Banach space when endowed with the norm ‖ · ‖A
α . For

convenience we further write

XA
0 := X, ‖x‖A

0 := ‖x‖, XA
1 := D(A)

and ‖x‖A
1 := ‖(ω −A)x‖. Moreover, let X̂A := D(A) of X.

Definition 2.3. Given a family of linear operators A(t) for t ∈ R satisfying the
Acquistapace-Terreni conditions, we set Xt

α := XA(t)
α and X̂t := X̂A(t) for 0 ≤ α ≤ 1

and t ∈ R, with the corresponding norms.

Proposition 2.4 ([3]). For x ∈ X, 0 ≤ α ≤ 1 and t > s, the following hold:

(i) There is a constant c(α), such that

‖U(t, s)P (s)x‖t
α ≤ c(α)e−

δ
2 (t−s)(t− s)−α‖x‖. (2.3)

(ii) There is a constant m(α), such that

‖ŨQ(s, t)Q(t)x‖s
α ≤ m(α)e−δ(t−s)‖x‖, t ≤ s. (2.4)



4 T. DIAGANA EJDE-2011/28

2.2. Properties of Weights. This subsection is similar to the one given in Dia-
gana [10] except that most of all the proofs will be omitted.

Let U denote the collection of functions (weights) ρ : R → (0,∞), which are
locally integrable over R such that ρ > 0 almost everywhere.

In the rest of the paper, if µ ∈ U, T > 0, and a ∈ R, we then set QT := [−T, T ],
QT + a := [−T + a, T + a], and

µ(QT ) :=
∫

QT

µ(x)dx.

Here as in the particular case when µ(x) = 1 for each x ∈ R, we are exclusively
interested in the weights µ for which,

lim
T→∞

µ(QT ) = ∞.

Consequently, we define the space of weights U∞ by

U∞ :=
{
µ ∈ U : inf

x∈R
µ(x) = µ0 > 0 and lim

T→∞
µ(QT ) = ∞

}
.

In addition to the above, we define the set of weights UB by

UB :=
{
µ ∈ U∞ : sup

x∈R
µ(x) = µ1 < ∞

}
.

We also need the following set of weights, which makes the spaces of weighted
pseudo-almost periodic functions translation-invariant,

UInv
∞ :=

{
µ ∈ U∞ : lim

x→∞

µ(x + τ)
µ(x)

< ∞ and lim
T→∞

µ(QT+τ )
µ(QT )

< ∞ for all τ ∈ R
}
.

Let Uc
∞ denote the collection of all continuous functions (weights) µ : R → (0,∞)

such that µ > 0 almost everywhere.
Define

Us
∞ :=

{
µ ∈ Uc

∞ ∩ U∞ : lim
x→∞

µ(x + τ)
µ(x)

< ∞ for all τ ∈ R
}
.

Lemma 2.5 ([10]). The inclusion Us
∞ ⊂ UInv

∞ holds.

Definition 2.6. Let µ, ν ∈ U∞. One says that µ is equivalent to ν and denote it
µ ≺ ν, if µ

ν ∈ UB .

Let µ, ν, γ ∈ U∞. It is clear that µ ≺ µ (reflexivity); if µ ≺ ν, then ν ≺ µ
(symmetry); and if µ ≺ ν and ν ≺ γ, then µ ≺ γ (transitivity). Therefore, ≺ is a
binary equivalence relation on U∞.

Proposition 2.7. Let µ, ν ∈ UInv
∞ . If µ ≺ ν, then σ = µ + ν ∈ UInv

∞ .

Proposition 2.8. Let µ, ν ∈ Us
∞. Then their product π = µν ∈ Us

∞. Moreover, if
µ ≺ ν, then σ := µ + ν ∈ Us

∞.

The next theorem describes all the nonconstant polynomials belonging to the
set of weights U∞.

Theorem 2.9 ([10]). If µ ∈ U∞ is a nonconstant polynomial of degree N , then N
is necessarily even (N = 2n′ for some nonnegative integer n′). More precisely, µ
can be written in the form

µ(x) = a

n∏
k=0

(x2 + akx + bk)mk
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where a > 0 is a constant, ak and bk are some real numbers satisfying a2
k−4bk < 0,

and mk are nonnegative integers for k = 0, . . . , n. Furthermore, the weight µ given
above belongs to Us

∞.

2.3. Doubly-weighted pseudo-almost periodic functions.

Definition 2.10. A function f ∈ C(R, X) is called (Bohr) almost periodic if for
each ε > 0 there exists l(ε) > 0 such that every interval of length l(ε) contains a
number τ with the property that

‖f(t + τ)− f(t)‖ < ε for each t ∈ R.

The collection of all almost periodic functions will be denoted AP (X).

Definition 2.11. A function F ∈ C(R× Y, X) is called (Bohr) almost periodic in
t ∈ R uniformly in y ∈ Y if for each ε > 0 and any compact K ⊂ Y there exists l(ε)
such that every interval of length l(ε) contains a number τ with the property that

‖F (t + τ, y)− F (t, y)‖ < ε for each t ∈ R, y ∈ K.

The collection of those functions is denoted by AP (Y, X).

If µ, ν ∈ U∞, we then define

PAP0(X, µ, ν) :=
{
f ∈ BC(R, X) : lim

T→∞

1
µ(QT )

∫
QT

‖f(σ)‖ν(σ) dσ = 0
}
.

Similarly, we define PAP0(Y, X, µ, ν) as the collection of jointly continuous func-
tions F : R× Y → X such that F (·, y) is bounded for each y ∈ Y and

lim
T→∞

1
µ(QT )

{ ∫
QT

‖F (s, y)‖ ν(s) ds
}

= 0

uniformly in y ∈ Y.

Definition 2.12. Let µ, ν ∈ U∞. A function f ∈ C(R, X) is called doubly-weighted
pseudo-almost periodic if it can be expressed as f = g+φ, where g ∈ AP (X) and φ ∈
PAP0(X, µ, ν). The collection of such functions will be denoted by PAP (X, µ, ν).

Definition 2.13. Let µ, ν ∈ U∞. A function F ∈ C(R × Y, X) is called doubly-
weighted pseudo-almost periodic if it can be expressed as F = G + Φ, where
G ∈ AP (Y, X) and Φ ∈ PAP0(Y, X, µ, ν). The collection of such functions will
be denoted by PAP (Y, X, µ, ν).

Proposition 2.14 ([10]). Let µ ∈ U∞ and let ν ∈ UInv
∞ such that

sup
T>0

[ν(QT )
µ(QT )

]
< ∞. (2.5)

Let f ∈ PAP0(R, µ, ν) and let g ∈ L1(R). Suppose

lim
T→∞

[µ(QT+|τ |)
µ(QT )

]
< ∞ for all τ ∈ R. (2.6)

Then f ∗ g, the convolution of f and g on R, belongs to PAP0(R, µ, ν).

Proof. It is clear that if f ∈ PAP0(R, µ, ν) and g ∈ L1(R), then their convolution
f ∗ g ∈ BC(R, R). Now setting

J(T, µ, ν) :=
1

µ(QT )

∫
QT

∫ +∞

−∞
|f(t− s)| |g(s)|ν(t) ds dt
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it follows that

1
µ(QT )

∫
QT

|(f ∗ g)(t)|ν(t)dt ≤ J(T, µ, ν)

=
∫ +∞

−∞
|g(s)|

( 1
µ(QT )

∫
QT

|f(t− s)|ν(t)dt
)
ds

=
∫ +∞

−∞
|g(s)|φT (s)ds,

where

φT (s) =
1

µ(QT )

∫
QT

|f(t− s)|ν(t)dt

=
µ(QT+|s|)

µ(QT )
· 1
µ(QT+|s|)

∫
QT

|f(t− s)|ν(t)dt

≤
µ(QT+|s|)

µ(QT )
· 1
µ(QT+|s|)

∫
QT+|s|

|f(t)|ν(t + s)dt.

Using the fact that ν ∈ UInv
∞ and (2.6), one can easily see that φT (s) → 0 as T →∞

for all s ∈ R. Next, since φT is bounded; i.e.,

|φT (s)| ≤ ‖f‖∞ · sup
T>0

ν(QT )
µ(QT )

< ∞

and g ∈ L1(R), using the Lebesgue Dominated Convergence Theorem it follows
that

lim
T→∞

{∫ +∞

−∞
|g(s)|φT (s)ds

}
= 0,

and hence f ∗ g ∈ PAP0(R, µ, ν). �

Corollary 2.15. Let µ ∈ U∞ and let ν ∈ UInv
∞ such that (2.5)–(2.6) hold. If

f ∈ PAP (R, µ, ν) and g ∈ L1(R), then f ∗ g belongs to PAP (R, µ, ν).

Theorem 2.16 ([10]). If µ, ν ∈ U∞ are such that the space PAP0(X, µ, ν) is
translation-invariant and if

inf
T>0

[ν(QT )
µ(QT )

]
= δ0 > 0, (2.7)

then the decomposition of the doubly-weighted pseudo-almost periodic functions is
unique.

Theorem 2.17 ([10]). Let µ, ν ∈ U∞ and let f ∈ PAP (Y, X, µ, ν) satisfying the
Lipschitz condition

‖f(t, u)− f(t, v)‖ ≤ L · ‖u− v‖Y for all u, v ∈ Y, t ∈ R.

If h ∈ PAP (Y, µ, ν), then f(·, h(·)) ∈ PAP (X, µ, ν).
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3. Existence of a doubly-weighted mean for almost periodic
functions

Let µ, ν ∈ U∞. If f : R → X is a bounded continuous function, we define its
doubly-weighted mean, if the limit exists, by

M(f, µ, ν) := lim
T→∞

1
µ(QT )

∫
QT

f(t)ν(t)dt.

It is well-known that if f ∈ AP (X), then its mean defined by

M(f) := lim
T→∞

1
2T

∫
QT

f(t)dt

exists [6]. Consequently, for every λ ∈ R, the following limit

a(f, λ) := lim
T→∞

1
2T

∫
QT

f(t)e−iλtdt

exists and is called the Bohr transform of f .
It is also well-known that a(f, λ) is nonzero at most at countably many points

[6]. The set defined by

σb(f) :=
{
λ ∈ R : a(f, λ) 6= 0

}
is called the Bohr spectrum of f [19].

Theorem 3.1 (Approximation Theorem [17, 19]). Let f ∈ AP (X). Then for every
ε > 0 there exists a trigonometric polynomial

Pε(t) =
n∑

k=1

akeiλkt

where ak ∈ X and λk ∈ σb(f) such that ‖f(t)− Pε(t)‖ < ε for all t ∈ R.

In Liang et al. [18], the original question which consists of the existence of a
weighted mean for almost periodic functions was raised. In particular, Liang et
al. have shown through an example that there exist weights for which a weighted
mean for almost periodic functions may not exist. In this section we investigate
the broader question, which consists of the existence of a doubly-weighted mean
for almost periodic functions. Namely, we give some sufficient conditions, which do
guarantee the existence of a doubly-weighted mean for almost periodic functions.
Moreover, under those conditions, it will be shown that the doubly-weighted mean
and the classical (Bohr) mean are proportional (Theorem 3.2). Further, it will be
shown that if the doubly-weighted Bohr spectrum of an almost periodic function
exists, then it is either empty or coincides with the Bohr spectrum of that function.
We have the following result.

Theorem 3.2. Let µ, ν ∈ U∞ and suppose limT→∞
ν(QT )
µ(QT ) = θµν . If f : R → X is

an almost periodic function such that

lim
T→∞

∣∣ 1
µ(QT )

∫
QT

eiλtν(t)dt
∣∣ = 0 (3.1)

for all 0 6= λ ∈ σb(f), then the doubly-weighted mean of f ,

M(f, µ, ν) = lim
T→∞

1
µ(QT )

∫
QT

f(t)ν(t)dt
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exists. Furthermore, M(f, µ, ν) = θµνM(f).

Proof. If f is a trigonometric polynomial, say, f(t) =
∑n

k=0 akeiλkt where ak ∈
X − {0} and λk ∈ R for k = 1, 2, . . . , n, then σb(f) = {λk : k = 1, 2, . . . , n}.
Moreover,

1
µ(QT )

∫
QT

f(t)ν(t)dt = a0
ν(QT )
µ(QT )

+
1

µ(QT )

∫
QT

[ n∑
k=1

akeiλkt
]
ν(t)dt

= a0
ν(QT )
µ(QT )

+
n∑

k=1

ak

[ 1
µ(QT )

∫
QT

eiλktν(t)dt
]

and hence

‖ 1
µ(QT )

∫
QT

f(t)ν(t)dt− a0
ν(QT )
µ(QT )

‖ ≤
n∑

k=1

‖ak‖
∣∣ 1
µ(QT )

∫
QT

eiλktν(t)dt
∣∣

which by (3.1) yields

‖ 1
µ(QT )

∫
QT

f(t)ν(t)dt− a0θµν‖ → 0 as T →∞

and therefore M(f, µ, ν) = a0θµν = θµνM(f).
If in the finite sequence of λk there exist λnk

= 0 for k = 1, 2, . . . l with am ∈
X− {0} for all m 6= nk (k = 1, 2, . . . , l), it can be easily shown that

M(f, µ, ν) = θµν

l∑
k=1

ank
= θµνM(f).

Now if f : R → X is an arbitrary almost periodic function, then for every ε > 0
there exists a trigonometric polynomial (Theorem 3.1) Pε defined by

Pε(t) =
n∑

k=1

akeiλkt

where ak ∈ X and λk ∈ σb(f) such that

‖f(t)− Pε(t)‖ < ε for all t ∈ R. (3.2)

Proceeding as in Bohr [6] it follows that there exists T0 such that for all T1, T2 >
T0, ∥∥ 1

µ(QT1)

∫
QT1

Pε(t)ν(t)dt− 1
µ(QT2)

∫
QT2

Pε(t)ν(t)dt
∥∥

= θµν

∥∥M(Pε)−M(Pε)
∥∥ = 0 < ε.

In view of the above it follows that for all T1, T2 > T0,∥∥ 1
µ(QT1)

∫
QT1

f(t)ν(t)dt− 1
µ(QT2)

∫
QT2

f(t)ν(t)dt
∥∥

≤ 1
µ(QT1)

∫
QT1

‖f(t)− Pε(t)‖ν(t)dt

+
∥∥ 1

µ(QT1)

∫
QT1

Pε(t)ν(t)dt− 1
µ(QT2)

∫
QT2

Pε(t)ν(t)dt
∥∥
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+
1

µ(QT2)

∫
QT2

‖f(t)− Pε(t)‖ν(t)dt < 3ε.

�

Example 3.3. Fix a natural number N > 1. Let µ(t) = e|t| and ν(t) = (1 + |t|)N

for all t ∈ R, which yields θµν = 0. If ϕ : R → X is a (nonconstant) almost
periodic function, then according to the previous theorem, its doubly-weighted
mean M(ϕ, µ, ν) exists. Moreover,

lim
T→∞

1
2(eT − 1)

∫
QT

f(t)(1 + |t|)Ndt = 0. lim
T→∞

1
2T

∫
QT

f(t)dt = 0.

Consider the set of weights U0
∞ defined by

U0
∞ =

{
µ ∈ U∞ : Dτ := lim

|t|→∞

µ(Qt+τ )
µ(Qt)

< ∞ for all τ ∈ R
}
.

Setting Cτ = lim|t|→∞
µ(Qt+τ)

µ(Qt)
, one can easily see that Cτ ≤ Dτ < ∞ for all τ ∈ R.

Corollary 3.4. Fix µ, ν ∈ U0
∞ and suppose that limT→∞

ν(QT )
µ(QT ) = θµν . If f : R →

X is an almost periodic function such that (3.1) holds, then

M(fa, µ, νa) = C−aθµνM(f) = C−aM(f, µ, ν) (3.3)

uniformly in a ∈ R, where

M(fb, µ, νb) = lim
T→∞

1
µ(QT )

∫
QT

fb(t)νb(t)dt = lim
T→∞

1
µ(QT )

∫
QT

f(t + b)ν(t + b)dt

for each b ∈ R.

Proof. Clearly, the existence of M(f, µ, ν) is guaranteed by Theorem 3.2. Without
lost of generality, suppose a > 0. Now since f ∈ AP (X) it follows that fa : t →
f(t+ a) belongs to AP (X). Moreover, the weight νa defined by νa(t) = ν(t+ a) for
all t ∈ R belongs to U0

∞. Now∣∣ ∫
QT

eiλtνa(t)dt
∣∣ =

∣∣ ∫
QT−a

eiλ(t−a)ν(t)dt
∣∣

=
∣∣ ∫

QT−a

eiλtν(t)dt
∣∣

≤
∣∣ ∫

QT+a

eiλtν(t)dt
∣∣

and hence

lim
T→∞

∣∣ 1
µ(QT )

∫
QT

eiλtνa(t)dt
∣∣ = lim

T→∞

∣∣ 1
µ(QT )

∫
QT−a

eiλtν(t)dt
∣∣

≤ lim
T→∞

∣∣ 1
µ(QT )

∫
QT+a

eiλtν(t)dt
∣∣

= lim
T→∞

∣∣µ(QT+a)
µ(QT )

1
µ(QT+a)

∫
QT+a

eiλtν(t)dt
∣∣

= Da lim
T→∞

∣∣ 1
µ(QT+a)

∫
QT+a

eiλtν(t)dt
∣∣ = 0.
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Now

lim
T→∞

νa(QT )
µ(QT )

= C−aθµν .

Using Theorem 3.2 it follows that for every ϕ ∈ AP (X),

M(ϕa, µ, νa) = lim
T→∞

1
µ(QT )

∫
QT

ϕa(t)νa(t)dt

exists. Furthermore, M(ϕa, µ, νa) = C−aθµνM(ϕa) for all a ∈ R. In particular,
M(fa, µ, νa) = C−aθµνM(fa) uniformly in a ∈ R. Now from Bohr [6], M(fa) =
M(f) uniformly in a ∈ R, which completes the proof. �

Definition 3.5. Fix µ, ν ∈ U∞ and suppose that limT→∞
ν(QT )
µ(QT ) = θµν . If f :

R → X is an almost periodic function such that (3.1) holds, we then define its
doubly-weighted Bohr transform as

âµν(f)(λ) := lim
T→∞

1
µ(QT )

∫
QT

f(t)e−iλtν(t)dt for all λ ∈ R.

Now since t → gλ(t) := f(t)e−iλt ∈ AP (X) it follows that

âµν(f)(λ) = θµνM(f(·)e−iλ·) = θµνa(f, λ).

That is, under (3.1),

âµν(f)(λ) := lim
T→∞

1
µ(QT )

∫
QT

f(t)e−iλtν(t)dt

= θµν lim
T→∞

1
2T

∫
QT

f(t)e−iωtdt = θµνa(f, λ)

for all λ ∈ R.
In summary, there are two possibilities for the doubly-weighted Bohr spectrum

of an almost periodic function. Indeed,
(1) If limT→∞

ν(QT )
µ(QT ) = θµν = 0, then âµν(f)(λ) = θµνa(f, λ) = 0 for all λ ∈ R.

In that event, the doubly-weighted Bohr spectrum of f is

σµν
b (f) :=

{
λ ∈ R : âµν(f)(λ) 6= 0

}
= ∅.

(2) If limT→∞
ν(QT )
µ(QT ) = θµν 6= 0, then âµν(f)(λ) = θµνa(f, λ) exists for all

λ ∈ R and is nonzero at most at countably many points. In that event, the
doubly-weighted Bohr spectrum of f is

σµν
b (f) :=

{
λ ∈ R : âµν(f)(λ) 6= 0

}
=

{
λ ∈ R : a(f, λ) 6= 0

}
;

that is, σµν
b (f) = σb(f). In particular, σµµ

b (f) = σb(f).

4. Doubly-weighted pseudo-almost periodic solutions to differential
equations

In this Section, we fix the two weights µ, ν ∈ U∞ such that PAP (X, µ, ν) is
translation-invariant and (2.7) holds. Under these assumptions, it can be easily
shown that PAP (X, µ, ν) is a Banach space when equipped with the sup norm.

In what follows, we denote by Γ1 and Γ2, the nonlinear integral operators defined
by

(Γ1u)(t) :=
∫ t

−∞
U(t, s)P (s)g(s, u(s))ds,
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(Γ2u)(t) :=
∫ ∞

t

UQ(t, s)Q(s)g(s, u(s))ds.

To study the existence of doubly-weighted pseudo-almost periodic solutions to
(1.1) we will assume that the following assumptions:

(H1) The family of closed linear operators A(t) for t ∈ R on X with domain
D(A(t)) (possibly not densely defined) satisfy Acquistapace and Terreni
conditions, that is, there exist constants ω ∈ R, θ ∈

(
π/2, π

)
, L > 0 and

µ, ν ∈ (0, 1] with µ + ν > 1 such that

Σθ ∪ {0} ⊂ ρ
(
A(t)− ω

)
3 λ, ‖R(λ, A(t)− ω)‖ ≤ K

1 + |λ|
for all t ∈ R,

and

‖(A(t)− ω)R(λ, A(t)− ω) [R(ω, A(t))−R(ω, A(s))]‖ ≤ L
|t− s|µ

|λ|ν

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C \ {0} : | arg λ| ≤ θ}.
(H2) The evolution family U = {U(t, s)}t≥s generated by A(·) has an exponential

dichotomy with constants N, δ > 0 and dichotomy projections P (t) for
t ∈ R.

(H3) There exists 0 ≤ α < 1 such that

Xt
α = Xα

for all t ∈ R, with uniform equivalent norms.
(H4) R(ω, A(·)) ∈ AP (B(Xα)).
(H5) The function g : R × X → X belongs to PAP (X, X, µ, ν). Moreover, the

functions g are uniformly Lipschitz with respect to the second argument in
the following sense: there exists K > 0 such that

‖g(t, u)− g(t, v)‖ ≤ K‖u− v‖

for all u, v ∈ X and t ∈ R.
If 0 < α < 1, then the nonnegative constant k will denote the bounds of the

embedding Xα ↪→ X; that is,

‖x‖ ≤ k‖x‖α for all x ∈ Xα.

To study the existence and uniqueness of doubly-weighted pseudo-almost periodic
solutions to (1.1) we first introduce the notion of mild solution.

Definition 4.1. A continuous function u : R → Xα is said to be a mild solution to
(1.1) if

u(t) = U(t, s)u(s) +
∫ t

s

U(t, s)P (s)g(s, u(s))ds−
∫ s

t

U(t, s)Q(s)g(s, u(s))ds

for t ≥ s and for all t, s ∈ R.

Under previous assumptions (H.1)-(H.5), it can be easily shown (1.1) has a
unique mild solution given by

u(t) =
∫ t

−∞
U(t, s)P (s)g(s, u(s))ds−

∫ ∞

t

UQ(t, s)Q(s)g(s, u(s))ds

for each t ∈ R.
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Lemma 4.2. Under assumptions (H1)–(H5), the integral operators Γ1 and Γ2 de-
fined above map PAP (Xα, µ, ν) into itself.

Proof. Let u ∈ PAP (Xα, µ, ν). Setting h(t) = g(t, u(t)) and using the theorem of
composition of doubly-weighted pseudo-almost periodic functions (Theorem 2.17)
it follows that h ∈ PAP (X, µ, ν). Now write h = φ + ζ where φ ∈ AP (X) and
ζ ∈ PAP0(X, µ, ν). The nonlinear integral operator Γ1u can be rewritten as

(Γ1u)(t) =
∫ t

−∞
U(t, s)P (s)φ(s)ds +

∫ t

−∞
U(t, s)P (s)ζ(s)ds.

Set

Φ(t) =
∫ t

−∞
U(t, s)P (s)φ(s)ds, Ψ(t) =

∫ t

−∞
U(t, s)P (s)ζ(s)ds

for each t ∈ R.
The next step consists of showing that Φ ∈ AP (Xα) and Ψ ∈ PAP0(Xα, µ, ν).

Obviously, Φ ∈ AP (Xα). Indeed, since φ ∈ AP (X), for every ε > 0 there exists
l(ε) > 0 such that for every interval of length l(ε) contains a τ with the property

‖φ(t + τ)− φ(t)‖ < εC for each t ∈ R,

where C = δ1−α

c(α)21−αΓ(1−α) with Γ being the classical Gamma function. Now

Φ(t + τ)− Φ(t)

=
∫ t+τ

−∞
U(t + τ, s)P (s)φ(s)ds−

∫ t

−∞
U(t, s)P (s)φ(s)ds

=
∫ t

−∞
U(t + τ, s + τ)P (s + τ)φ(s + τ)ds−

∫ t

−∞
U(t, s)P (s)φ(s)ds

=
∫ t

−∞
U(t + τ, s + τ)P (s + τ)φ(s + τ)ds

−
∫ t

−∞
U(t + τ, s + τ)P (s + τ)φ(s)ds

+
∫ t

−∞
U(t + τ, s + τ)P (s + τ)φ(s)ds−

∫ t

−∞
U(t, s)P (s)φ(s)ds

=
∫ t

−∞
U(t + τ, s + τ)P (s + τ)

(
φ(s + τ)− φ(s)

)
ds

+
∫ t

−∞

(
U(t + τ, s + τ)P (s + τ)− U(t, s)P (s)

)
φ(s)ds.

Using [4, 22] it follows that

‖
∫ t

−∞

[
U(t + τ, s + τ)P (s + τ)− U(t, s)P (s)

]
φ(s)ds‖α ≤

2‖φ‖∞
δ

ε.

Similarly, using (2.3), it follows that

‖
∫ t

−∞
U(t + τ, s + τ)P (s + τ)(φ(s + τ)− φ(s))ds‖α ≤ ε.

Therefore,

‖Φ(t + τ)− Φ(t)‖α <
(
1 +

2‖φ‖∞
δ

)
ε for each t ∈ R,
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and hence, Φ ∈ AP (Xα).
To complete the proof for Γ1, we have to show that Ψ ∈ PAP0(Xα, µ, ν). First,

note that s → Ψ(s) is a bounded continuous function. It remains to show that

lim
T→∞

1
µ(QT )

∫
QT

‖Ψ(t)‖αν(t)dt = 0.

Again using (2.3) it follows that

lim
T→∞

1
µ(QT )

∫
QT

‖Ψ(t)‖αν(t)dt

≤ lim
T→∞

c(α)
µ(QT )

∫
QT

∫ +∞

0

s−αe−
δ
2 s‖ζ(t− s)‖ν(t) ds dt

≤ lim
T→∞

c(α)
∫ +∞

0

s−αe−
δ
2 s 1

µ(QT )

∫
QT

‖ζ(t− s)‖ν(t)dtds.

Set

Γs(T ) =
1

µ(QT )

∫
QT

‖ζ(t− s)‖ν(t)dt.

Since PAP0(X, µ, ν) is assumed to be translation invariant and that (2.7) holds, it
follows that t → ζ(t− s) belongs to PAP0(X, µ, ν) for each s ∈ R, and hence

lim
T→∞

1
µ(QT )

∫
QT

‖ζ(t− s)‖ν(t)dt = 0

for each s ∈ R.
One completes the proof by using the well-known Lebesgue Dominated Conver-

gence Theorem and the fact Γs(T ) → 0 as T → ∞ for each s ∈ R. The proof for
Γ2u(·) is similar to that of Γ1u(·). However one makes use of (2.4) rather than
(2.3). �

Theorem 4.3. Under assumptions (H1)–(H5), Equation (1.1) has a unique doubly-
weighted pseudo-almost periodic mild solution whenever K is small enough.

Proof. Consider the nonlinear operator A defined on PAP (Xα, µ, ν) by

Au(t) =
∫ t

−∞
U(t, s)P (s)g(s, u(s))ds−

∫ ∞

t

UQ(t, s)Q(s)g(s, u(s))ds

for each t ∈ R.
In view of Lemma 4.2, it follows that A maps PAP (Xα, µ, ν) into itself. To

complete the proof one has to show that A has a unique fixed-point. If v, w ∈
PAP (Xα, µ, ν), then

‖Γ1(v)(t)− Γ1(w)(t)‖α ≤
∫ t

−∞
‖U(t, s)P (s)[g(s, v(s))− g(s, w(s))]‖α ds

≤
∫ t

−∞
c(α)(t− s)−αe−

δ
2 (t−s)‖g(s, v(s))− g(s, w(s))‖ ds

≤ Kc(α)
∫ t

−∞
(t− s)−αe−

δ
2 (t−s)‖v(s)− w(s)‖ ds

≤ kKc(α)
∫ t

−∞
(t− s)−αe−

δ
2 (t−s)‖v(s)− w(s)‖α ds
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≤ kKc(α)21−α Γ(1− α)δα−1‖v − w‖α,∞,

and

‖Γ2(v)(t)− Γ2(w)(t)‖α ≤
∫ ∞

t

‖UQ(t, s)Q(s)[g(s, v(s))− g(s, w(s))]‖α ds

≤
∫ ∞

t

m(α)eδ(t−s)‖g(s, v(s))− g(s, w(s))‖ ds

≤
∫ ∞

t

m(α)Keδ(t−s)‖v(s)− w(s)‖ ds

≤ km(α)K
∫ ∞

t

eδ(t−s)‖v(s)− w(s)‖α ds

≤ Kkm(α)‖v − w‖α,∞

∫ +∞

t

eδ(t−s) ds

= Kkm(α)δ−1‖v − w‖α,∞,

where ‖u‖α,∞ := supt∈R ‖u(t)‖α.
Combining the previous approximations it follows that

‖Mv −Mw‖∞,α ≤ KC(α, δ) · ‖v − w‖α,∞,

where C(α, δ) = km(α)δ−1 + kc(α)21−α Γ(1−α)δα−1 > 0 is constant, and hence if
the Lipschitz K is small enough. Then (1.1) has a unique solution, which obviously
is its only doubly-weighted pseudo-almost periodic mild solution. �
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