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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR
DEGENERATE AND SINGULAR ELLIPTIC SYSTEMS WITH

INDEFINITE CONCAVE NONLINEARITIES

NGUYEN THANH CHUNG

Abstract. In this article, we consider degenerate and singular elliptic systems
of the form

− div(h1(x)∇u) = b1(x)|u|r−2u + Fu(x, u, v) in Ω,

− div(h2(x)∇v) = b2(x)|v|r−2v + Fv(x, u, v) in Ω,

where Ω is a bounded domain in RN , N ≥ 2, with smooth boundary ∂Ω;
hi : Ω → [0,∞), hi ∈ L1

loc(Ω), and are allowed to have “essential” zeroes;
1 < r < 2; the weight functions bi : Ω → R, may be sign-changing; and
(Fu, Fv) = ∇F . Using variational techniques, a variant of the Caffarelli -
Kohn - Nirenberg inequality, and a variational principle by Clark [9], we prove
the rxistence of infinitely many solutions in a weighted Sobolev space.

1. Introduction and Preliminaries

In this article, we are concerned with a class of degenerate and singular elliptic
systems of the form

−div(h1(x)∇u) = b1(x)|u|r−2u+ Fu(x, u, v) in Ω,

−div(h2(x)∇v) = b2(x)|v|r−2v + Fv(x, u, v) in Ω,
(1.1)

where Ω ⊂ RN , with N ≥ 2, is a bounded domain with smooth boundary ∂Ω, and
(Fu, Fv) = ∇F .

We point out that if h1(x) = h2(x) ≡ 1, the problem has been intensively studied;
we refer to the interesting works [1, 2, 4, 12, 20, 21, 22]. In [1, 2, 4, 20], the authors
considered (1.1) with concave-convex nonlinearities in the case when the functions
bi(x), i = 1, 2, are positive constants. Some existence and multiplicity results
were obtained provided that the nonlinear term f satisfies some global assumptions
for all x and u. A typical example of f satisfying those global assumptions is
f(x, u) = |u|p−2u with 2 < p ≤ 2? = 2N/(N − 2) and N ≥ 3. When bi, i = 1, 2 are
sign-changing weighted functions, the problem was studied by Wu [21, 22]. There,
with the help of the Nehari manifold, the author proved that the problem has at
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least two nontrivial nonnegative solutions, under some suitable conditions on the
nonlinearities.

In a recent paper Caldiroli et al. [6] considered the Dirichlet elliptic problem

− div(h(x)∇u) = λu+ g(x, u) in Ω, (1.2)

where Ω is a (bounded or unbounded) domain in RN (N ≥ 2), and h is a nonnegative
measurable weighted function that is allowed to have “essential” zeroes at some
points in Ω; i.e., the function h can have at most a finite number of zeroes in Ω.
More precisely, the authors assumed that:

(H) The function h : Ω → [0,∞) belongs to L1
loc(Ω) and there exists a constant

φ ≥ 0 such that

lim inf
x→z

|x− z|−φh(x) > 0 for all z ∈ Ω.

Thus, the function h decreases more slowly than |x − z|α near every point z ∈
h−1{0}. It should be observed that a model example for such function is that
h(x) = |x|α, (see [13, 14]). The case α = 0 covers the “isotropic” case corresponding
to the Laplacian operator. Caldiroli et al. [6] proved that if a function h satisfies the
condition (H), then there exist a finite set Z = {z1, z2, . . . , zk} ⊂ Ω and numbers
r, δ > 0 such that the balls Bi = Br(zi) (i = 1, 2, . . . , k) are mutually disjoint and

h(x) ≥ δ|x− zi|α ∀x ∈ Bi, i = 1, 2, . . . , k,

h(x) ≥ δ ∀x ∈ Ω\ ∪k
i=1 Bi.

This says that the elliptic operators in system (1.1) may be degenerate and singu-
lar. Such problems come from the consideration of standing waves in anisotropic
Schrödinger systems. They arise in many areas of applied physics, including nuclear
physics, field theory, solid waves and problems of false vacuum. These problems
are introduced as models for several physical phenomena related to equilibrium of
continuous media which somewhere be perfect insulators (see [11, p. 79]). For more
information and connection on problems of this type, the readers may consult in
[15, 19] and the references therein.

Regarding the nonlinear term g(x, u), Caldiroli et al. assumed that g : Ω×R → R
is a Carathéodory function satisfying the following conditions:

(G1) |g(x, u)| = O(|u|p−1) as |u| → ∞, uniformly in x ∈ Ω, where 2 < p < 2?
φ =

2N
N−2+φ , φ ∈ (0, 2);

(G2) g(u) = o(u) as |u| → 0, uniformly in x ∈ Ω;
(G3) There is µ > 2, such that

0 < µG(x, u) :=
∫ u

0

g(x, s)ds ≤ g(x, u)u

uniformly in x ∈ Ω, and for all u ∈ R\{0}.
By introducing some interesting results, using the mountain pass theorem [3],
Caldiroli et al. obtained in [6, Theorem 4.4] the existence of a nontrivial solu-
tion for (1.2) in a suitable function space, provided that λ < λ1(h), where

λ1(h) := inf
u∈H1

0 (Ω)\{0}

∫
Ω
h(x)|∇u|2dx∫

Ω
|u|2dx

.
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The results in [6] were used by Zographopoulos [24], Zhang et al. [23] and Chung
et al. [7, 8] to study the existence of solutions for a class of degenerate elliptic
systems.

Zographopoulos [24] considered the degenerate semilinear elliptic system

−div(h1(x)∇u) = λµ(x)|u|γ−1|v|δ+1u in Ω

−div(h2(x)∇v) = λµ(x)|u|γ+1|v|δ−1v in Ω
u = v = 0 on ∂Ω,

(1.3)

where the functions hi ∈ L1
loc(Ω) and hi (i = 1, 2) are allowed to have “essential”

zeroes at some points in Ω, the function µ ∈ L∞(Ω) and may change sign in Ω,
λ is a positive parameter and the nonnegative constants γ, δ satisfy the following
conditions:

γ + 1 < p < 2?
α, δ + 1 < q < 2?

β ,

γ + 1
p

+
δ + 1
q

= 1,
γ + 1
2?

α

+
δ + 1
2?

β

< 1,

2?
α =

2N
N − 2 + α

, 2?
β =

2N
N − 2 + β

, α, β ∈ (0, 2).

Using arguments of Mountain pass type [3], the author showed the existence of a
nontrivial solution of (1.3) in the supercritical case; i.e.,

γ + 1
2

+
δ + 1

2
> 1. (1.4)

In the critical case γ = δ = 0, the author also established the existence of a positive
principal egienvalue λ1 for system (1.3) and some of its pertubations. Motivated
by the results in [5, 6, 10, 18, 24], Chung [8] and Zhang et al. [23] obtained some
existence results for (1.1) under subcritical growth conditions and the primitive
F (x, u, v) being intimately related to with the first eigenvalue of a corresponding
linear system. Finally, in the case when Ω is a bounded domain with smooth
boundary, Chung et al. [7] obtained the nonexistence and multiplicity of solutions
for (1.1) using the minimum principle combined with the mountain pass theorem
[3].

In the present paper, we consider problem (1.1) with the degenerate potentials
as in [6, 7, 8, 23, 24]; i.e., hi : Ω → [0,∞), hi ∈ L1

loc(Ω), hi (i = 1, 2) are allowed
to have “essential” zeroes at some points in Ω. The problem will be investigated
under the case 1 < r < 2 and the weight functions bi : Ω → R, i = 1, 2, may
be possibly sign-changing. Motivated by the interesting ideas in [12, 20], we dot
not require the nonlinear term f satisfying any global assumptions for all u as in
[6, 7, 8, 21, 22, 23, 24]. Thus, the result introduced here is a complete natural
extension of the previous ones. In order to overcome the difficulties brought, we
will use variational techniques rely essentially on a variant of the Caffarelli - Kohn
- Nirenberg inequality in [6] combined with a variational principle by Clark [9], we
prove the problem has infinitely many solutions in a weighted Sobolev space.

As we mentioned above, throughout this paper, we assume that the functions h1

and h2 satisfy the following conditions:
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(H1) The function h1 : Ω → [0,∞) belongs to L1
loc(Ω) and there exists a constant

α ≥ 0 such that

lim inf
x→z

|x− z|−αh1(x) > 0 for all z ∈ Ω.

(H2) The function h2 : Ω → [0,∞) belongs to L1
loc(Ω) and there exists a constant

β ≥ 0 such that

lim inf
x→z

|x− z|−βh2(x) > 0 for all z ∈ Ω.

Next, in order to state our main result, we propose some hypotheses on the
nonlinearities as follows:

(B) The functions bi : Ω → R, i = 1, 2, are continuous and there is a nonempty
open subset Ω′ of Ω such that bi(x) > 0 for a.e. x ∈ Ω;

(F1) There are two positive constants ρ1 and ρ2, such that F (x, u, v) is a C1-
function on Ω × (−ρ1, ρ1) × (−ρ2, ρ2), ∇F = (Fu, Fv), Fu, Fv ∈ C(Ω ×
(−ρ1, ρ1) × (−ρ2, ρ2),R), and F (x,−u,−v) = F (x, u, v) for all (u, v) ∈
×(−ρ1, ρ1)× (−ρ2, ρ2) and a.e. x ∈ Ω;

(F2) It holds that

lim
|u|→0

Fu(x, u, v)
|u|γ |v|δ+1

= 0, lim
|v|→0

Fv(x, u, v)
|s|γ+1|v|δ

= 0

uniformly for x ∈ Ω, in which the positive constants γ and δ are chosen
such that γ+1

p + δ+1
q = 1, γ+1

2?
α

+ δ+1
2?

β
< 1, and γ + 1 < p < 2?

α = 2N
N−2+α ,

δ + 1 < q < 2?
β = 2N

N−2+β , α, β ∈ (0, 2).

We find that the condition (B) says the weight functions bi, i = 1, 2 may being sign-
changing in Ω while the conditions (F1) and (F2) say the assumptions imposed on
the nonlinearities stisfies only for u and v small enough. Moreover, we do not
require the Ambrosetti-Rabinowitz type condition as in [6] (see (G3)).

It is clear that by the presence of the functions h1, h2, the solutions of system
(1.1) must be found in a suitable space. To this purpose, we define the Hilbert spaces
H1

0 (Ω, h1) and H1
0 (Ω, h2) as the closures of C∞0 (Ω) with respect to the norms

‖u‖h1 =
( ∫

Ω

h1(x)|∇u|2dx
)1/2

for all u ∈ C∞0 (Ω) and

‖v‖h2 =
( ∫

Ω

h2(x)|∇v|2dx
)1/2

for all v ∈ C∞0 (Ω), respectively, and set

H = H1
0 (Ω, h1)×H1

0 (Ω, h2) = {w = (u, v) : u ∈ H1
0 (Ω, h1), v ∈ H1

0 (Ω, h2)}.
Then, it is clear that H is a Hilbert space under the norm

‖w‖H = ‖u‖h1 + ‖v‖h2

for all w = (u, v) ∈ H, and with respect to the scalar product

〈ϕ,ψ〉H =
∫

Ω

(h1(x)∇ϕ1 · ∇ψ1 + h2(x)∇ϕ2 · ∇ψ2)dx

for all ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈ H.
The key in our arguments is the following lemma, which is introduced by Caldiroli

et al. [6] as the generalization of the Caffarelli - Kohn - Nirenberg inequality.
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Lemma 1.1 ([6, Proposition 2.5]). Let Ω be a bounded domain in RN , N ≥ 2.
Assume that the function h : Ω → [0,+∞) the condition (H), then there exists a
constant Cφ > 0 depending on φ such that( ∫

Ω

|ϕ|2
?
φdx

)2/2?
φ

≤ Cφ

∫
Ω

h(x)|∇ϕ|2dx

for every ϕ ∈ C∞0 (Ω), where 2?
φ = 2N/(N − 2 + φ).

By Lemma 1.1, [6, Propositions 3.2 and 3.4], we have the following remark, which
helps us to overcome the lack of compactness.

Remark 1.2. Assume that the hypotheses (H1) and (H2) are satisfied, then we
conclude that

(i) The embedding H ↪→ L2?
α(Ω)× L2?

β (Ω) is continuous.
(ii) The embedding H ↪→ Li(Ω) × Lj(Ω) is compact for all i ∈ [1, 2?

α) and all
j ∈ [1, 2?

β).

Definition 1.3. We say that w = (u, v) ∈ H is a weak solution of (1.1) if∫
Ω

(h1(x)∇u · ∇ϕ1 + h2(x)∇v · ∇ϕ2)dx−
∫

Ω

(b1(x)|u|r−2uϕ1 + b2(x)|v|r−2vϕ2)dx

−
∫

Ω

(Fu(x, u, v)ϕ1 + Fv(x, u, v)ϕ2)dx = 0

for all ϕ = (ϕ1, ϕ2) ∈ C∞0 (Ω,R2).

Theorem 1.4. Let 1 < r < 2 and assume that the conditions (H1)–(H2), (B), (F1),
(F2) are satisfied. Then (1.1) has a sequence of weak solutions wm = (um, vm) ∈ H,
such that ‖wm‖L∞(Ω,R2) → 0 as m → ∞. Moreover, J(wm) < 0 for all m and
J(wm) → 0 as m→∞, where

J(wm) =
1
2

∫
Ω

(h1(x)|∇um|2 + h2(x)|∇vm|2)dx

− 1
r

∫
Ω

(b1(x)|um|r + b2(x)|vm|r)dx−
∫

Ω

F (x, um, vm)dx.

It should be noticed that in [7], the authors had to require the condition γ, δ >
1, which helps them to show the associated functional having the mountain pass
geometry. In this article, we do not need this condition. So, our idea is to obtain the
solutions of system (1.1) using a variational principle by Clark [9] which is stated
in the following lemma.

Lemma 1.5 ([9]). Let Φ ∈ C1(X,R) where X is a Banach space. Assume that Φ
satisfies the Palais - Smale condition, is even and bounded from below, and Φ(0) =
0. If for any k ∈ N, there exists a k-dimensional subspace Xk and ρk > 0 such that

sup
Xk∩Sρk

Φ < 0,

where Sρ = {w ∈ X : ‖w‖ = ρ}, then Φ has a sequence of critical values ck < 0
satisfying ck → 0 as k →∞.
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2. Proof of the Main result

Let λ1 be the first eigenvalue of the following Dirichlet problem (see [23, Lemma
2.3], for µ(x) ≡ 1, or [7, 24]),

−div(h1(x)∇u) = λ|u|γ−1|v|δ+1u in Ω,

−div(h2(x)∇v) = λ|u|γ+1|v|δ−1v in Ω,
u = v = 0 on ∂Ω,

where the functions h1(x) and h2(x) as in (H1) and (H2), γ and δ are two positive
real numbers satisfying the condition (F2).

Then, we have λ1 > 0 and it is given by

λ1 = inf
w=(u,v)∈H\{(0,0)}

∫
Ω
(γ+1

p h1(x)|∇u|2 + δ+1
q h2(x)|∇v|2)dx∫

Ω
|u|γ+1|v|δ+1dx

(2.1)

and the associated eigenfunction w0 = (u0, v0) is componentwise nonnegative and
is unique (up to multiplication by a nonzero scalar). We first modify F, Fu, , Fv so
that the nonlinearities are defined for all (x, u) ∈ Ω× R.

Lemma 2.1. Assume that the hypotheses (F1) and (F2) are satisfied. Then, for
any λ ∈ (0, λ1), there exist two constants ρ′1 ∈ (0, ρ1

2 ), ρ′2 ∈ (0, ρ2
2 ), and a function

F̂ (x, u, v) is of C1 on Ω× R× R, odd in (u, v), such that

F̂u(x, u, v) =
∂F̂

∂u
(x, u, v) = Fu(x, u, v), F̂v(x, u, v) =

∂F̂

∂v
(x, u, v) = Fv(x, u, v),

(2.2)
for all |u| ≤ ρ′1 and |v| ≤ ρ′2,

F̂ (x, u, v)u+ F̂v(x, u, v)v − rF̂ (x, u, v) ≤ (2− r)λ
2

|u|γ+1|v|δ+1, (2.3)

for (x, u, v) ∈ Ω× R, and

|F̂ (x, u, v)| ≤ λ

2
|u|γ+1|v|δ+1, (x, u, v) ∈ Ω× R. (2.4)

Proof. For any λ ∈ (0, λ1) and r ∈ (1, 2) we set θ = (2−r)λ
2 and choose ε ∈ (0, θ

24 ).
By the hypothesis (F2), there exist two positive constants ρ′1 and ρ′2, such that for
any |u| ≤ 2ρ′1, and |v| ≤ 2ρ′2, we have

|Fu(x, u, v)u| ≤ ε|u|γ+1|v|δ+1 and |Fv(x, u, v)u| ≤ ε|u|γ+1|v|δ+1. (2.5)

It follows that

|F (x, u, v)| = |F (x, u, v)− F (x, 0, 0)|
= |Fu(x, θ1u, θ2v)u+ Fv(x, θ1u, θ2v)v|

≤
∣∣ε|θ1u|γ |θ2v|δ+1u+ ε|θ1u|γ+1|θ2v|δv

∣∣
≤ 2ε|u|γ+1|v|δ+1, 0 < θ1, θ2 < 1.

Now, we choose a cut-off function η ∈ C1(R× R,R) so that it is even and satisfies
the following conditions:

η(s, t) = 1 for all |s| ≤ ρ′1, |t| ≤ ρ′2,

η(s, t) = 0 for all |s| ≥ 2ρ′1, |t| ≥ 2ρ′2
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|η′s(s, t)| ≤
2
ρ′1
, |η′t(s, t)| ≤

2
ρ′2
, η′s(s, t)s ≤ 0, η′t(s, t)t ≤ 0.

Let θ ∈
(
0, θ

4(γ+δ+12)

)
be fixed, we define

F∞(u) := θ|u|γ+1|v|δ+1, (2.6)

F̂ (x, u, v) := η(u, v)F (x, u, v) + (1− η(u, v))F∞(u, v), (2.7)

F̂u(x, u, v) :=
∂F̂

∂u
(x, u, v), F̂v(x, u, v) =

∂F̂

∂v
(x, u, v). (2.8)

Then, it is easy to verify that

|F̂ (x, u, v)| ≤ (ε+ θ)|u|γ+1|v|δ+1 ≤ λ

2
|u|γ+1|v|δ+1 (2.9)

for all (x, u, v) ∈ Ω× R× R,
On the other hand, for any |u| ≤ 2ρ′1 and |v| ≤ 2ρ′2, we have

F̂u(x, u, v) = η′u(u, v)F (x, u, v) + η(u, v)Fu(x, u, v)

+ (1− η(u, v))F ′∞,u(u, v)− η′u(u, v)F∞(u, v)

and

F̂v(x, u, v) = η′v(u, v)F (x, u, v) + η(u, v)Fv(x, u, v)

+ (1− η(u, v))F ′∞,v(u, v)− η′v(u, v)F∞(u, v).

It follows that

F̂u(x, u, v)u+ F̂v(x, u, v)v − rF̂ (x, u, v)

= η′u(u, v)uF (x, u, v) + η(u, v)Fu(x, u, v)v

+ (1− η(u, v))F ′∞,u(u, v)u− η′u(u, v)uF∞(u, v)

+ η′v(u, v)vF (x, u, v) + η(u, v)Fv(x, u, v)v + (1− η(u, v))F ′∞,v(u, v)v

− η′v(u, v)vF∞(u, v)− rη(u, v)F (x, u, v)− r(1− η(u, v))F∞(u, v).

Combining this with relations (2.6)-(2.9), a simple computation shows that

F̂u(x, u, v)u+ F̂v(x, u, v)v − rF̂ (x, u, v) ≤ [12ε+ (γ + δ + 12)θ]|u|γ+1|v|δ+1

≤ θ|u|γ+1|v|δ+1

=
(2− r)λ

2
|u|γ+1|v|δ+1.

Thus, the numbers ρ′1, ρ
′
2 and the function F̂ (x, u, v), defined by (2.7) satisfy all

the properties stated in the lemma. �

Next, we consider the modified elliptic problem

−div(h1(x)∇u) = b1(x)|u|r−2u+ F̂u(x, u, v) in Ω,

−div(h2(x)∇v) = b2(x)|v|r−2v + F̂v(x, u, v) in Ω,
(2.10)
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where F̂u(x, u, v) and F̂v(x, u, v) are given by (2.8). Then the solutions of problem
(2.10) correspond to critical points of the C1 functional Ĵ : H → R, defined by

Ĵ(w) =
1
2

∫
Ω

(h1(x)|∇u|2 + h2(x)|∇v|2)dx

− 1
r

∫
Ω

(b1(x)|u|r + b2(x)|v|r)dx−
∫

Ω

F̂ (x, u, v)dx,

= Λ(w)− Î(w),

(2.11)

where

Λ(w) =
1
2

∫
Ω

(h1(x)|∇u|2 + h2(x)|∇v|2)dx

Î(w) =
1
r

∫
Ω

(b1(x)|u|r + b2(x)|v|r)dx+
∫

Ω

F̂ (x, u, v)dx
(2.12)

for all w = (u, v) ∈ H.

Lemma 2.2. The functional Ĵ is coercive and bounded from below in H.

Proof. We deduce by the definition Ĵ and (2.9) that

Ĵ(w) =
1
2

∫
Ω

(h1(x)|∇u|2 + h2(x)|∇v|2)dx−
1
r

∫
Ω

(b1(x)|u|r + b2(x)|v|r)dx

−
∫

Ω

F̂ (x, u, v)dx

≥ 1
2

∫
Ω

(h1(x)|∇u|2 + h2(x)|∇v|2)dx−
1
r

∫
Ω

(b1(x)|u|r + b2(x)|v|r)dx

− λ

2

∫
Ω

|u|γ+1|v|δ+1dx

≥ 1
2
(
1− λ

λ1

) ∫
Ω

(h1(x)|∇u|2 + h2(x)|∇v|2)dx

− 1
r

∫
Ω

(b1(x)|u|r + b2(x)|v|r)dx

(2.13)

for all w = (u, v) ∈ H. Since 1 < r < 2 and 0 < λ < λ1, relation (2.13) implies
that the functional Ĵ is coercive and bounded from below. �

Lemma 2.3. The functional Ĵ satisfies the Palais-Smale condition in H.

Proof. Let {wm} = {(um, vm)} ⊂ H be a sequence such that

Ĵ(wm) → c, DĴ(wm) → 0 in H as m→∞. (2.14)

Since Ĵ is coercive, the sequence {wm} is bounded in H. Since H is a Hilbert space,
there exists w = (u, v) ∈ H such that, passing to a subsequence, still denoted by
{wm}, it converges weakly to w in H. Hence, {‖wm −w‖H} is bounded. This and
(2.14) imply that

lim
m→∞

DĴ(wm)(wm − w) = 0. (2.15)

From the proof of Lemma 2.1, there are positive constants C1, C2, depending on
γ, δ and such that

|F̂u(x, u, v)| ≤ C1|u|γ |v|δ+1, |F̂v(x, u, v)| ≤ C2|u|γ+1|v|δ (2.16)



EJDE-2011/30 DEGENERATE AND SINGULAR ELLIPTIC SYSTEMS 9

for all (u, v) ∈ H. Hence,∫
Ω

F̂u(x, um, vm)(um − u)dx ≤ C1

∫
Ω

|um|γ |vm|δ+1|u− um|dx

≤ C1‖um‖γ
Lp(Ω)‖vm‖δ+1

Lq(Ω)‖um − u‖Lp(Ω),

(2.17)

and∫
Ω

F̂v(x, um, vm)(vm − v)dx ≤ C2

∫
Ω

|um|γ+1|vm|δ|u− um|dx

≤ C2‖um‖γ+1
Lp(Ω)‖vm‖δ

Lq(Ω)‖vm − v‖Lq(Ω).

(2.18)

It follows from relations (2.17) and (2.18) that

|DÎ(wm)(wm − w)| =
∣∣∣ ∫

Ω

[F̂u(x, um, vm)(um − u) + F̂v(x, um, vm)(vm − v)]dx
∣∣∣

≤ C1‖um‖γ
Lp(Ω)‖vm‖δ+1

Lq(Ω)‖um − u‖Lp(Ω)

+ C2‖um‖γ+1
Lp(Ω)‖vm‖δ

Lq(Ω)‖vm − v‖Lq(Ω).

where the functional Î is given by (2.12). Therefore, we can show by Remark 1.2
that

lim
m→∞

DÎ(wm)(wm − w) = 0. (2.19)

Combining relations (2.15), (2.19) with the fact that

DΛ(wm)(wm − w) = DĴ(wm)(wm − w) +DÎ(wm)(wm − w)

imply that
lim

m→∞
DΛ(wm)(wm − w) = 0, (2.20)

where the functional Λ is given by (2.12).
Hence, by the convexity of the functional Λ, we have

Λ(w)− lim
m→∞

supΛ(wm) = lim
m→∞

inf(Λ(w)− Λ(wm))

≥ lim
m→∞

DΛ(wm)(w − wm) = 0
(2.21)

and the weak lower semi-continuity of Λ implies that

lim
m→∞

Λ(wm) = Λ(w). (2.22)

We now assume by contradiction that {wm} does not converge strongly to w in
H, then there exist a constant ε > 0 and a subsequence of {wm}, still denoted by
{wm}, such that ‖wm − w‖ ≥ ε. We have

1
2
Λ(w) +

1
2
Λ(wm)− Λ

(wm + w

2
)

=
1
4
‖wm − u‖2 ≥ 1

4
ε2. (2.23)

Letting m→∞, relation (2.23) gives

lim
m→∞

supΛ
(wm + w

2
)
≤ Λ(w)− 1

4
ε2. (2.24)

We remark that the sequence {wm+w
2 } also converges weakly to w in H. So, we

have
Λ(w) ≤ lim

m→∞
inf Λ

(wm + w

2
)
,

which contradicts (2.24). Therefore, {wm} converges strongly to w in H and the
functional Ĵ satisfies the Palais-Smale condition in H. �
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Lemma 2.4. Ĵ(w) = 0 = DĴ(w)(w) if and only if w = (0, 0), where w = (u, v) ∈
H.

Proof. It is clear that if w = (u, v) = (0, 0) then Ĵ(w) = 0 = DĴ(w)(w). Next, we
assume Ĵ(w) = 0 = DĴ(w)(w). By the definition of the functional Ĵ and

DĴ(w)(w) =
∫

Ω

(h1(x)|∇u|2 + h2(x)|∇v|2)dx

−
∫

Ω

(b1(x)|u|r + b2(x)|v|r)dx−
∫

Ω

[F̂u(x, u, v)u+ F̂v(x, u, v)v]dx.

we obtain by Lemma 2.1 that(1
r
− 1

2
) ∫

Ω

(a1(x)|∇u|2 + a2(x)|∇v|2)dx

=
∫

Ω

(1
r
F̂u(x, u, v)u+

1
r
F̂v(x, u, v)v − F̂ (x, u, v)

)
dx

≤ λ(2− r)
2r

∫
Ω

|u|γ+1|v|δ+1dx,

(2.25)

Then since 0 < λ < λ1, where λ1 is given by (2.1), it implies that u = 0 and
v = 0. �

Proof of Theorem 1.4. To apply Lemma 1.5 to the functional Ĵ , we only need to
find any k ∈ N, a subspace Hk of H and ρk > 0 such that

sup
Hk∩Sρk

Ĵ < 0.

Indeed, for any k ∈ N we find k linearly independent functions e1, e2, . . . , ek ∈
C∞0 (Ω′,R2), ei = (e(1)i , e

(2)
i ), i = 1, 2, . . . , k, and define the subspace

Hk := span{e1, e2, . . . , ek}.

By (B), we may assume that bi(x) ≥ b0 > 0, i = 1, 2 in ∪k
i=1 supp ei for some

constant b0. For any w = (u, v) ∈ Hk, using (2.1) in Lemma 2.1, we have

Ĵ(w) =
1
2

∫
Ω

(a1(x)|∇u|2 + a2(x)|∇v|2)dx−
1
r

∫
Ω

(b1(x)|u|r + b2(x)|v|r)dx

−
∫

Ω

F̂ (x, u, v)dx

≤ 1
2

∫
Ω

(a1(x)|∇u|2 + a2(x)|∇v|2)dx−
b0
r

(‖u‖r
Lr(Ω) + ‖v‖r

Lr(Ω))

+
λ

2

∫
Ω

|u|γ+1|v|δ+1dx

≤ 1
2
(
1 +

λ

λ1

) ∫
Ω

(a1(x)|∇u|2 + a2(x)|∇v|2)dx−
b0
r

(‖u‖r
Lr(Ω) + ‖v‖r

Lr(Ω)),

which implies the existence of ρk such that supHk∩Sρk
Ĵ < 0 since the dimension of

Hk is finite.
By Lemma 2.1, there exists a sequence of negative critical values ck of Ĵ satisfying

ck → 0 as k → ∞. For any k, let wk = (uk, vk) be a critical point of Ĵ associated
with ck. Then, wk, k ≥ 1 are exactly the solutions of problem (1.1) and they
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form a Palais-Smale sequence. Without loss of genarality, we may assume that
wk → w = (u, v) in H as k →∞. Then w satisfies

Ĵ(w) = 0 = DĴ(w)(w).

Therefore, w = (0, 0) according to Lemma 2.4 and wk → 0 in H as k → ∞.
Standard elliptic estimates show that wk → 0 in L∞(Ω,R2) as k → ∞. Finally,
relations (2.2) and (2.10) help us to conclude that wk with k large enough are the
solutions of problem (1.1). The proof of Theorem 1.4 is now complete. �
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