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EXISTENCE AND UNIQUENESS OF SOLUTIONS OF
NONLINEAR MIXED INTEGRODIFFERENTIAL EQUATIONS

WITH NONLOCAL CONDITION IN BANACH SPACES

MACHINDRA B. DHAKNE, HARIBHAU L. TIDKE

Abstract. In this article, we study the existence and uniqueness of mild
and strong solutions of a nonlinear mixed Volterra-Fredholm integrodifferential
equation with nonlocal condition in Banach spaces. Furthermore, we study
continuous dependence of mild solutions. Our analysis is based on semigroup
theory and Banach fixed point theorem.

1. Introduction

Let X be a Banach space with norm ‖ · ‖. Let Br = {x ∈ X : ‖x‖ ≤ r} ⊂ X
be a closed ball in X and E = C([t0, t0 + β];Br) denote the complete metric space
with metric

d(x, y) = ‖x− y‖E = sup
t∈[t0,t0+β]

{‖x(t)− y(t)‖ : x, y ∈ E}.

Motivated by the work in [3, 7], we consider the nonlinear mixed Volterra-
Fredholm integrodifferential equation

x′(t) + Ax(t) = f(t, x(t),
∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds), t ∈ [t0, t0 + β]

(1.1)

x(t0) + g(t1, t2, . . . , tp, x(·) = x0, (1.2)

where 0 ≤ t0 < t1 < t2 < · · · < tp ≤ t0 + β, −A is the infinitesimal generator
of a C0 semigroup T (t), t ≥ 0, in a Banach space X and the nonlinear functions
f : [t0, t0 + β] × X × X × X → X, g : [t0, t0 + β]p × X → X, k, h : [t0, t0 + β] ×
[t0, t0 + β]×X → X and x0 is a given element of X.

The notion of “nonlocal condition” has been introduced to extend the study of
the classical initial value problems and it is more precise for describing nature phe-
nomena than the classical condition since more information is taken into account,
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thereby decreasing the negative effects incurred by a possibly erroneous single mea-
surement taken at the initial value. The importance of nonlocal conditions in many
applications is discussed in [1, 4, 5, 8, 9, 10]. For example, in [10], the author used

g(t1, t2, . . . , tp, x(·)) =
p∑

i=1

cix(ti), (1.3)

where ci, (i = 1, 2, . . . , p) are given constants and t = 0 < t1 < · · · < tp ≤ b
to describe, for instance, the diffusion phenomenon of a small amount of gas in a
transparent tube can give better result than using the usual local Cauchy problem
with x(0) = x0. In this case, (1.3) allows the additional measurements at ti,
i = 1, 2, . . . p. Subsequently, several authors are devoted to studying of nonlocal
problems by using different techniques, see [2, 6, 11, 13, 14, 16, 17] and the references
given therein.

The objective of the present paper is to study the existence, uniqueness and other
properties of solutions of the problem (1.1)–(1.2). The main tool employed in our
analysis is based on the Banach fixed point theorem and the theory of semigroups.
Our results extend and improve the correspondence results in [12]. We indicate
that the method used in this paper is different from that in [12].

This article is organized as follows. In section 2, we present the preliminaries
and the statement of our main results. Section 3 deals with proof of the theorems.
Finally in section 4 we give example to illustrate the application of our results.

2. Preliminaries and Main Results

Before proceeding to the statement of our main results, we shall setforth some
preliminaries and hypotheses that will be used in our subsequent discussion.

Definition 2.1. A continuous solution x of the integral equation

x(t) = T (t− t0)x0 − T (t− t0)g(t1, t2, . . . , tp, x(·))

+
∫ t

t0

T (t− s)f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)ds,
(2.1)

with t ∈ [t0, t0 + β], is said to be a mild solution of (1.1)–(1.2) on [t0, t0 + β].

Definition 2.2. A function x is said to be a strong solution of (1.1)–(1.2) on
[t0, t0+β] if x is differentiable almost everywhere on [t0, t0+β], x′ ∈ L1([t0, t0+β], X)
and satisfying (1.1)–(1.2) a.e. on [t0, t0 + β].

We list the following hypotheses for our convenience.
(H1) There exists a constant G > 0 such that

‖g(t1, t2, . . . , tp, x1(·))− g(t1, t2, . . . , tp, x2(·))‖ ≤ G‖x1 − x2‖E

for x1, x2 ∈ E.
(H2) −A is the infinitesimal generator of a C0 semigroup T (t), t ≥ 0 in X such

that
‖T (t)‖ ≤ M,

for some M ≥ 1.
(H3) There are constants L1,K1,H1 and G1 such that

L1 = max
t0≤t≤t0+β

‖f(t, 0, 0, 0)‖,
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K1 = max
t0≤s≤t≤t0+β

‖k(t, s, 0)‖,

H1 = max
t0≤s,t≤t0+β

‖h(t, s, 0)‖,

G1 = max
x∈E

‖g(t1, t2, . . . , tp, x(·))‖.

(H4) The constants ‖x0‖,M,G1, L,K,K1,H, H1, β and r satisfy the following
two inequalities:

M [‖x0‖+ G1 + Lrβ + LKrβ2 + LK1β
2 + LHrβ2 + LH1β

2 + L1β] ≤ r,

[MG + MLβ + MLKβ2 + MLHβ2] < 1.

With these preparations we are now in a position to state our main results to be
proved in the present paper.

Theorem 2.3. Assume that
(i) hypotheses (H1)–(H4) hold,
(ii) f : [t0, t0 +β]×X×X×X → X is continuous in t on [t0, t0 +β] and there

exists a constant L > 0 such that

‖f(t, x1, y1, z1)− f(t, x2, y2, z2)‖ ≤ L(‖x1 − x2‖+ ‖y1 − y2‖+ ‖z1 − z2‖),
for xi, yi, zi ∈ Br, i = 1, 2.

(iii) k, h : [t0, t0 + β]× [t0, t0 + β]×X → X are continuous in s, t on [t0, t0 + β]
and there exist positive constants K, H such that

‖k(t, s, x1)− k(t, s, x2)‖ ≤ K(‖x1 − x2‖),
‖h(t, s, x1)− h(t, s, x2)‖ ≤ H(‖x1 − x2‖),

for xi, yi ∈ Br, i = 1, 2.
Then problem (1.1)–(1.2) has a unique mild solution on [t0, t0 + β].

Theorem 2.4. Assume that
(i) hypotheses (H1)–(H4) hold,
(ii) X is a reflexive Banach space with norm ‖ · ‖ and x0 ∈ D(A),the domain

of A,
(iii) g(t1, t2, . . . , tp, x(·)) ∈ D(A),
(iv) There exists a constant L > 0 such that

‖f(t1, x1, y1, z1)− f(t2, x2, y2, z2)‖ ≤ L(|t1 − t2|+ ‖x1 − x2‖+ ‖y1 − y2‖
+ ‖z1 − z2‖),

(v) There exist constants K, H > 0 such that

‖k(t1, s, x1)− k(t2, s, x2)‖ ≤ K(|t1 − t2|+ ‖x1 − x2‖),
‖h(t1, s, x1)− h(t2, s, x2)‖ ≤ H(|t1 − t2|+ ‖x1 − x2‖),

Then x is a unique strong solution of (1.1)–(1.2) on [t0, t0 + β].

Theorem 2.5. Suppose that the functions f, g, k and h satisfy hypotheses (H1)-
(H4) and assumptions (ii), (iii) of Theorem 2.3. Then, for each pair of elements
x∗0, x

∗∗
0 ∈ X, and for the corresponding mild solutions x1, x2 of problem (1.1) with

x1(t0) + g(t1, t2, . . . , tp, x1(·)) = x∗0 and x2(t0) + g(t1, t2, . . . , tp, x2(·)) = x∗∗0 , the
inequality

‖x1 − x2‖E ≤ M

(1−MG)
‖x∗0 − x∗∗0 ‖ exp (

MLβ

(1−MG)
(1 + Kβ + Hβ))
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is true, whenever G < 1/M .

3. Proofs of theorems

Proof of Theorem 2.3. Define an operator F : E → E by

(Fz)(t) = T (t− t0)x0 − T (t− t0)g(t1, t2, . . . , tp, z(·))

+
∫ t

t0

T (t− s)f(s, z(s),
∫ s

t0

k(s, τ, z(τ))dτ,

∫ t0+β

t0

h(s, τ, z(τ))dτ)ds,

for t ∈ [t0, t0+β]. Now, we show that F maps E into itself. For z ∈ E, t ∈ [t0, t0+β]
and using hypotheses (H2)-(H4) and assumptions (ii), (iii), we have

‖(Fz)(t)‖
≤ ‖T (t− t0)x0‖+ ‖T (t− t0)g(t1, t2, . . . , tp, z(·))‖

+ ‖
∫ t

t0

T (t− s)f(s, z(s),
∫ s

t0

k(s, τ, z(τ))dτ,

∫ t0+β

t0

h(s, τ, z(τ))dτ)ds‖

≤ M‖x0‖+ MG1 + M

∫ t

t0

[‖f(s, z(s),
∫ s

t0

k(s, τ, z(τ))dτ,∫ t0+β

t0

h(s, τ, z(τ))dτ)− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖]ds

≤ M‖x0‖+ MG1 + M

∫ t

t0

[L(‖z(s)− 0‖+ ‖
∫ s

t0

k(s, τ, z(τ))dτ − 0‖

+ ‖
∫ t0+β

t0

h(s, τ, z(τ))dτ − 0‖) + ‖f(s, 0, 0, 0)‖]ds

≤ M‖x0‖+ MG1 + M

∫ t

t0

[Lr + L

∫ s

t0

‖k(s, τ, z(τ))− k(s, τ, 0) + k(s, τ, 0)‖dτ

+ L

∫ t0+β

t0

‖h(s, τ, z(τ))− h(s, τ, 0) + h(s, τ, 0)‖dτ + L1]ds

≤ M‖x0‖+ MG1 + M

∫ t

t0

[Lr + Lβ(Kr + K1) + Lβ(Hr + H1) + L1]ds

≤ M [‖x0‖+ G1 + Lrβ + LKrβ2 + LK1β
2 + LHrβ2 + LH1β

2 + L1β] ≤ r.

Thus, F maps E into itself.
Now, for every z1, z2 ∈ E, t ∈ [t0, t0 + β] and using hypotheses (H1), (H2), (H4)

and assumptions (ii), (iii), we obtain

‖(Fz1)(t)− (Fz2)(t)‖
≤ ‖T (t− t0)‖‖g(t1, t2, . . . , tp, z1(·))− g(t1, t2, . . . , tp, z2(·))‖

+
∫ t

t0

‖T (t− s)‖‖[f(s, z1(s),
∫ s

t0

k(s, τ, z1(τ))dτ,

∫ t0+β

t0

h(s, τ, z1(τ))dτ)

− f(s, z2(s),
∫ s

t0

k(s, τ, z2(τ))dτ,

∫ t0+β

t0

h(s, τ, z2(τ))dτ)]‖ds

≤ MG‖z1 − z2‖E +
∫ t

t0

ML[‖z1(s)− z2(s)‖
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+
∫ s

t0

‖k(s, τ, z1(τ))− k(s, τ, z2(τ))‖dτ

+
∫ t0+β

t0

‖h(s, τ, z1(τ))− h(s, τ, z2(τ))‖dτ ]ds

≤ MG‖z1 − z2‖E + ML‖z1 − z2‖E

∫ t

t0

[1 + K

∫ s

t0

dτ + H

∫ t0+β

t0

dτ ]ds

≤ MG‖z1 − z2‖E + ML‖z1 − z2‖Eβ[1 + Kβ + Hβ]

≤ q‖z1 − z2‖E ,

where q = MG + MLβ + MLKβ2 + MLHβ2 and hence, we obtain

‖Fz1 − Fz2‖E ≤ q‖z1 − z2‖E ,

with 0 < q < 1. This shows that the the operator F is a contraction on the complete
metric space E. By the Banach fixed point theorem, the function F has a unique
fixed point in the space E and this point is the mild solution of problem (1.1)–(1.2)
on [t0, t0 + β]. This completes the proof of the Theorem 2.3. �

Proof of Theorem 2.4. All the assumptions of Theorem 2.3 are being satisfied, then
problem (1.1)–(1.2) has a unique mild solution belonging to E. Now we will show
that x is unique strong solution of (1.1)–(1.2) on [t0, t0 + β]. Take

L2 = max
t0≤t≤t0+β

‖f(t, x(t), 0, 0)‖,

K2 = max
t0≤s≤t≤t0+β

‖k(t, s, x(s))‖,

H2 = max
t0≤s,t≤t0+β

‖h(t, s, x(s))‖.

For 0 < θ < t− t0 and t ∈ [t0, t0 + β], we have

x(t + θ)− x(t)

= [T (t + θ − t0)− T (t− t0)]x0

− [T (t + θ − t0)− T (t− t0)]g(t1, t2, . . . , tp, x(·))

+
∫ t0+θ

t0

T (t + θ − s)f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)ds

+
∫ t+θ

t0+θ

T (t + θ − s)f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)ds

−
∫ t

t0

T (t− s)f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)ds

= T (t− t0)[T (θ)− I]x0 − T (t− t0)[T (θ)− I]g(t1, t2, . . . , tp, x(·))

+
∫ t0+θ

t0

T (t + θ − s)[f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)

− f(s, x(s), 0, 0) + f(s, x(s), 0, 0)]ds

+
∫ t

t0

T (t− s)[f(s + θ, x(s + θ),
∫ s+θ

t0

k(s + θ, τ, x(τ))dτ,∫ t0+β

t0

h(s + θ, τ, x(τ))dτ)− f(s, x(s),
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t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)]ds.

Using the assumptions and the fact ‖[T (θ)− I]x‖ = θ‖Ax‖+ o(θ), we obtain

‖x(t + θ)− x(t)‖
≤ M [θε1 + θ‖Ax0‖] + M [θε2 + θ‖Ag(t1, t2, . . . , tp, x(·))‖]

+
∫ t0+θ

t0

M [‖f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,∫ t0+β

t0

h(s, τ, x(τ))dτ)− f(s, x(s), 0, 0)‖+ ‖f(s, x(s), 0, 0)‖]ds

+
∫ t

t0

M [‖f(s + θ, x(s + θ),
∫ s+θ

t0

k(s + θ, τ, x(τ))dτ,

∫ t0+β

t0

h(s + θ, τ, x(τ))dτ)

− f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)‖]ds

≤ M [θε1 + θ‖Ax0‖] + M [θε2 + θ‖Ag(t1, t2, . . . , tp, x(·))‖]

+
∫ t0+θ

t0

ML[
∫ s

t0

K2dτ +
∫ t0+β

t0

H2dτ ]ds

+ M

∫ t0+θ

t0

L2ds +
∫ t

t0

ML[θ + ‖x(s + θ)− x(s)‖

+
∫ s

t0

K(s + θ − s|+ ‖x(τ)− x(τ)‖)dτ

+
∫ s+θ

s

K2dτ +
∫ t0+β

t0

H(|s + θ − s|+ ‖x(τ)− x(τ)‖)dτ ]ds

≤ M [θε1 + θ‖Ax0‖] + M [θε2 + θ‖Ag(t1, t2, . . . , tp, x(·))‖] + MLK2θβ + MLH2θβ

+ ML2θ + MLθβ + ML

∫ t

t0

‖x(s + θ)− x(s)‖ds

+ MLKθβ2 + MLK2θβ + MLHθβ2

≤ Pθ + ML

∫ t

t0

‖x(s + θ)− x(s)‖ds,

where ε1, ε2 > 0 and

P = M [ε1 + ‖Ax0‖+ ε2 + ‖Ag(t1, t2, . . . , tp, x(·))‖+ LK2β + LH2β

+ L2 + Lβ + LKβ2 + LHβ2 + LK2β,

which is independent of θ and t ∈ [t0, t0 + β].
Thanks to Gronwall’s inequality, we obtain

‖x(t + θ)− x(t)‖ ≤ PθeMLβ , for t ∈ [t0, t0 + β].

Therefore, x is Lipschitz continuous on [t0, t0 + β]. The Lipschitz continuity of x
on [t0, t0 + β] combined with (iv) and (v) of Theorem 2.4 implies

t → f(t, x(t),
∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds)
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is Lipschitz continuous on [t0, t0 + β]. By [15, Corollary 4.2.11], we observe that
the equation

y′(t) + Ay(t) = f(t, x(t),
∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds), t ∈ [t0, t0 + β]

y(t0) = x0 − g(t1, t2, . . . , tp, x(·))

has a unique strong solution y(t) on [t0, t0 + β] satisfying the equation

y(t) = T (t− t0)x0 − T (t− t0)g(t1, t2, . . . , tp, x(·))

+
∫ t

t0

T (t− s)f(s, x(s),
∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)ds

= x(t), t ∈ [t0, t0 + β].

Consequently, x(t) is the strong solution of initial value problem (1.1)–(1.2) on
[t0, t0 + β]. This completes the proof of Theorem 2.4. �

Proof of Theorem 2.5. Suppose that x1(t) and x2(t) satisfy (1.1) on [t0, t0 + β]
with x1(t0) + g(t1, t2, . . . , tp, x1(·)) = x∗0 and x2(t0) + g(t1, t2, . . . , tp, x2(·)) = x∗∗0 ,
respectively and x1, x2 ∈ E. Using the equation (2.1), hypotheses (H1)–(H4) and
assumptions (ii), (iii), we obtain

‖x1(t)− x2(t)‖

≤ M‖x∗0 − x∗∗0 ‖+ MG‖x1 − x2‖E +
∫ t

t0

ML
[
‖x1(s)− x2(s)‖

+
∫ s

t0

K‖x1(τ)− x2(τ)‖dτ +
∫ t0+β

t0

H‖x1(τ)− x2(τ)‖dτ
]
ds

≤ M‖x∗0 − x∗∗0 ‖+ MG‖x1 − x2‖E

+
∫ t

t0

ML
[
‖x1(s)− x2(s)‖+

∫ s

t0

K sup
τ∈[t0,s]

‖x1(τ)− x2(τ)‖dτ

+
∫ t0+β

t0

H sup
τ∈[t0,t0+β]

‖x1(τ)− x2(τ)‖dτ
]
ds

≤ M‖x∗0 − x∗∗0 ‖+ MG‖x1 − x2‖E +
∫ t

t0

ML
[
1 + βK + βH

]
‖x1 − x2‖Eds.

Therefore, we obtain

‖x1 − x2‖E ≤ M

(1−MG)
‖x∗0 − x∗∗0 ‖+

∫ t

t0

MLβ

(1−MG)
(1 + Kβ + Hβ)‖x1 − x2‖Eds.

Using Gronwall’s inequality, we obtain

‖x1 − x2‖E ≤ M

(1−MG)
‖x∗0 − x∗∗0 ‖ exp (

MLβ

(1−MG)
(1 + Kβ + Hβ)),

provided that G < 1
M . From this inequality, it follows that the continuous depen-

dence of solutions depends upon the initial data. This completes the proof of the
Theorem 2.5. �
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4. Application

To illustrate the applications of some of our main results, we consider the non-
linear mixed Volterra- Fredholm partial integrodifferential equation

wt(u, t)− wuu(u, t) = P (t, w(u, t),
∫ t

0

k1(t, s, w(u, s))ds,

∫ β

0

h1(t, s, w(u, s))ds),

0 < u < 1, 0 ≤ t ≤ β

(4.1)
with initial and boundary conditions

w(0, t) = w(1, t) = 0, 0 ≤ t ≤ β, (4.2)

w(u, 0) +
p∑

i=1

w(u, ti) = w0(u), 0 < t1 < t2 < · · · < tp ≤ β. (4.3)

where P : [0, β] × R × R × R → R, k1, h1 : [0, β] × [0, β] × R → R are continuous
functions. We assume that the functions P, k1 and h1 in (4.1)–(4.3) satisfy the
following conditions:

(1) There exists a constant G∗ > 0 such that

|
p∑

i=1

w(u, ti)−
p∑

i=1

w(v, ti)| ≤ G∗ sup
t∈[0,β]

|u(t)− v(t)|

for u, v ∈ E1 = C([0, β];B∗
r∗), where B∗

r∗ = {x ∈ R : |x| ≤ r∗}.
(2) There are constants L∗

1,K
∗
1 ,H∗

1 and G∗
1 such that

L∗
1 = max

0≤t≤β
|P (t, 0, 0, 0)|,

K∗
1 = max

t0≤s≤t≤t0+β
|k1(t, s, 0)|,

H∗
1 = max

t0≤s,t≤t0+β
|h1(t, s, 0)|,

G∗
1 = max

x∈E1
|

p∑
i=1

w(u, ti)|, 0 < u < 1.

(3) P : [0, β] × R × R × R → R is continuous in t on [0, β] and there exists a
constant L∗ > 0 such that

|P (t, x1, y1, z1)− P (t, x2, y2, z2)| ≤ L∗(|x1 − x2|+ |y1 − y2|+ |z1 − z2|),

for xi, yi, zi ∈ B∗
r∗ , i = 1, 2.

(4) k, h : [0, β]× [0, β]× R → R are continuous in s, t on [0, β] and there exist
respectively constants K∗,H∗ > 0 such that

|k1(t, s, x1)− k1(t, s, x2)| ≤ K∗(|x1 − x2|),
|h1(t, s, x1)− h1(t, s, x2)| ≤ H∗(|x1 − x2|),

for xi, yi ∈ B∗
r∗ , i = 1, 2.

(5) −A is the infinitesimal generator of a C0 semigroup T (t), t ≥ 0 in X such
that

‖T (t)‖ ≤ M∗,

for some M∗ ≥ 1.
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(6) The constants |w0(u)|,M∗, G∗
1, L

∗,K∗,K∗
1 ,H∗,H∗

1 , β and r satisfy the fol-
lowing two inequalities:

M∗[|w0(u)|+ G∗
1 + L∗rβ + L∗K∗rβ2 + L∗K∗

1β2

+ L∗H∗rβ2 + L∗H∗
1β2 + L∗

1β] ≤ r∗,

and

[M∗G∗ + M∗L∗β + M∗L∗K∗β2 + M∗L∗H∗β2] < 1.

First, we reduce the equations (4.1)–(4.3) into (1.1)–(1.2) by making suitable
choices of A, f, g, k and h. Let X = L2[0, 1]. Define the operator A : X → X
by Az = −z′′ with domain D(A) = {z ∈ X : z, z′ are absolutely continuous,
z′′ ∈ X and z(0) = z(1) = 0}. Define the functions f : [0, β] ×X ×X ×X → X,
k : [0, β]× [0, β]×X → X, h : [0, β]× [0, β]×X → X and g : [0, β]p ×X → X as
follows

f(t, x, y, z)(u) = P (t, x(u), y(u), z(u)),

k(t, s, x)(u) = k1(t, s, x(u)),

h(t, s, x)(u) = h1(t, s, x(u)),

g(t1, t2, . . . , tp, x(·)u =
p∑

i=1

w(u, ti)

for t ∈ [0, β], x, y, z ∈ X and 0 < u < 1. Then the above problem (4.1)–(4.3) can
be formulated abstractly as nonlinear mixed Volterra-Fredholm integrodifferential
equation in Banach space X:

x′(t) + Ax(t) = f(t, x(t),
∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds), t ∈ [t0, t0 + β]

(4.4)

x(t0) + g(t1, t2, . . . , tp, x(·) = x0. (4.5)

Since all the hypotheses of the Theorem 2.3 are satisfied, the Theorem 2.3 can be
applied to guarantee the mild solution of the nonlinear mixed Volterra-Fredholm
partial integrodifferential equations (4.1)–(4.3).

Acknowledgements. We are grateful to Professor Julio G. Dix and to the anony-
mous referee for their helpful comments that improved this article.
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