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MIXED TWO-POINT BOUNDARY-VALUE PROBLEMS FOR
IMPULSIVE DIFFERENTIAL EQUATIONS

ZHIQING HAN, SUQIN WANG

Abstract. In this article, we prove the existence of solutions to mixed two-
point boundary-value problem for impulsive differential equations by varia-
tional methods, in both resonant and the non resonant cases.

1. Introduction

In this article, we study the existence of solutions to the impulsive problem
−u′′ + λu = f(t, u), a.e. t ∈ (0, T ),

u(0) = 0, u′(T ) = 0,

∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . p,

(1.1)

where Ij : R → R, j = 1, 2, . . . , p, are continuous functions and f(t, u) satisfies the
condition

(A) f(t, u) is measurable in t for each u ∈ R, continuous in u for a.e. t ∈ [0, T ],
and there exist functions g ∈ C(R+,R+) and h ∈ L1(0, T ; R+) such that
|f(t, u)| ≤ g(|u|)h(t), for all u ∈ R and a.e. t ∈ [0, T ].

The theory of impulsive differential equations describes processes which experi-
ence a sudden change of their states at certain time. It can be successfully used
for mathematical simulation in some problems from theoretical physics, chemistry,
medicine, population dynamics, optimal control and in some other processes and
phenomena in science and technology, see [9, 15] for the general aspects of the
theory. Some classical tools such as upper and lower solutions, monotone iterative
technique, fixed point theory, degree theory and so on have been widely used to
such equations, we refer to [1, 2, 3, 4, 5, 7, 9, 11, 13] for some references. In recent
years, the variational methods [10, 14] have been applied to such equations and are
proved to be very effective, we refer to [12, 16, 17, 18, 19] for some results.

Let us recall some results related to the impulsive problem (1.1) obtained by
the variational methods. Nieto and O’Regan ([12]) first noticed that the equation
in (1.1) coupled with the Dirichlet boundary value condition and the impulsive
conditions has a variational structure and obtained some existence results for the
problem. The results are extended to more general nonlinearities in [19]. Recently,
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Tian and Ge [16, 17] investigated the equation with the more general (Sturm-
Liouville) boundary value conditions. That is they considered the equation with the
Sturm-Liouville boundary value conditions αu′(0)−βu(0) = 0, γu′(T )+σu(T ) = 0
but with a restriction α, γ > 0, β, σ ≥ 0. The restriction excludes the boundary
value conditions of the problem (1.1) investigated in this paper.

In this paper, we investigate the problem (1.1) still by the variational methods.
The framework involved is different from those for the other kinds of boundary value
conditions. We obtain some existence results both by the Ambrosetti-Rabinowitz
type condition in the non-resonant case and the generalized Ahmad-Lazer-Paul
type condition in the resonant case.

2. Preliminaries

Denote H = {u(t)|u(t) is absolutely continuous on [0, T ], u(0) = 0, u′(t) ∈
L2(0, T ; R)}. It is easy to see that H1

0 (0, T ) ⊂ H ⊂ H1(0, T ) and H is a closed
subset ofH1(0, T ). SoH is a Hilbert space with the usual inner product inH1(0, T ).

Proposition 2.1. If u ∈ H, then ‖u‖c ≤
√
T‖u′‖L2 , where

‖u‖c = max
t∈[0,T ]

|u(t)|.

Proof. For u ∈ H, we have

|u(t)| = |
∫ t

0

u′(s)ds| ≤
√
t
( ∫ t

0

|u′(s)|2ds
)1/2

≤
√
T‖u′‖L2 .

�

For the linear problem

−u′′(t) = λu(t), t ∈ (0, T ),

u(0) = 0, u′(T ) = 0,
(2.1)

there is a sequence of eigenvalues λk = (2k + 1)2π2/(4T 2) and the correspond-
ing L2(0, T )-normalized eigenfunctions φk(t) =

√
(2/T ) sin((2k + 1)πt/(2T ), k =

0, 1, 2 . . . .
If the equation in the problem (2.1) is coupled with the boundary value condition

u′(0) = 0, u(T ) = 0, the eigenvalues are as before and the corresponding L2(0, T )-
normalized eigenfunctions are ψk(t) =

√
(2/T ) cos((2k+1)πt/(2T )), k = 0, 1, 2 . . . .

According to the Sturm-Liouville theory, {φk} and {ψk} are complete bases in
the Hilbert space L2(0, T ).
Claim If u ∈ H, then ‖u′‖2L2 ≥ λ0‖u‖2L2 (Poincaré inequality).

In fact, for any u ∈ H, set u =
∑∞

k=0 ckφk, where

ck = (u, φk) =
2
T

∫ T

0

uφkdt.

By the Parseval identity,
∫ T

0
u2dt =

∑∞
k=0 c

2
k. Let u′ =

∑∞
k=0 akψk, where ak =

(u′, ψk) = 2
T

∫ T

0
u′ψkdt. By an easy calculation,

ak =
2
T

∫ T

0

u′ψkdt = − 2
T

∫ T

0

uψ′kdt =
(2k + 1)π

2T
· 2
T

∫ T

0

uφkdt =
(2k + 1)π

2T
ck.
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Then we have∫ T

0

|u′|2dt =
∞∑

k=0

a2
k =

∞∑
k=0

(2k + 1)2π2

4T 2
c2k ≥

π2

4T 2

∞∑
k=0

c2k = λ0

∫ T

0

|u|2dt.

Similarly, we can prove that ‖u′‖2L2 ≥ λ1‖u‖2L2 , for all u ∈ H 	 span{φ0}, which
will be used later.

According to the Poincaré inequality, we can define an inner product in H,

(u, v) =
∫ T

0
u′(t)v′(t)dt. The induced norm ‖u‖ =

√∫ T

0
u′2dt is equivalent to the

old one. Throughout the paper, we will use this norm.

Proposition 2.2. Assume that µ(t) ∈ L1(0, T ) satisfies

0 ≤ µ(t) ≤ λ0, (2.2)

for a.e. t ∈ [0, T ] and µ(t) < λ0 holds on a subset of [0, T ] with positive measure.
Then there exists δ > 0 such that for all u ∈ H, one has∫ T

0

[u′2(t)− µ(t)u2(t)]dt ≥ δ

∫ T

0

u′2(t)dt.

Proof. We use some known arguments [8] to prove it. By (2.2) and the Poincaré
inequality, we see that for all u ∈ H,∫ T

0

[u′2(t)− µ(t)u2(t)]dt ≥
∫ T

0

[u′2(t)− λ0u
2(t)]dt ≥ 0. (2.3)

Now we assume that the proposition were false. Then we can find a sequence {un}
in H, un 6= 0 such that∫ T

0

[u′2n (t)− µ(t)u2
n(t)]dt <

1
n

∫ T

0

u′2n (t)dt.

Let vn = un/‖un‖. We obtain∫ T

0

[v′2n (t)− µ(t)v2
n(t)]dt <

1
n
.

We can assume that vn ⇀ v in H and vn → v in C[0, T ]. We obtain

1 ≤
∫ T

0

µ(t)v2(t)dt. (2.4)

From (2.4), we have
v 6= 0. (2.5)

Since vn ⇀ v in H, we have

‖v‖2 ≤ lim inf
n→∞

‖vn‖2 = 1.

Hence, we have ∫ T

0

[v′2(t)− µ(t)v2(t)]dt ≤ 0.

Therefore, ∫ T

0

[v′2(t)− µ(t)v2(t)]dt = 0. (2.6)
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From (2.3), we have ∫ T

0

[v′2(t)− λ0v
2(t)]dt = 0,

which shows that v(t) is an eigenfunction corresponding to λ0. So we set v(t) =
Cφ0(t), where C is a constant. Substituting it to (2.6) and noticing that µ(t) < λ0

holds on a subset of [0, T ] with positive measure, we obtain C = 0, which contradicts
to (2.5). This completes the proof. �

3. Non-resonant case

In this section, we study the existence of solutions for the non-resonant impulsive
problem

−u′′ + λu = f(t, u), a.e. t ∈ (0, T ),

u(0) = 0, u′(T ) = 0,

∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . p

(3.1)

with λ > −λ0, where 0 = t0 < t1 < · · · < tp < tp+1 = T , ∆u′(tj) = u′(t+j )− u′(t−j ),
f(t, u) satisfies the condition (A) and Ij : R → R, j = 1, 2, . . . , p, are continuous
functions. Here u′(t+j ) (respectively u′(t−j )) denotes the right limit (respectively
left limit) of u′(t) at t = tj .

Definition 3.1. A function u is said to be a classical solution of (3.1) if u satisfies:
(1) u ∈ C[0, T ];
(2) For all j = 0, 1, 2, . . . , p, uj = u|(tj ,tj+1) ∈ H2,1(tj , tj+1);
(3) u satisfies the equation in (3.1) a.e. on (0, T ), the boundary value condition

and the impulsive conditions.

Set F (t, u) =
∫ u

0
f(t, ξ)dξ and define the functional J on H by

J(u) =
1
2

∫ T

0

u′2dt+
λ

2

∫ T

0

u2dt+
p∑

j=1

∫ u(tj)

0

Ij(s)ds−
∫ T

0

F (t, u)dt.

It is easily verified that J is continuously differentiable on H and

(J ′(u), v) =
∫ T

0

u′v′dt+ λ

∫ T

0

uv dt+
p∑

j=1

Ij(u(tj))v(tj)−
∫ T

0

f(t, u)v dt

for all u, v ∈ H.

Definition 3.2. A weak solution for problem (3.1) is a function u ∈ H satisfying
(J ′(u), v) = 0 for all v ∈ H.

Lemma 3.3. If u ∈ H is a weak solution of (3.1), then it is a classical solution.

Proof. Let u ∈ H be a weak solution of (3.1). Then

0 = (J ′(u), v) =
∫ T

0

u′v′dt+λ

∫ T

0

uv dt+
p∑

j=1

Ij(u(tj))v(tj)−
∫ T

0

f(t, u)v dt (3.2)

for all v ∈ H. For j ∈ {0, 1, . . . , p} and every v ∈ H1
0 (tj , tj+1), set

ṽ(t) =

{
v(t), tj ≤ t ≤ tj+1,

0, t ∈ [0, T ] \ [tj , tj+1].
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Then ṽ ∈ H1
0 (0, T ) ⊂ H. Then replacing v in (3.2) by ṽ, we have∫ tj+1

tj

u′v′dt+ λ

∫ tj+1

tj

uv dt−
∫ tj+1

tj

f(t, u)v dt = 0

for every v ∈ H1
0 (tj , tj+1). Hence by standard results, u ∈ H2,1(tj , tj+1) and

−u′′ + λu = f(t, u), a.e. on (tj , tj+1).

Hence u satisfies
− u′′ + λu = f(t, u), a. e. on (0, T ). (3.3)

Fix a positive number δ such that tp + δ < T . Now, for every v1 ∈ H1
0 (0, tp + δ) ⊂

H1
0 (0, T ) ⊂ H. Multiplying (3.3) by v1 and integrating it between 0 and T , we

obtain

−
∫ T

0

u′′v1dt+ λ

∫ T

0

uv1dt =
∫ T

0

f(t, u)v1dt.

That is,
p∑

j=1

∆u′(tj)v1(tj) +
∫ T

0

u′v′1dt+ λ

∫ T

0

uv1dt =
∫ T

0

f(t, u)v1dt.

According to (3.2), we have
p∑

j=1

∆u′(tj)v1(tj) =
p∑

j=1

Ij(u(tj))v1(tj).

Hence we obtain ∆u′(tj) = Ij(u(tj)) for all j = 1, 2, . . . , p.
Finally, we prove that u satisfies the condition u′(T ) = 0. For all v2 ∈ H1(tp, T )

with v2(tp) = 0, we define

v∗(t) =

{
v2(t), t ∈ [tp, T ],
v2(tp), t ∈ [0, tp].

It is easy to see that v∗ ∈ H. Hence,∫ T

tp

u′v′2dt+ λ

∫ T

tp

uv2dt−
∫ T

tp

f(t, u)v2dt = 0.

Set u∗(t) =
∫ T

t
(−λu(s) + f(s, u(s)))ds. By the Fubini theorem, we obtain∫ T

tp

u∗(t)v′2(t)dt =
∫ T

tp

[ ∫ T

t

(−λu(s) + f(s, u(s)))v′2(t)ds
]
dt

=
∫ T

tp

[ ∫ s

tp

(−λu(s) + f(s, u(s)))v′2(t)dt
]
ds

=
∫ T

tp

(−λu(s) + f(s, u(s)))v2(s)dt

=
∫ T

tp

u′(t)v′2(t)dt.

Hence, for every v2 ∈ H1(tp, T ) with v2(tp) = 0, we have∫ T

tp

(u∗(t)− u′(t))v′2(t)dt = 0.
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In particular, we can choose v2(t) = φ∗k(t) =
√

2/(T − tp) sin( (2k+1)π
2(T−tp) (t − tp)),

k = 0, 1, 2 . . . , then∫ T

tp

(u∗(t)− u′(t))ψ∗k(t)dt = 0, ∀k = 0, 1, 2 . . .

where

ψ∗k(t) =

√
2

(T − tp)
(2k + 1)π
2(T − tp)

cos(
(2k + 1)π
2(T − tp)

(t− tp)).

By noticing that {ψ∗k(t)} is the sequence of the eigenfunctions of the eigenvalue
problem

−u′′(t) = λu(t), t ∈ (tp, T )
with the boundary value condition u(tp) = 0, u′(T ) = 0, hence it is complete in
L2(tp, T ). Thus, u∗(t) = u′(t) a.e. on (tp, T ); that is,

u′(t) =
∫ T

t

(−λu(s) + f(s, u(s)))ds.

Hence, we obtain u′(T ) = 0 and u ∈ H2,1(tp, T ) by condition (A). So, u is a classical
solution of (3.1). This completes the proof. �

Theorem 3.4. Suppose that f(t, u) satisfies condition (A). Moreover, the following
conditions hold.

(F1) F (t, u) ≤ a(t)|u|2 + b(t)|u|+ c(t), where a(t), b(t), c(t) ∈ L1(0, T );
(I1) |Ij(u)| ≤ aj + bj |u|,∀u ∈ R, where aj , bj ≥ 0, j = 1, 2, . . . , p, and 1

2 −
T
2 (

∑p
j=1 bj) > 0;

(I2) a(t) ≤ λ0[ 12 −
T
2 (

∑p
j=1 bj)] + λ

2 = a∗ with a(t) < a∗ holds on a subset of
[0, T ] with positive measure.

Then problem (3.1) has at least one solution.

Proof. For all u ∈ H,
p∑

j=1

∫ u(tj)

0

Ij(s)ds ≤
p∑

j=1

∫ |u(tj)|

0

|Ij(s)|ds ≤
p∑

j=1

∫ |u(tj)|

0

(aj + bj |s|)ds

≤ (
p∑

j=1

aj)‖u‖c +
1
2
(

p∑
j=1

bj)‖u‖2c

≤ (
√
T

p∑
j=1

aj)‖u‖+
T

2
(

p∑
j=1

bj)‖u‖2

and∫ T

0

F (t, u)dt ≤
∫ T

0

(a(t)|u|2 + b(t)|u|+ c(t))dt ≤
∫ T

0

a(t)|u|2dt+ C‖u‖+ C

where and in the following C denotes a universal constant. Then

J(u) =
1
2

∫ T

0

u′2dt+
λ

2

∫ T

0

u2dt+
p∑

j=1

∫ u(tj)

0

Ij(s)ds−
∫ T

0

F (t, u)dt

≥ 1
2

∫ T

0

u′2dt+
λ

2

∫ T

0

u2dt−
p∑

j=1

∫ |u(tj)|

0

|Ij(s)|ds−
∫ T

0

a(t)|u|2dt
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− C‖u‖ − C

≥ 1
2

∫ T

0

u′2dt+
∫ T

0

(
λ

2
− a(t))|u|2dt− (

√
T

p∑
j=1

aj)‖u‖ −
T

2
(

p∑
j=1

bj)‖u‖2

− C‖u‖ − C

= [
1
2
− T

2
(

p∑
j=1

bj)]
∫ T

0

u′2dt−
∫ T

0

(a(t)− λ

2
)|u|2dt− C‖u‖ − C.

By Proposition 2.2 and the condition (I2), there exists δ > 0 such that[1
2
− T

2
(

p∑
j=1

bj)
] ∫ T

0

u′2dt−
∫ T

0

(a(t)− λ

2
)|u|2dt ≥ δ

∫ T

0

u′2dt, ∀u ∈ H.

Thus
J(u) ≥ δ‖u‖2 − C‖u‖ − C, ∀u ∈ H.

So
lim

‖u‖→∞,u∈H
J(u) = +∞.

Hence every minimizing sequence is bounded. It is easily verified by the condition
(A) and a compact imbedding result that J(u) is weakly lower semi-continuous.
Hence by a standard result, J(u) has a minimizing point u, which is a classical
solution of the problem (3.1). �

Since λ > −λ0, we can choose the equivalent norm ‖u‖21 =
∫ T

0
(u′2 +λu2)dt in H.

Hence there exist positive constants m1 and m2 such that m1‖u‖ ≤ ‖u‖1 ≤ m2‖u‖.

Theorem 3.5. Suppose that f(t, u) satisfies the condition (A). Moreover, we as-
sume that (I1) and the following conditions hold:

(F2) limu→0
f(t,u)

u < k1λ0 uniformly for a.e. t ∈ [0, T ], where k1 < m2
1;

(F3) There exist µ > 2 and R > 0 such that for a.e. t ∈ [0, T ] and |u| ≥ R,
0 < µF (t, u) ≤ uf(t, u) (Ambrosetti-Rabinowitz type condition);

(I3) limu→0
Ij(u)

u → 0 for all 1 ≤ j ≤ p;
(I*) [( 1

2 −
1
µ )− 1

m2
1
( 1
2 + 1

µ )T (
∑p

j=1 bj)] > 0.

Then problem (3.1) has at least one nontrivial solution.

Proof. Obviously, J(0) = 0. By (F3) and condition (A), there exist nonnegative
functions d1(t), d2(t) ∈ L1(0, T ) such that d1(t) > 0 a.e. on [0, T ] and F (t, u) ≥
d1(t)|u|µ − d2(t) for a.e. t ∈ [0, T ] and all u ∈ R.

Choosing u ∈ H\{0}, then for q > 0, we have

J(qu) ≤ q2

2
‖u‖21 +

p∑
j=1

∫ |qu(tj)|

0

|Ij(s)|ds−
∫ T

0

F (t, qu)dt

≤ q2

2
‖u‖21 + Cq‖u‖+ Cq2‖u‖2 −

∫ T

0

(d1(t)|qu|µ − d2(t))dt

≤ q2

2
‖u‖21 + Cq‖u‖1 + Cq2‖u‖21 − |q|µ

∫ T

0

d1(t)|u|µdt+ C

→ −∞
as q →∞. Setting e = qu, then for q large, we obtain ‖e‖1 > R and J(e) ≤ 0.
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By (F2) and (I3), for some proper ε > 0, there exists 0 < r < R such that for
|u| ≤ r, there holds

|F (t, u)| ≤ k1λ0

2
|u|2, |Ij(u)| ≤ ε|u|.

For u ∈ H with ‖u‖ < r√
T

, we have ‖u‖c < r. Then ‖u‖1 ≤ m2‖u‖ < m2r√
T

. So

J(u) =
1
2
‖u‖21 +

p∑
j=1

∫ u(tj)

0

Ij(s)ds−
∫ T

0

F (t, u)dt

≥ 1
2
‖u‖21 −

Tpε

2m2
1

‖u‖21 −
k1λ0

2
1
λ0

1
m2

1

‖u‖21

= (
1
2
− k1

2m2
1

)‖u‖21 −
Tpε

2m2
1

‖u‖21.

There exists 0 < ρ < min{R, m2r√
T
} and σ > 0 such that for ‖u‖1 = ρ, we have

J(u) > σ.
Let {uk} be a PS sequence in H; that is,

|J(uk)| ≤ C, ∀k ∈ N, |(J ′(uk), h)| ≤ o(1)‖h‖1 for all k ∈ N and h ∈ H.

We only need to prove that {uk} is bounded. For k large,

C +
1
µ
‖uk‖1 ≥ J(uk)− 1

µ
J ′(uk)uk = (

1
2
− 1
µ

)
∫ T

0

(|u′k|2 + λu2
k)dt

+
p∑

j=1

∫ uk(tj)

0

Ij(s)ds−
1
µ

p∑
j=1

Ij(uk(tj))uk(tj)−
∫ T

0

F (t, uk)dt

+
1
µ

∫ T

0

f(t, uk)ukdt,

where

−
∫ T

0

F (t, uk)dt+
1
µ

∫ T

0

f(t, uk)uk dt = − 1
µ

∫ T

0

(µF (t, uk)dt− f(t, uk)uk)dt

= − 1
µ

∫
|uk|≥R

(µF (t, uk)dt− f(t, uk)uk)dt

− 1
µ

∫
|uk|≤R

(µF (t, uk)dt− f(t, uk)uk)dt.

The above first term is nonnegative by (F3), the second is bounded by the condition
(A). Moreover,

|
p∑

j=1

∫ uk(tj)

0

Ij(s)ds−
1
µ

p∑
j=1

Ij(uk(tj))uk(tj)|

≤ |
p∑

j=1

∫ uk(tj)

0

Ij(s)ds|+
1
µ
|

p∑
j=1

Ij(uk(tj))uk(tj)|

≤ (
p∑

j=1

aj)‖uk‖c +
1
2
(

p∑
j=1

bj)‖uk‖2c +
1
µ

(
p∑

j=1

aj)‖uk‖c +
1
µ

(
p∑

j=1

bj)‖uk‖2c
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≤ (1 +
1
µ

)
√
T (

p∑
j=1

aj)‖uk‖+ (
1
2

+
1
µ

)T (
p∑

j=1

bj)‖uk‖2

≤ 1
m1

(1 +
1
µ

)
√
T (

p∑
j=1

aj)‖uk‖1 +
1
m2

1

(
1
2

+
1
µ

)T (
p∑

j=1

bj)‖uk‖21.

Hence

C +
1
µ
‖uk‖1 ≥ (

1
2
− 1
µ

)‖uk‖21 −
1
m1

(1 +
1
µ

)
√
T (

p∑
j=1

aj)‖uk‖1

− 1
m2

1

(
1
2

+
1
µ

)T (
p∑

j=1

bj)‖uk‖21

= [(
1
2
− 1
µ

)− 1
m2

1

(
1
2

+
1
µ

)T (
p∑

j=1

bj)]‖uk‖21

− 1
m1

(1 +
1
µ

)
√
T (

p∑
j=1

aj)‖uk‖1.

Therefore, by the condition (I*), {uk} is bounded in H.
By the Mountain Pass Lemma [10, 14], J(u) possesses a critical point u ∈ H

such that J(u) ≥ σ > 0; hence u is a nontrivial weak solution of (3.1). �

4. Resonance case

In this section, we study the existence of solutions for the resonant impulsive
problem

u′′ + λ0u = f(t, u), a.e. t ∈ (0, T ),

u(0) = 0, u′(T ) = 0,

∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , p

(4.1)

where f(t, u) satisfies condition (A), Ij : R → R, j = 1, 2, . . . , p, are continuous
functions.

The corresponding functional J : H → R is defined by

J(u) =
1
2

∫ T

0

u′2dt− λ0

2

∫ T

0

u2dt+
p∑

j=1

∫ u(tj)

0

Ij(s)ds+
∫ T

0

F (t, u)dt.

We will consider the case where the nonlinearity satisfies some kind of sublinear
and generalized Ahmad, Lazer, Paul type coercive conditions; e.g. see [6] and [18]
and the references therein for some applications to the periodic boundary value
problems.

Decompose H as H = H̄ ⊕ H̃, where H̄ = span{φ0} and H̃ = span{φ1, φ2, . . . }.
For all u ∈ H, we write as u = ū⊕ ũ, ū ∈ H̄, ũ ∈ H̃. We recall the inequality,∫ T

0

ũ′2dt ≥ λ1

∫ T

0

ũ2dt

for all ũ ∈ H̃.

Theorem 4.1. Suppose that f(t, u) satisfies condition (A). Moreover, the following
conditions hold.
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(F4) There exists α with 1
2 ≤ α < 1 such that |f(t, u)| ≤ g(t)|u|α + h(t), where

g(t), h(t) ∈ L1(0, T );
(F5) lim|ū|→∞

∫ T

0
F (t, ū)dt/|ū|2α = +∞, ū ∈ H̄;

(I4) |Ij(u)| ≤ pj + qj |u|γj where pj , qj ≥ 0, j = 1, 2, . . . , p, and 0 ≤ γj ≤ 2α− 1.
Then problem (4.1) has at least one solution.

Proof. For all u ∈ H, u = ū⊕ ũ, ū ∈ H̄, ũ ∈ H̃, we have

|
p∑

j=1

∫ u(tj)

0

Ij(s)ds| ≤
p∑

j=1

∫ |u(tj)|

0

|Ij(s)|ds ≤
p∑

j=1

∫ |u(tj)|

0

(pj + qj |s|γj )ds

≤ (
p∑

j=1

pj)‖u‖c +
p∑

j=1

qj
1

γj + 1
‖u‖γj+1

≤ C|ū|+ C‖ũ‖+ C|ū|γ+1 + C‖ũ‖γ+1 + C,

(4.2)

where γ = max{γj , j = 1, 2, . . . , p}. By (F4), we have∫ T

0

(F (t, u)− F (t, ū))dt ≤
∫ T

0

[
∫ 1

0

f(t, ū+ sũ)ũds]dt

≤
∫ T

0

[
∫ 1

0

(g(t)|ū+ sũ|α + h(t))ũds]dt

≤ C|ū|α‖ũ‖c + C‖ũ‖α+1
c + C‖ũ‖c

≤ C|ū|α‖ũ‖+ C‖ũ‖α+1 + C‖ũ‖
≤ ε‖ũ‖2 + C(ε)|ū|2α + C‖ũ‖α+1 + C‖ũ‖.

(4.3)

Then

J(u) =
1
2

∫ T

0

u′2dt− λ0

2

∫ T

0

u2dt+
p∑

j=1

∫ u(tj)

0

Ij(s)ds

+
∫ T

0

(F (t, u)− F (t, ū))dt+
∫ T

0

F (t, ū)dt

≥ 1
2

∫ T

0

|ũ′|2dt− λ0

2
· 1
λ1

∫ T

0

|ũ′|2dt− C|ū| − C‖ũ‖ − C|ū|γ+1 − C‖ũ‖γ+1

− ε‖ũ‖2 − C(ε)|ū|2α − C‖ũ‖α+1 − C‖ũ‖+
∫ T

0

F (t, ū)dt− C

≥
[1
2
(1− λ0

λ1
)− ε

]
‖ũ‖2 − C‖ũ‖α+1 − C‖ũ‖γ+1 − C‖ũ‖ − C(ε)|ū|2α − C

+
∫ T

0

F (t, ū)dt

≥
[1
2
(1− λ0

λ1
)− ε

]
‖ũ‖2 − C‖ũ‖α+1 − C‖ũ‖γ+1 − C‖ũ‖+ |ū|2α[−C(ε)

+
1

|ū|2α

∫ T

0

F (t, ū)dt]− C,

where we have used 0 ≤ γ ≤ 2α − 1. Fixing some 0 < ε < 1
2 (1 − λ0

λ1
), by (F5), we

have J(u) → +∞ as ‖u‖ → ∞. Noticing also the weak lower semi-continuity of
J(u), we complete the proof. �
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Theorem 4.2. Suppose that (F4), (I4) and the following condition are satisfied:

(F6) lim|ū|→∞
∫ T

0
F (t, ū)dt/|ū|2α = −∞, ū ∈ H̄.

Then problem (4.1) has at least one solution.

Proof. We apply the saddle point theorem [10, 14] to prove the theorem.
Step 1. For u = ū ∈ H̄,

J(ū) =
1
2

∫ T

0

|ū′|2dt− λ0

2

∫ T

0

|ū|2dt−
p∑

j=1

∫ ū(tj)

0

Ij(s)ds+
∫ T

0

F (t, ū)dt

≤ C|ū|+ C|ū|γ+1 +
∫ T

0

F (t, ū)dt+ C

≤ C|ū|2α +
∫ T

0

F (t, ū)dt+ C

= |ū|2α(C +
1

|ū|2α

∫ T

0

F (t, ū)dt) + C.

Hence, we have J(ū) → −∞ as |ū| → ∞.
Step 2. For u = ũ ∈ H̃, we have∫ T

0

(F (t, ũ)− F (t, 0))dt =
∫ T

0

[
∫ 1

0

f(t, sũ)ũds]dt

≤
∫ T

0

[
∫ 1

0

(g(t)|sũ|α + h(t))ũds]dt

≤ C‖ũ‖α+1 + C‖ũ‖.

By some arguments in the proof of Theorem 4.1, we obtain

J(ũ) ≥ 1
2
(1− λ0

λ1
)
∫ T

0

|ũ′|2dt+
p∑

j=1

∫ eu(tj)

0

Ij(s)ds+
∫ T

0

F (t, ũ)dt

≥ 1
2
(1− λ0

λ1
)
∫ T

0

|ũ′|2dt− C‖ũ‖ − C‖ũ‖γ+1 +
∫ T

0

(F (t, ũ)− F (t, 0))dt

+
∫ T

0

F (t, 0)dt

≥ 1
2
(1− λ0

λ1
)‖ũ‖2 − C‖ũ‖ − C‖ũ‖γ+1 − C‖ũ‖α+1 − C‖ũ‖ − C.

Since 1
2 ≤ α < 1 and 0 ≤ γ ≤ 2α− 1, we obtain that J(u) is bounded below on H̃.

So there exists R > 0 such that

sup
u∈SR

J(u) < inf
u∈ eH J(u)

where SR = {u| ‖u‖ = R, u ∈ H̄}.
Step 3. We show that J satisfies the PS condition. Let {uk} be a PS sequence

in H, then there exists constant C such that

|J(uk)| ≤ C, ∀k ∈ N, |(J ′(uk), h)| ≤ o(1)‖h‖ for all k ∈ N, h ∈ H.
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Since

|
p∑

j=1

Ij(uk(tj))ũk(tj)|

≤
p∑

j=1

pj |ũk(tj)|+
p∑

j=1

qj |ūk(tj)|γj |ũk(tj)|+
p∑

j=1

qj |ũk(tj)|γj+1

≤ C‖ũk‖+ C|ūk|γ‖ũk‖+ C‖ũk‖γ+1

and

|
∫ T

0

f(t, uk)ũkdt| ≤
∫ T

0

(g(t)|uk|α + h(t))|ũk|dt

≤ C|ūk|α‖ũk‖+ C‖ũk‖α+1 + C‖ũk‖,

we have, for k large,

‖ũk‖ ≥ |(J ′(uk), ũk)| = |
∫ T

0

u′kũ
′
kdt− λ0

∫ T

0

ukũkdt−
p∑

j=1

Ij(uk(tj))ũk(tj)

+
∫ T

0

f(t, uk)ũkdt|

≥ (1− λ0

λ1
)‖ũk‖2 − C‖ũk‖ − C|ūk|γ‖ũk‖ − C‖ũk‖γ+1

− C|ūk|α‖ũk‖ − C‖ũk‖α+1 − C‖ũk‖.

Therefore, we obtain

‖ũk‖ ≤ C|ūk|γ + C|ūk|α + C ≤ C|ūk|α + C. (4.4)

Hence, noticing the arguments in (4.2) and (4.3), we have

J(uk) =
1
2

∫ T

0

|ũ′k|2dt−
λ0

2

∫ T

0

ũ2
kdt+

p∑
j=1

∫ uk(tj)

0

Ij(s)ds

+
∫ T

0

(F (t, uk)− F (t, ūk))dt+
∫ T

0

F (t, ūk)dt

≤ 1
2
‖ũk‖2 + C|ūk|+ C‖ũk‖+ C|ūk|γ+1 + C‖ũk‖γ+1

+ ε‖ũk‖2 + C(ε)|ūk|2α + C‖ũk‖α+1 + C‖ũk‖+
∫ T

0

F (t, ūk)dt

≤ (
1
2

+ ε)‖ũk‖2 + C‖ũk‖γ+1 + C‖ũk‖α+1 + C‖ũk‖+ C|ūk|+ C|ūk|γ+1

+ C(ε)|ūk|2α +
∫ T

0

F (t, ūk)dt+ C.

From (4.4), we obtain

‖ũk‖2 ≤ (C|ūk|α + C)2 ≤ C|ūk|2α + C,

‖ũk‖γ+1 ≤ (C|ūk|α + C)γ+1 ≤ C|ūk|2α + C,

‖ũk‖α+1 ≤ (C|ūk|α + C)α+1 ≤ C|ūk|2α + C.



EJDE-2011/35 IMPULSIVE DIFFERENTIAL EQUATIONS 13

So

J(uk) ≤ C(ε)|ūk|2α +
∫ T

0

F (t, ūk)dt+ C

≤ |ūk|2α[C(ε) +
1

|ūk|2α

∫ T

0

F (t, ūk)dt] + C.

Hence, if {|ūk|} has a unbounded subsequence, we will get a contradiction by (F6).
Therefore, {|ūk|} is bounded and moreover {uk} is bounded in H. By a standard
argument, {uk} has a convergent subsequence. We obtain that J(u) satisfies the
PS condition.

Then existence of a critical point for J then follows from the saddle point theo-
rem. The proof is complete. �

Examining carefully the proofs of the Theorems 4.1 and 4.2, we can also get the
following two theorems.

Theorem 4.3. If the conditions of Theorem 4.1 are replaced by the following con-
ditions:

(F4’) There exists α with 0 ≤ α < 1 such that |f(t, u)| ≤ g(t)|u|α + h(t), where
g(t), h(t) ∈ L1(0, T );

(I4’) |Ij(u)| ≤ pj + qj |u|γj , where pj , qj ≥ 0, j = 1, 2, . . . , p, 0 ≤ γj < 1;
(F5’) lim|ū|→∞,ū∈H̄(

∫ T

0
F (t, ū)dt)/(|ū|β) = +∞, where β = max{γ + 1, 2α}, γ =

max{γj, j = 1, 2, . . . , p}.
Then problem (4.1) has at least one solution.

Theorem 4.4. Suppose that the conditions (F4’), (I4’) and the following condition
are satisfied:

(F5”) lim|ū|→∞(
∫ T

0
F (t, ū)dt)/(|ū|β) = −∞, ū ∈ H̄ where β = max{γ + 1, 2α}.

Then problem (4.1) has at least one solution.
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