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OBLIQUE DERIVATIVE PROBLEMS FOR SECOND-ORDER
HYPERBOLIC EQUATIONS WITH DEGENERATE CURVE

GUO-CHUN WEN

Abstract. The present article concerns the oblique derivative problem for
second order hyperbolic equations with degenerate circle arc. Firstly the for-
mulation of the oblique derivative problem for the equations is given, next the
representation and estimates of solutions for the above problem are obtained,
moreover the existence of solutions for the problem is proved by the successive
iteration of solutions of the equations. In this article, we use the complex ana-
lytic method, namely the new partial derivative notations, hyperbolic complex
functions are introduced, such that the second order hyperbolic equations with
degenerate curve are reduced to the first order hyperbolic complex equations
with singular coefficients, then the advantage of complex analytic method can
be applied.

1. Formulation of the oblique derivative problem

In [1, 2, 3, 4, 5, 8, 9, 10], the authors posed and discussed the Cauchy problem,
Dirichlet problem and oblique derivative boundary value problem of second order
hyperbolic equations and mixed equations with parabolic degenerate straight lines
by using the methods of integral equations, functional analysis, energy integrals,
complex analysis and so on, the obtained results possess the important applications.
Here we generalize the above results to the oblique derivative problem of hyperbolic
equations with degenerate circle arc. In this article, the used notations are the same
as in [6, 7, 8, 9, 10].

Let D be a simply connected bounded domain D in the hyperbolic complex plane
C with the boundary ∂D = L∪L0, where L = L1∪L2. Herein and later on, denote
ŷ = y −

√
R2 − x2, and

L1 = {x + G(ŷ) = R∗, x ∈ [R∗, 0]}, L2 = {x−G(ŷ) = R∗, x ∈ [0, R∗]},
L0 = {R∗ ≤ x ≤ R∗, ŷ = 0},

in which K(ŷ) = −|ŷ|m, m,R are positive numbers, R∗ = −R, R∗ = R, z0 =
z1 = jy0 = jy1 the intersection of L1, L2, G(ŷ) =

∫ ŷ

0

√
|K(t)|dt, H(ŷ) = |K(ŷ)|1/2.

In this article we use the hyperbolic unit j with the condition j2 = 1 in D, and
x + jy, w(z) = U(z) + jV (z) = [H(ŷ)ux − juy]/2 are called the hyperbolic number
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and hyperbolic complex function in D. Consider the second-order linear equation
of hyperbolic type with degenerate circle arc

Lu = K(ŷ)uxx + uyy + aux + buy + cu = −d in D, (1.1)

where a, b, c, d are real functions of z (z ∈ D), and suppose that the equation (1.1)
satisfies the following conditions:

Condition C. The coefficients a, b, c, d in D satisfy

C̃[d, D] = C[d, D] + C[dx, D] ≤ k1, C̃[η, D] ≤ k0, η = a, b, c,

|a(x, y)||ŷ|1−m/2 = ε1(ŷ) as ŷ → 0, m ≥ 2, z ∈ D,
(1.2)

in which ε1(ŷ) is a non-negative function satisfying the condition: ε1(ŷ) → 0 as
ŷ → 0.

To write the complex form of the above equation, denote Y = G(ŷ), ŷ = y −√
R2 − x2, x̂ = x, and

W (z) = U + jV =
1
2
[H(ŷ)ux − juy] =

H(ŷ)
2

[ux − juY ] = H(ŷ)uZ ,

H(ŷ)WZ =
H(ŷ)

2
[Wx + jWY ] =

1
2
[H(ŷ)ux + jWy] = Wz̃ in D,

where Z = Z(z) = x + jY = x + jG(ŷ) in D, G(ŷ) =
∫ ŷ

0
H(t)dt, H(ŷ) =

√
|K(ŷ)|.

Moreover,
−K(ŷ)uxx − uyy = H(ŷ)[H(ŷ)ux − juy]x + j[H(ŷ)ux − juy]y − [jHy + HHx]ux

= 4H(ŷ)WZ − [jHy/H + Hx]Hux

= aux + buy + cu + d,

H(ŷ)WZ

= H[Wx + jWY ]/2

= H[(U + jV )x + j(U + jV )Y ]/2

=
1
4
(e1 − e2)(Hŷ/H)Hux + (e1 + e2)[(Hx + a/H)Hux + buy + cu + d],

(U + V )µ =
1

4H
{2[Hŷ/H + Hx + a/H]U − 2bV + cu + d}, in D,

(U − V )ν =
1

4H
{−2[Hŷ/H −Hx − a/H]U − 2bV + cu + d}, in D,

(1.3)
where e1 = (1+ j)/2, e2 = (1− j)/2, x = µ+ν, Y = µ−ν, ∂x/∂µ = 1/2 = ∂Y/∂µ,
∂x/∂ν = 1/2 = −∂Y/∂ν. Hence the complex form of (1.1) can be written as

Wz̃ = A1W + A2W + A3u + A4 in D,

u(z) = 2 Re
∫ z

z0

[
U(z)
H(ŷ)

− jV (z)]dz + b0 in D,
(1.4)

where b0 = u(z0), z0 = jy0, and the coefficients Al = Al(z) (l = 1, 2, 3, 4) are as
follows

A1 =
1
4
[
a

H
+

jHŷ

H
+ Hx − jb], A2 =

1
4
[
a

H
+

jHŷ

H
+ Hx + jb],

A3 =
c

4
, A4 =

d

4
in D.
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For convenience, sometimes the hyperbolic complex number ẑ = x̂ + jŷ = x +
j(y −

√
R2 − x2) and the function F [z(Z)] are simply written as z = x + jŷ and

F (Z) respectively. We mention that in this article, three domains; i.e., the original
domain D, the characteristic domain Dẑ and the image domain DZ are used, and
the corresponding characteristic domain Dẑ almost is written as the original domain
D.

The oblique derivative problem for (1.1) may be formulated as follows.

Problem O. Find a continuous solution u(z) of (1.1) in D\L0, which satisfies the
boundary conditions

1
2

∂u

∂l
=

1
H(y)

Re[λ(z)uz̃] = Re[Λ(z)uz] = r(z), z ∈ L = L1 ∪ L2,

u(z0) = b0,
1

H(ŷ)
Im[λ(z)uz̃]|z=z0 = Im[Λ(z)uz]|z=z0 = b1,

(1.5)

in which l is a given vector at every point z ∈ L, uz̃ = [H(ŷ)ux − juy]/2, u¯̃z =
[H(ŷ)ux +juy]/2, b0, b1 are real constants, λ(z) = λ1(x)+jλ2(x), Λ(z) = cos(l, x)+
j cos(l, y), R(z) = H(ŷ)r(z), z ∈ L, b′1 = H(ŷ1)b1, λ1(z) and λ2(x) are real func-
tions, λ(z), r(z), b0, b1 satisfy the conditions

C1[λ(z), L] ≤ k0, C1[r(z), L] ≤ k2, |b0|, |b1| ≤ k2,

max
z∈L1

1
|λ1(x)− λ2(x)|

, max
z∈L2

1
|λ1(x) + λ2(x)|

≤ k0,
(1.6)

in which k0, k2 are positive constants.
For the Dirichlet problem (Problem D) with the boundary condition:

u(z) = φ(x) on L = L1 ∪ L2, (1.7)

where L1, L2 are as stated before, we find the derivative for (1.7) according to the
parameter s = x on L1, L2, and obtain

us = ux + uyyx = ux −
uy

H(ŷ)
= φ′(x) on L1,

us = ux + uyyx = ux +
uy

H(ŷ)
= φ′(x) on L2;

i. e.,

U(z) + V (z) =
1
2
H(ŷ)φ′(x) = R(z) on L1,

U(z)− V (z) =
1
2
H(ŷ)φ′(x) = R(z) on L2;

i. e.,

Re[(1 + j)(U + jV )] = U(z) + V (z) = R(z) on L1,

Im[(1 + j)(U + jV )]|z=z0−0 = [U(z) + V (z)]|z=z0−0 = R(z0 − 0),

Re[(1− j)(U + jV )] = U(z)− V (z) = R(z) on L2,

Im[(1− j)(U + jV )]|z=z0+0 = [−U(z) + V (z)]|z=z0+0 = −R(z0 + 0),

where

U(z) =
1
2
H(ŷ)ux, V (z) = −uy

2
,

λ1 + jλ2 = 1− j, λ1 = 1 6= λ2 = −1 on L1,
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λ1 + jλ2 = 1 + j, λ1 = 1 6= −λ2 = −1 on L2.

From the above formulas, we can write the complex forms of boundary conditions
of U + jV :

Re[λ(z)(U + jV )] = R(z) on L,

Im[λ(z)(U + jV )]|z=z0−0 = R(z0 − 0) = b′1,

λ(z) =

{
1− j = λ1 + jλ2,

1 + j = λ1 + jλ2,
R(z) =

{
H(ŷ)φ′(x)/2 on L1,

H(ŷ)φ′(x)/2 on L2,

u(z) = 2 Re
∫ z

z0

[
U(z)
H(ŷ)

− jV (z)]dz + φ(z0) in D.

(1.8)

Hence Problem D is a special case of Problem O.
Noting that the condition (1.6), we can find a twice continuously differentiable

functions u0(z) in D, for instance, which is a solution of the oblique derivative
problem with the boundary condition in (1.5) for harmonic equations in D (see
[6, 7]), thus the functions v(z) = u(z)− u0(z) in D is the solution of the following
boundary value problem in the form

K(ŷ)vxx + vyy + avx + bvy + cv = −d̂ in D, (1.9)

Re[λ(z)vz̃(z)] = r(z) on L,

v(z0) = b0, Im[λ(z0)vz̃(z0)] = b′1,
(1.10)

where W (z) = U+jV = vz̃ in D, r(z) = 0 on L, b0 = b′1 = 0. Hence later on we only
discuss the case of the homogeneous boundary condition. From v(z) = u(z)−u0(z)
in D, we have u(z) = v(z) + u0(z) in D, and vy = 2R̃0(x) on L0 = Dẑ ∩ {ŷ = 0},
in which R̃0(x) is an undermined real function. The boundary vale problem (1.9),
(1.10) is called Problem Õ.

2. Properties of solutions to the oblique derivative problem

In this section, we consider the special mixed equation

uz̃z̃ = Wz̃ = 0, i.e.,

(U + V )µ = 0, (U − V )ν = 0 in D,
(2.1)

where U(z) = Re W (z), V (z) = Im W (z).

Theorem 2.1. Any solution u(z) of Problem O for the hyperbolic equation (2.1)
can be expressed as

u(z) = u(x)− 2
∫ ŷ

0

V (ŷ)dŷ = 2Re
∫ z

z0

[
Re W (z)

H(ŷ)
− j Im W (z)]dz + b0 in D, (2.2)

where
W (z) = U + jV = f(x− Y )e1 + g(x + Y )e2

= f(ν)e1 + g(µ)e2

=
1
2
{f(x− Y ) + g(x + Y ) + j[f(x− Y )− g(x + Y )]},

(2.3)
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in which Y = G(ŷ). For convenience denote by the functions λ1(x), λ2(x), r(x) of x
the functions λ1(z), λ2(z), r(z) of z in (1.10), and f(x−Y ) = f(ν), g(x+Y ) = g(µ)
possess the forms

f(ν) = f(x− Y ) =
2r((x− Y + R∗)/2)

λ1((x− Y + R∗)/2)− λ2((x− Y + R∗)/2)

− [λ1((x− Y + R∗)/2) + λ2((x− Y + R∗)/2)]g(R∗)
λ1((x− Y + R∗)/2)− λ2((x− Y + R∗)/2)

,

R∗ ≤ x− Y ≤ R∗,

(λ1(0) + λ2(0))g(R∗) = (λ1(0) + λ2(0))(U(z1)− V (z1)) = r(0)− b1 or 0,

g(µ) = g(x + Y ) =

=
2r((x + Y + R∗)/2)− [λ1((x + Y + R∗)/2)− λ2((x + Y + R∗)/2)]f(R∗)

λ1((x + Y + R∗)/2) + λ2((x + Y + R∗)/2)
,

R∗ ≤ x + Y ≤ R∗,

(λ1(0)− λ2(0))f(R∗) = (λ1(0)− λ2(0))(U(z1) + V (z1)) = r(0) + b1 or 0.

(2.4)
Moreover u(z) satisfies the estimate

C1
δ [u(z), D] ≤ M1, C1

δ [u(z), D] ≤ M2k1, (2.5)

where δ = δ(α, k0, k1, D) < 1, M1 = M1(α, k0, k1, D), M2 = M2(α, k0, D) are
positive constants.

Proof. Let the general solution

W (z) = uz̃ =
1
2
{f(x− Y ) + g(x + Y ) + j[f(x− Y )− g(x + Y )]}

of (2.1) be substituted in the boundary condition (1.10), thus (1.10) can be rewrit-
ten as

λ1(x)U(z)− λ2(x)V (z) = r(z) on L,

λ(z1)W (z1) = r(z1) + jb1;

i.e.,

[λ1(x)− λ2(x)]f(2x−R∗) + [λ1(x) + λ2(x)]g(R∗) = 2r(x) on L1,

[λ1(x)− λ2(x)]f(R∗) + [λ1(x) + λ2(x)]g(2x−R∗) = 2r(x) on L2,

the above formulas can be rewritten as[
λ1

( t + R∗

2

)
− λ2

( t + R∗

2

)]
f(t) +

[
λ1

( t + R∗

2

)
+ λ2

( t + R∗

2

)]
g(R∗)

= 2r
( t + R∗

2

)
, t ∈ [R∗, R

∗],

(λ1(0) + λ2(0))g(R∗) = (λ1(0) + λ2(0))(U(z1)− V (z1)) = r(0)− b1 or 0,[
λ1

( t + R∗

2

)
− λ2

( t + R∗

2

)]
f(R∗) +

[
λ1

( t + R∗

2
) + λ2

( t + R∗

2

)]
g(t)

= 2r(
t + R∗

2
), t ∈ [R∗, R

∗],

(λ1(0)− λ2(0))f(R∗) = (λ1(0)− λ2(0))(U(z1) + V (z1)) = r(0) + b1 or 0,
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thus the solution W (z) can be expressed as (2.3). Here we mention that for the
oblique derivative boundary condition, by (1.10), we have (λ1(0)+λ2(0))g(R∗) = 0,
(λ1(0)−λ2(0))f(R∗) = 0. If (λ1(x)+λ2(x))g(R∗) on L1 and (λ1(x)−λ2(x))f(R∗)
on L2 are known. From the condition (1.6) and the relation (2.2), we see that the
estimate (2.5) of the solution u(z) for (2.1), (2.2) is obviously true. �

3. Uniqueness of solutions to the oblique derivative problem

The representation of solutions of Problem O for equation (1.1) is as follows.

Theorem 3.1. Under Condition C, any solution u(z) of Problem O for equation
(1.1) in D can be expressed as

u(z) = 2 Re
∫ z

z0

[
Re W

H(ŷ)
− j Im W ]dz + b0,

W (z) = w(z) + Φ(z) + Ψ(z) in D,

w(z) = f(ν)e1 + g(µ)e2,Φ(z) = f̃(ν)e1 + g̃(µ)e2,

Ψ(z) =
∫ µ

R∗

g1(z)e1dµ +
∫ ν

R∗
g2(z)e2dν,

gl(z) = Alξ + Blη + Cu + D, l = 1, 2.

(3.1)

Here

A1 =
1

4H
[
a

H
+ Hx +

Hy

H
− b], B1 =

1
4H

[
a

H
+ Hx +

Hy

H
+ b], C =

c

4H
,

A2 =
1

4H
[
a

H
+ Hx −

Hy

H
− b], B2 =

1
4H

[
a

H
+ Hx −

Hy

H
+ b], D =

d

4H
,

(3.2)
where f(ν), g(µ) are as stated in (2.4), and f̃(ν), g̃(µ) are similar to f(ν), g(µ), and
Φ(z) satisfy the boundary condition

Re[λ(z)(Φ(z) + Ψ(z))] = 0, z ∈ L,

Im[λ(z0)(Φ(z0) + Ψ(z0))] = 0.
(3.3)

Proof. Since Problem O is equivalent to the Problem A for (1.4), from Theorem
2.1 and (1.3), it is not difficult to see that the function Ψ(z) satisfies the complex
equation

[Ψ]¯̃z = H{[A1ξ + B1η + Cu + D]e1 + [A2ξ + B2η + Cu + D]e2} in D, (3.4)

and Φ(z) = W (z)− w(z)−Ψ(z) satisfies (2.1) and the boundary conditions

Re[λ(z)Φ(z)] = −Re[λ(z)Ψ(z)] on L,

Im[λ(z0)Φ(z0)] = − Im[λ(z0)Ψ(z0)].
(3.5)

By the representation of solutions of Problem A for (1.4) as stated in the final four
formulas of (3.1), we can obtain the representation of solutions of Problem O for
(1.1) as stated in the first formula of (3.1). �

Next, we prove the uniqueness of solutions of Problem O for equation (1.1).

Theorem 3.2. Suppose that (1.1) satisfies the Condition C. Then Problem O for
(1.1) in D has a unique solution.
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Proof. Let u1(z), u2(z) be two solutions of Problem O for (1.1). Then u(z) =
u1(z)− u2(z) is a solution of the homogeneous equation

K(ŷ)uxx + uyy + aux + buy + cu = 0 in D, (3.6)

satisfying the boundary conditions

u(z) = 0; i.e., Re[λ(z)uz̃(z)] = 0 on L,

u(z0) = 0, Im[λ(z0)uz̃(z0)] = 0,
(3.7)

where the function W (z) = [H(ŷ)ux−juy]/2 is a solution of the homogeneous prob-
lem of Problem A; namely W (z) satisfies the homogeneous equation and boundary
conditions

Wz̄ = A1W + A2W + A3u in D,

u(z) = 2 Re
∫ z

z0

[
Re W

H(ŷ)
− j Im W ]dz,

Re[λ(z)W (z)] = 0 on L, Im[λ(z0)W (z0)] = 0.

(3.8)

On the basis of Theorem 3.1, the function W (z) can be expressed in the form

W (z) = Φ(z) + Ψ(z),

Ψ(z) =
∫ µ

R∗

[A1ξ + B1η + Cu]e1dµ +
∫ ν

R∗
[A2ξ + B2η + Cu]e2dν

=
∫ ŷ

y′
1

2H(ŷ)[A1ξ + B1η + Cu]e1dy −
∫ ŷ

y′′
1

2H(ŷ)[A2ξ + B2η + Cu]e2dy

(3.9)
in D, where z′1 = x′1 + jŷ′1, z

′′
1 = x′′1 + jŷ′′1 are two intersection points of L1, L2 and

two families of characteristics lines

s1 :
dx

dy
=

√
|K(ŷ)| = H(ŷ), s2 :

dx

dy
= −

√
|K(ŷ)| = −H(ŷ) (3.10)

passing through z = x + ŷ ∈ D respectively. Suppose w(z) 6≡ 0 in the neigh-
borhood of the point z1. We may choose a sufficiently small positive number
R0, such that 8M2MR0 < 1, where M2 = max{C[A1, Q0], C[B1, Q0], C[A2, Q0],
C[B2, Q0], C[C,Q0]}, M = 1 + 4k2

0(1 + 2k2
0) is a positive constant, and M0 =

C[W (z), Q0] + C[u(z), Q0] > 0. Herein

‖W (z)‖ = Ĉ[W (z), Q0] = C[Re W (z)/H(ŷ) + j Im W (z), Q0],

Q0 = {R∗ ≤ µ ≤ R∗ + R0} ∩ {R∗ − R0 ≤ ν ≤ R∗}. From (2.4)–(3.3), (3.9) and
Condition C, we have

‖Ψ(z)‖ ≤ 8M2M0R0, ‖Φ(z)‖ ≤ 32M2k
2
0(1 + 2k2

0)M0R0,

thus an absurd inequality M0 ≤ 8M2MM0R0 < M0 is derived. It shows W (z) = 0,
(x, ŷ) ∈ Q0. Moreover, we extend along the positive direction of µ = x + Y and
the negative direction of ν = x − Y successively, and finally obtain W (z) = 0
in D. This proves the uniqueness of solutions of Problem A for (3.8), and then
u(z) = u1(z) − u2(z) = 0 in D, this shows that Problem O for (1.1) has a unique
solution. �
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4. Solvability of the oblique derivative problem

In this section, we prove the existence of solutions of Problem O for (1.1) by the
method of the successive approximations.

Theorem 4.1. If (1.1) satisfies Condition C, then Problem O for (1.1) has a
solution.

Proof. To find a solution u(z) of Problem O in D, we first find a solution [W (z), u(z)]
of Problem A for (1.4) in the closed domain Dδ = D∩{ŷ ≤ −δ}, where δ is a small
positive constant. In the following, a solution of Problem A for the equation (1.1)
in Dδ can be found by using successive approximations. First of all, substituting
the solution [W0(z), u0(z)] = [ξ0e1 + η0e2, u0(z)] of Problem A for (1.4) into the
position of W = ξe1 + ηe2 on the right-hand side of (3.1), the functions

W1(z) = W0(z) + Φ1(z) + Ψ1(z),

Ψ1(z) =
∫ µ

R∗

[A1ξ0 + B1η0 + Cu0 + D]e1dµ

+
∫ ν

R∗
[A2ξ0 + B2η0 + Cu0 + D]e2dν,

u1(z) = 2 Re
∫ z

z0

[
Re W1

H(ŷ)
− j Im W1]dz + b0 in Dδ,

(4.1)

are determined, where µ = x + Y, ν = x − Y, Φ1(z) is a solution of (2.1) in Dδ

satisfying the boundary conditions

Re[λ(z)Φ1(z)] = −Re[λ(z)Ψ1(z)] on L,

Im[λ(z0)Φ1(z0)] = − Im[λ(z0)Ψ1(z0)].
(4.2)

Thus from (4.1), we have

‖W1(z)−W0(z)‖ = C[W1(z)−W0(z), Dδ] + C[u1(z)− u0(z), Dδ]

≤ 2M3M(4M0 + 1)R′,
(4.3)

where M3 = maxz∈Dδ
(|A1|, |B1|, |A2|, |B2|, |C|), M0 = C[w0(z), Dδ]+C[u0(z), Dδ],

R′ = max(R∗, |R∗|),M = 1+4k2
0(1+2k2

0) is a positive constant similar to the one in
the proof of Theorem 3.2. Moreover, we substitute W1(z) = W0(z)+Φ1(z)+Ψ1(z)
and the corresponding functions ξ1(z) = Re W1(z)+ Im W1(z), η1(z) = Re W1(z)−
Im W1(z), u1(z) into the positions of W (z), ξ(z), η(z), u(z) in (3.1), and similarly to
(4.1)–(4.3), we can find the corresponding functions Ψ2(z),Φ2(z), u2(z) in D and
the function

W2(z) = W0(z) + Φ2(z) + Ψ2(z) in Dδ,

u2(z) = 2 Re
∫ z

z0

[
Re W2

H(ŷ)
− j Im W2]dz + b0.

It is clear that the function W2(z)−W1(z) satisfies the equality

W2(z)−W1(z) = Φ2(z)− Φ1(z) + Ψ2(z)−Ψ1(z) = Φ2(z)− Φ1(z)

+
∫ µ

R∗

[A1(ξ1 − ξ0) + B1(η1 − η0) + C(u1 − u0)]e1dµ

+
∫ ν

R∗
[A2(ξ1 − ξ0) + B2(η1 − η0) + C(u1 − u0)]e2dν,
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u2(z)− u1(z) = 2 Re
∫ z

z0

[
Re W1

H(ŷ)
− j Im W1]dz in Dδ,

and then

‖W2 −W1‖ ≤ [2M3M(4M0 + 1)]2
∫ R′

0

R′dR′ ≤ [2M3M(4M0 + 1)R′]2

2 !
,

where M3 is a constant as stated in (4.3). Thus we can find a sequence of functions
{Wn(z)} satisfying

Wn(z) = W0(z) + Φn(z) + Ψn(z),

Ψn(z) =
∫ µ

R∗

[A1ξn + B1ηn + Cun]e1dµ +
∫ ν

R∗
[A2ξn + B2ηn + Cun]e2dν,

un(z) = 2 Re
∫ z

z0

[
Re Wn

H(ŷ)
− j Im Wn]dz + b0,

(4.4)

and Wn(z)−Wn−1(z) satisfies

Wn(z)−Wn−1(z) = Φn(z)− Φn−1(z) + Ψn(z)−Ψn−1(z),

Φn(z)− Φn−1(z)

=
∫ µ

R∗

[A1(ξn−1 − ξn−2) + B1(ηn−1 − ηn−2) + C[un−1 − un−2)]e1dµ

+
∫ ν

R∗
[A2(ξn−1 − ξn−2) + B2(ηn−1 − ηn−2)]e2dν,

un(z)− un−1(z) = 2 Re
∫ z

z0

[
Re(Wn −Wn−1)

H(ŷ)
− j Im(Wn −Wn−1)]dz in Dδ,

(4.5)
and then

‖Wn −Wn−1‖ ≤ [2M3M(4M0 + 1)]n
∫ R′

0

R′n−1

(n− 1)!
dR′

≤ [2M3M(4M0 + 1)R′]n

n !
in Dδ.

From the above inequality, we see that the sequences of the functions {Wn(z)},
{un(z)}; i.e.,

Wn(z) = W0(z) + [W1(z)−W0(z)] + · · ·+ [Wn(z)−Wn−1(z)],

un(z) = u0(z) + [u1(z)− u0(z)] + · · ·+ [un(z)− un−1(z)], n = 1, 2, . . .

converges uniformly to a function [W∗(z), u∗(z)] and [W∗(z), u∗(z)] satisfies

W∗(z) = W0(z) + Φ∗(z) + Ψ∗(z),

Ψn(z) =
∫ µ

R∗

[A1ξ∗ + B1η∗ + Cu∗ + D]e1dµ

+
∫ ν

R∗
[A2ξ∗ + B2η∗ + Cu∗ + D]e2dν,

u∗(z) = u0(z) + 2 Re
∫ z

z0

[
Re W∗

H(ŷ)
− j Im W∗]dz + b0 in Dδ.

(4.6)

It is easy to see that [W∗(z), u∗(z)] satisfies (1.4) in Dδ and the boundary condition
(1.10), hence u∗(z) is just a solution of Problem O for (1.1) in the domain Dδ.
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Finally letting δ → 0, we can choose a limit function u(z), which is a solution of
Problem O for (1.1) in D. �

5. Oblique derivative problem in general domains

Now we consider some general domains with non-characteristic boundary and
prove the unique solvability of Problem O for (1.1). Denote by D a simply connected
bounded domain D in the hyperbolic complex plane C with the boundary ∂D =
L0 ∪ L, where L0, L = L1 ∪ L2 are as stated in Section 1.

(1) We consider the domain D′ with the boundary L0 ∪L′, L′ = L′
1 ∪L′

2, where
the parameter equations of the curves L′

1, L
′
2 are as follows:

L′
1 = {ŷ = −γ1(s), 0 ≤ s ≤ s0}, L′

2 = {x−G(ŷ) = R∗, 0 ≤ x ≤ R∗}. (5.1)

Herein Y = G(ŷ) =
∫ ŷ

0

√
K(t)dt, s is the parameter of arc length of L′

1, γ1(s)
on {0 ≤ s ≤ s0} is continuously differentiable, γ1(0) = 0, γ1(s) > 0 on {0 < s ≤
s0}, and the slope of curve L′

1 at a point z∗ is not equal to dy/dx = −1/H(ŷ)
of the characteristic curve s2 : dy/dx = −1/H(ŷ) at the point, where z∗ is an
intersection point of L′

1 and the characteristic curve of s2, and z′0 = x′0 − jγ1(s0) is
the intersection point of L′

1 and L′
2.

The boundary conditions of the oblique derivative problem (Problem O’) for
(1.1) in D′ are as follows:

1
2

∂u

∂ν
=

1
H(ŷ)

Re[λ(z)uz̃] = r(z), z ∈ L′ = L′
1 ∪ L′

2,

u(z′0) = b0,
1

H(ŷ)
Im[λ(z)uz̃]|z=z′0

= b1,

(5.2)

where λ(z) = λ1(x) + jλ2(x), R(z) = H(ŷ)r(z) on L′, b′1 = H(ŷ′0)b1 = H(Im z′0)b1,
and λ(z), r(z), b′1 satisfy the conditions

C1[λ(z), L′] ≤ k0, C1[r(z), L′] ≤ k2, |b0|, |b1| ≤ k2,

max
z∈L′

1

1
|λ1(x)− λ2(x)|

≤ k0, max
z∈L′

2

1
|λ1(x) + λ2(x)|

≤ k0,
(5.3)

in which k0, k2 are positive constants.
Set Y = G(ŷ) =

∫ ŷ

0

√
K(t)dt. By the conditions in (5.1), the inverse function

x = σ(ν) = (µ + ν)/2 of ν = x − G(ŷ) can be found, and then µ = 2σ(ν) − ν,
R∗ ≤ ν ≤ R∗. We make a transformation

µ̃ = R∗[µ− 2σ(ν) + ν]/[2σ(ν)− ν] + R∗, ν̃ = ν,

2σ(ν)− ν ≤ µ ≤ 0, R∗ ≤ ν ≤ R∗,
(5.4)

where µ, ν are real variables, its inverse transformation is
µ = [2σ(ν)− ν](µ̃−R∗)/R∗ + 2σ(ν)− ν, ν = ν̃,

R∗ ≤ µ̃ ≤ R∗, R∗ ≤ ν̃ ≤ R∗.
(5.5)

It is not difficult to see that the transformation in (5.5) maps the domain D′ onto
D, x̃ = (µ̃ + ν̃)/2, Ỹ = (µ̃ − ν̃)/2, and x = (µ + ν)/2, Y = (µ − ν)/2. Denote by
Z̃ = x̃+jỸ = f(Z), Z = x+jY = f−1(Z̃) the transformation (5.4) and the inverse
transformation (5.5) respectively. In this case, the system (1.3) can be rewritten as

ξµ = A1ξ + B1η + C1(ξ + η) + Du + E, z ∈ D′,

ην = A2ξ + B2η + C2(ξ + η) + Du + E, z ∈ D′.
(5.6)
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Suppose that (1.1) in D′ satisfies Condition C, through the transformation (5.5),
we obtain ξµ̃ = [2σ(ν) − ν]ξµ/R∗, ην̃ = ην , in D′, where ξ = U + V , η = U − V ,
and then

ξµ̃ = [2σ(ν)− ν][A1ξ + B1η + C1(ξ + η) + Du + E]/R∗,

ην̃ = A2ξ + B2η + C2(ξ + η) + Du + E in D,
(5.7)

and through the transformation (5.5), the boundary condition (5.2) is reduced to

Re[λ(f−1(Z̃))W (f−1(Z̃))] = H[ŷ(Y )]r(f−1(Z̃)), Z̃ = x̃ + jỸ ∈ L = L1 ∪ L2,

Im[λ(f−1(Z̃ ′
0))W (f−1(Z̃ ′

0)] = b1, u(z0) = b0,

(5.8)
in which Z = f−1(Z̃), Z̃ ′

0 = f(Z ′
0), Z ′

0 = x′0+jG[−γ1(s0)]. Therefore, the boundary
value problem (5.6), (5.2) (Problem A’) is transformed into the boundary value
problem (5.7), (5.8); i.e., the corresponding Problem A in D. On the basis of
Theorem 4.1, we see that the boundary value problem (5.7)-(5.8) has a unique
solution w(Z̃), and

u(z) = 2 Re
∫ z

z′0

[
Re W

H(ŷ)
− j Im W ]dz + b0 in

(
D+

D−

)
(5.9)

is just a solution of Problem O’ for (1.1) in D′ with the boundary conditions (5.2),
where W = W (Z̃(z)].

Theorem 5.1. If (1.1) in D′ satisfies Condition C in the domain D′ with the
boundary L0 ∪ L′

1 ∪ L′
2, where L′

1, L
′
2 are as stated in (5.1), then Problem O’ for

(1.1) with the boundary conditions (5.2) has a unique solution u(z).

(2) Next let the domain D′′ be a simply connected domain with the boundary
L0∪ L′′

1 ∪ L′′
2 , where L0 is as stated before and

L′′
1 = {ŷ = γ1(s), 0 ≤ s ≤ s0}, L′′

2 = {ŷ = γ2(s), 0 ≤ x ≤ s′0}, (5.10)

in which s is the parameter of arc length of L′′
1 or L′′

2 , γ1(0) = 0, γ2(0) = 0,
γ1(s) > 0, 0 < s ≤ s0, γ2(s) > 0, 0 < x ≤ s′0, and γ1(s) on 0 ≤ x ≤ s0 and γ2(s) on
0 ≤ s ≤ s′0 are continuously differentiable, z′′0 = x′′0−jγ1(s0) = x′′0−jγ2(s′0). Denote
by two points z∗1 , z∗2 the intersection points of L′′

1 , L′′
2 and the characteristic curves

s2 : dy/dx = −1/H(ŷ), s1 : dy/dx = 1/H(ŷ) respectively, we require that the
slopes of curves L′′

1 , L′′
2 at z∗1 , z∗2 are not equal to those at the characteristic curves

s2, s1 at the corresponding points, hence γ1(s), γ2(s) can be expressed by γ1[s(µ)]
(R∗ ≤ µ ≤ R∗), γ2[s(ν)] (R∗ ≤ ν ≤ R∗). We consider the oblique derivative
problem (Problem O”) for (1.1) in D′′ with the boundary conditions

Re[λ(z)uz̃] = R(z), z ∈ L′′ = L′′
1 ∪ L′′

2 ,

u(z′′0 ) = b0, Im[λ(z)uz̃] |z=z′′0
= b1,

(5.11)

where λ(z) = λ1(x) + jλ2(x), r(z) satisfy the corresponding conditions

C1[λ(z), L′′] ≤ k0, C1[r(z), L′′] ≤ k2, |b0|, |b1| ≤ k2,

max
z∈L′′

1

1
|λ1(x)− λ2(x)|

, max
z∈L′′

2

1
|λ1(x) + λ2(x)|

≤ k0,
(5.12)

in which k0, k2 are positive constants. By the conditions in (5.10), the inverse
function x = (µ+ ν)/2 = τ(µ), x = (µ+ ν)/2 = σ(ν) of µ = x+G(y), ν = x−G(y)
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can be found, namely

µ = 2σ(ν)− ν, ν = 2τ(µ)− µ, R∗ ≤ µ ≤ R∗, R∗ ≤ ν ≤ R∗. (5.13)

We make the transformation
µ̃ = µ, ν̃ = R∗[ν − 2τ(µ) + µ]/[2τ(µ)− µ] + R∗,

R∗ ≤ µ ≤ R∗, 0 ≤ ν ≤ 2τ(µ)− µ.
(5.14)

It is clear that its inverse transformation is

µ = µ̃, ν =
[ν̃ −R∗][2τ(µ)− µ]

R∗ + 2τ(µ)− µ,

R∗ ≤ µ̃ ≤ R∗, R∗ ≤ ν̃ ≤ R∗.
(5.15)

Hence x̃ = (µ̃ + ν̃)/2, Ỹ = (µ̃ − ν̃)/2, x = (µ + ν)/2, Y = (µ − ν)/2. Denote
by Z̃ = x̃ + jỸ = g(z), Z = x + jY = g−1(Z̃) the transformation (5.14) and its
inverse transformation in (5.15) respectively. Through the transformation (5.15),
we obtain (u + v)µ̃ = (u + v)µ, (u− v)ν̃ = [2τ(µ)− µ](u− v)ν/R∗ in D′′. Thus the
system (5.6) in D′′ is reduced to

ξµ̃ = A1ξ + B1η + C1(ξ + η) + Du + E in D′,

ην̃ = [2τ(µ)− µ][A2ξ + B2η + C2(ξ + η) + Du + E]/R∗ in D′.
(5.16)

Moreover, through the transformation (5.15), the boundary condition (5.11) on
L′′

1 , L′′
2 is reduced to

Re[λ(g−1(Z̃))W (g−1(Z̃))] = H1[ŷ(Y )]r[g−1(Z̃)], z = x + jy ∈ L′
1 ∪ L′

2,

Im[λ(g−1(Z ′
0))W (g−1(Z ′

0)] = b′1, u(z′0) = b0,
(5.17)

in which Z = g−1(Z̃), Z̃ ′
0 = g(Z ′′

0 ), Z ′′
0 = l′0+jG[−γ2(s′0)]. Therefore the boundary-

value problem (5.6), (5.11) in D′′ is transformed into the boundary-value problem
(5.16), (5.17), where we require that the boundaries L′

1, L
′
2 satisfy the similar con-

ditions in (5.1). According to the method in the proof of Theorem 5.1, we can see
that the boundary-value problem (5.6), (5.11) has a unique solution u(Z̃), and then
the corresponding u = u(z) is a solution of the oblique derivative problem (Problem
O”) of (1.1).

Theorem 5.2. If (1.1) satisfies Condition C in the domain D′′ bounded by the
boundary L0 ∪ L′′

1 ∪ L′′
2 , where L′′

1 , L′′
2 are as stated in (5.10), then Problem O” for

(1.1) in D′′ with the boundary condition (5.11) on L′′ has a unique solution u(z).
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