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FEEDBACK STABILIZATION OF PARABOLIC SYSTEMS WITH
BILINEAR CONTROLS

MOHAMED OUZAHRA

Abstract. In this article, we study infinite-bilinear systems, and consider a
decomposition of the state space via the spectral properties of the systems.
Then we apply this approach to strong and exponential stabilization problem
using quadratic and constrained feedbacks. We present also some applications.

1. Introduction

In this work, we study the stabilization of bilinear systems governed by the
abstract equation

dz(t)
dt

= Az(t) + v(t)Bz(t), z(0) = z0, (1.1)

on a separable Hilbert space H with the inner product 〈·, ·〉 and corresponding
norm ‖ · ‖, where A : D(A) ⊂ H → H is a linear operator with domain D(A), the
operator A generates a C0-semigroup S(t) on H, the operator B : H → H is linear,
and the scalar valued function t 7→ v(t) represents the control.

In [1], the quadratic control

v(t) = −〈z(t), Bz(t)〉, (1.2)

was proposed to study the feedback stabilization of (1.1), and a weak stabilization
result was established under the condition

〈BS(t)y, S(t)y〉 = 0, ∀t ≥ 0 ⇒ y = 0 . (1.3)

In [2, 4], it has been proved that under (1.3), the same quadratic control (1.2)
ensures the strong stabilization for a class of semilinear systems.

If the assumption (1.3) is replaced by∫ T

0

|〈BS(t)y, S(t)y〉|dt ≥ δ‖y‖2, ∀ y ∈ H, (for some T, δ > 0), (1.4)

then we have strong stability of (1.1) with the decay estimate ‖z(t)‖ = O(1/
√

t),
(see [2, 10]).
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Recently, the exponential stabilization problem of distributed bilinear systems
has been resolved (see [12]). Then it has been proved that under the assumption
(1.4), the feedback defined by

v(t) =

{
− 〈Bz(t),z(t)〉

‖z(t)‖2 , if z(t) 6= 0

0, if z(t) = 0,
(1.5)

guarantees the exponential stabilization. The finite-dimensional case has been
treated in [5].

It is interesting to investigate the relation between the stability of a distributed
parameter system and that of a finite-dimensional system. In [6], it has been
showed that if the spectrum σ(A) of A can be decomposed into σu(A) = {λ :
Re(λ) ≥ −η} and σs(A) = {λ : Re(λ) < −η} for some η > 0, such that σu(A) can
be separated from σs(A) by a simple and closed curve C, then the state space H
can be decomposed according to

H = Hu ⊕Hs, (1.6)

where Hu = PuH, Hs = PsH, and Pu is the projection operator

Pu =
1

2πi

∫
C

(λI −A)−1dλ

and Ps = I − Pu. Then the operator A can be decomposed as A = Au ⊕ As with
Au = PuA and As = PsA. For linear systems and based on the above decomposition
(1.6), it has been showed that the whole system can be divided into two uncoupled
subsystems, one of which is exponentially stable without applying controls, while
another one is unstable. Then under the spectrum growth assumption:

lim
t→+∞

ln ‖Ss(t)‖
t

= supRe(σ(As)), (1.7)

where Ss(t) denotes the semigroup generated by As, it has been proved that sta-
bilizing a linear system turns out to stabilizing its unstable part (see [9]). This
technique has been used to study weak and strong stabilization of (1.1) using the
quadratic control

vu(t) = −〈z(t), PuBPuz(t)〉, (1.8)

where it has been assumed that the operator B can be decomposed as

B = Bu ⊕Bs, (1.9)

with Bu = PuBPu and Bs = PsBPs (see [11]). The aim of this work consists on
exploring the decomposition (1.6) of the state space, to study the strong and expo-
nential stabilization of the system (1.1) using quadratic and constrained controls.
In the second section, we show that one can achieve the strong stabilization of (1.1)
under the condition (1.3). If in addition (1.9) holds, then under a weaker version
of (1.4), one obtains exponential stabilization. In the third section, we study the
question of robustness. The last section concerns some situations that illustrate the
established results.

2. Stabilization results

2.1. Strong stabilization. The next result concerns the strong stabilization of
(1.1).
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Theorem 2.1. Let (i) A generate a linear C0-semigroup S(t) of contractions on
H, (ii) A allow the decomposition (1.6) of H with dim Hu < +∞ such that (1.7)
holds, and (iii) B be compact such that

〈BS(t)y, S(t)y〉 = 0, ∀t ≥ 0 ⇒ y = 0 . (2.1)

Then the system (1.1) is strongly stabilizable by the feedbacks

v(t) = −ρ〈z(t), Bz(t)〉, (2.2)

and

v(t) = −ρ
〈z(t), Bz(t)〉
‖z(t)‖2

1E (2.3)

where ρ > 0 and 1E is the characteristic function of the set E = {t ≥ 0 : z(t) 6= 0}.

Proof. System (1.1), controlled by (2.2) or (2.3), possesses a unique mild solution
z(t) defined on a maximal interval [0, tmax[ and given by the variation of constants
formula

z(t) = S(t)z0 −
∫ t

0

S(t− s)F (z(s))ds, (2.4)

where F (z) = ρ〈BZ, z〉Bz corresponds to (2.2) and F (z) = ρ 〈BZ,z〉
‖z‖2 Bz, for all

z 6= 0, F (0) = 0 corresponds to (2.3). Since S(t) is a semigroup of contractions,

d‖z(t)‖2

dt
≤ −2〈F (z(t)), z(t)〉, ∀z0 ∈ D(A) . (2.5)

It follows that
‖z(t)‖ ≤ ‖z0‖ . (2.6)

Based on (2.4) and using the fact that S(t) is a semigroup of contractions and
Gronwall inequality, we deduce that the map z0 → z(t) is continuous from H to H.
We deduce that (2.6) holds for all z0 ∈ H and hence tmax = +∞ (see [13]).

Now let us show that z(t) ⇀ 0, as t → +∞. Let tn → +∞ such that z(tn) weakly
converge in H, and let y ∈ H such that z(tn) ⇀ y, as n → ∞. (The existence of
such (tn) and y is ensured by (2.6) and by the fact that H is reflexive). �

Let us recall the following existing result.

Lemma 2.2 ([10, 12]). Let A generate a semigroup of contractions S(t) on H and
let B be linear and bounded. Then (1.1), controlled by (2.2) or (2.3), possesses a
unique mild solution z(t) on R+ for each z0 ∈ H which satisfies∫ T

0

|〈BS(t)z0, S(t)z0〉|dt ≤ C‖z0‖
{∫ T

0

〈F (z(t)), z(t)〉dt
}1/2

, (2.7)

for all T > 0 and for some C = C(T, ‖z0‖) > 0.

Taking z(tn) as initial state in (2.7) and using superposition property of the
solution we obtain, via the dominated convergence theorem, 〈BS(t)y, S(t)y〉 = 0,
for all t ≥ 0. It follows from (2.1) that y = 0. Hence z(t) ⇀ 0, as t → +∞, and
since dim Hu < +∞, we have

zu(t) → 0, as t → +∞.

For the component zs(t) of z(t), we have

zs(t) = Ss(t)z0s −
∫ t

0

Ss(t− τ)F (z(τ))dτ . (2.8)
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The semigroup Ss(t) satisifes, by (1.7), the inequality

‖Ss(t)‖ ≤ αe−ηt, ∀t ≥ 0, (for some α, η > 0). (2.9)

Then for all 0 ≤ t1 ≤ t, we have zs(t) = Ss(t − t1)zs(t1) −
∫ t

t1
Ss(t− τ)F (z(τ))dτ .

It follows that

‖zs(t)‖ ≤ αe−η(t−t1)‖zs(t1)‖+ α

∫ t

t1

e−η(t−τ)‖F (z(τ))‖dτ . (2.10)

Since F is sequentially continuous,

F (z(t)) → 0, as t → +∞ .

Let ε > 0 and let t1 > 0 such that ‖F (z(t))‖ < ε, for all t ≥ t1. It follows that

‖zs(t)‖ ≤ αe−η(t−t1)‖zs(t1)‖+
αε

η
, ∀ t ≥ t1 .

Hence z(t) = zu(t) + zs(t) → 0, as t → +∞.

Remark 2.3. (1) Note that the feedback (2.3) is a bounded function in time and
is uniformly bounded with respect to initial states

|v(t)| ≤ ρ‖B‖, ∀t ≥ 0, ∀z0 ∈ H .

(2) For finite-dimensional systems, the conditions (1.3) and (1.4) are equivalent
(see [5, 14]). However, in infinite-dimensional case and if B is compact, then the
condition (1.4) is impossible. Indeed, if (ϕj) is an orthonormal basis of H, then
applying (1.4) for y = ϕj and using the fact that ϕj ⇀ 0, as j → +∞, we obtain
the contradiction δ = 0.

(3) In [1] (resp. [12]), the case Hu = H has been considered and it has been
shown that (1.2) (resp. (1.5)) guarantees the weak stability of (1.1).

(4) Since ‖z(t)‖ decreases, then we have ∃t0 ≥ 0; z(t0) = 0 ⇔ z(t) = 0, ∀t ≥ t0.
In this case we have v(t) = 0, ∀t ≥ t0.

(5) Note that for finite-dimensional bilinear systems, unlike the linear case, the
strong stability is not equivalent to the exponential one (see [11]).

(6) We can extend the estimate (2.7) to the case where B is nonlinear and locally
Lipschitz, so we can obtain a semi-linear version of the above theorem.

2.2. Exponential stabilization. In this section, we will associate between the
exponential stabilizability of the whole system (1.1) and the one of its unstable
part. In the sequel we suppose that (1.9) holds, so that the system (1.1) can be
decomposed in the following two subsystems

dzu(t)
dt

= Auzu(t) + v(t)Buzu(t), zu(0) = z0u ∈ Hu, (2.11)

dzs(t)
dt

= Aszs(t) + v(t)Bszs(t), zs(0) = z0s ∈ Hs, (2.12)

in the state spaces Hu and Hs respectively.
In the following result, we study the exponential stabilizability of system (1.1).

Theorem 2.4. Let (i) A generate a linear C0−semigroup S(t) such that Su(t)
is of isometries and (1.7) holds, (ii) A allow the decomposition (1.6) of H with
dim Hu < +∞, (iii) B ∈ L(H) such that for all yu ∈ Hu, we have

〈BuetAuyu, etAuyu〉 = 0, ∀t ≥ 0 ⇒ yu = 0 . (2.13)
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Then there exists ρ > 0 such that the feedback

vu(t) = −ρ
〈zu(t), Buzu(t)〉

‖zu(t)‖2
1Eu

, (2.14)

where Eu = {t ≥ 0 : zu(t) 6= 0}, exponentially stabilizes (1.1).

Proof. Let us consider the system
dzu(t)

dt
= Auzu(t) + fρ(zu(t))Buzu(t), zu(0) = z0u, (2.15)

where

fρ(zu) =

{
−ρ 〈zu,Buzu〉

‖zu‖2 , zu 6= 0

0, zu = 0

The system (2.15) possesses a unique mild solution zu(t) defined for all t ≥ 0, and
the map Tu(t)z0u = zu(t) defines a nonlinear semigroup on Hu.

Integrating the inequality over the interval [k, k + 1], k ∈ N,

d‖zu(t)‖2

dt
≤ −2|fρ(zu(t))|2‖zu(t)‖2, (2.16)

we obtain

‖zu(k + 1)‖2 − ‖zu(k)‖2 ≤ −2
∫ k+1

k

|fρ(zu(τ))|2‖zu(τ)‖2dτ

and since ‖zu(t)‖ decreases, we deduce that

‖zu(k + 1)‖2 − ‖zu(k)‖2 ≤ −2‖zu(k + 1)‖2
∫ k+1

k

|fρ(zu(τ))|2dτ . (2.17)

Let δ := 2 inf‖z0u‖=1

∫ 1

0
|fρ(Tu(τ)z0u)|2dτ ≥ 0. Since Bu is linear, then fρ(λzu) =

fρ(zu),∀λ ∈ C, zu ∈ Hu. Then by an argument of uniqueness of the mild solu-
tion, we deduce that Tu(t)(λzu) = λTu(t)zu, ∀t ≥ 0, λ ∈ C, zu ∈ Hu. It follows
that 2

∫ 1

0
|fρ(Tu(τ)z0u)|2dτ ≥ δ, ∀z0u ∈ Hu − {0}. Using the superposition prop-

erty of the semigroup Tu(t) and the fact that ‖Tu(t)z0u‖ ≤ ‖z0u‖ we deduce that
2

∫ k+1

k
|fρ(Tu(τ)z0u)|2dτ ≥ δ, ∀k ∈ N. Then (2.17) implies

‖zu(k + 1)‖2 − ‖zu(k)‖2 ≤ −δ‖zu(k + 1)‖2 .

It follows that

‖zu(k)‖ ≤ ‖z0u‖
(1 + δ)

k
2

.

Finally, using the fact that ‖zu(t)‖ decreases, we deduce that

‖zu(t)‖ ≤ ‖zu(k)‖ ≤ Me−σt‖z0u‖,

where M = e
ln(1+δ)

2 and σ = ln(1+δ)
2 . Let us show that δ > 0. Assume that δ = 0.

Since
∫ 1

0
|fρ(Tu(τ)z0u)|2dτ depends continuously on z0u and dim Hu < +∞, then

there exists yu ∈ Hu such that ‖yu‖ = 1 and
∫ 1

0
|fρ(Tu(τ)yu)|2dτ = 0. Then

fρ(Tu(t)yu) = 0, ∀0 ≤ t ≤ 1, which imply that Tu(t)yu = Su(t)yu, ∀0 ≤ t ≤ 1 and
hence < BuSu(t)yu, Su(t)yu〉 = 0, ∀0 ≤ t ≤ 1. Now from [5, 14], we have∫ 1

0

| < BuSu(t)zu, Su(t)zu > |dt ≥ δ‖zu‖2, ∀zu ∈ Hu,

which gives the contradiction yu = 0.
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For the component zs(t), we shall show that zs(t) is defined for all t ≥ 0 and
exponentially converges to 0, as t → +∞. The system (1.1), excited by the control
(2.14), admits a unique mild solution defined for all t in a maximal interval [0, tmax[
by

z(t) = S(t)z0 +
∫ t

0

vu(τ)S(t− τ)Bz(τ)dτ .

Thus

zs(t) = Ss(t)z0s +
∫ t

0

vu(τ)Ss(t− τ)Bszs(τ)dτ, ∀t ∈ [0, tmax[ . (2.18)

It follows from (2.9) and (2.18) that

‖zs(t)‖ ≤ α e−ηt‖z0s‖+ αL

∫ t

0

e−η(t−τ)|vu(τ)|‖zs(τ)‖dτ

for all t ∈ [0, tmax[ with L = ‖B‖. Then the scalar function y(t) = ‖zs(t)‖ eηt

satisfies

y(t) ≤ α‖z0s‖+ ραL2

∫ t

0

y(τ)dτ .

Gronwall inequality then yields y(t) ≤ α‖z0s‖eραL2t. In other words,

‖zs(t)‖ ≤ α‖z0s‖e(ραL2−η)t. (2.19)

Taking ρ > 0 such that ραL2−η < 0, it follows that zs(t) is bounded on [0, tmax[
so that tmax = +∞, and the estimate (2.19) holds for all t ≥ 0. We conclude that

‖z(t)‖ ≤ Ne−βt‖z0‖, ∀t ≥ 0, (2.20)

where N > 0 and β = min(σ, η − ραL2) > 0. �

Remark 2.5. (1) The feedback (2.14) depends only on the unstable part zu(t) and
is uniformly bounded with respect to initial states.

(2) The quadratic control (1.8) does not guarantee the exponential stability.
(3) We note that (2.13) is weaker than both (1.3) and (1.4) .
(4) The rate of exponential convergence β (given in (2.20)) can be explicitly

expressed, and from [12], one can calculate the parameter ρ corresponding to the
optimal value of β.

(5) If H = Hu is of finite-dimension, then we retrieve the result of [5].
(6) In the case dim Hu = +∞ or if B is nonlinear and locally Lipschitz, then

following the techniques used in [12], we can obtain the result of Theorem 2.4 if
(2.13) is changed to∫ T

0

|〈BuetAuyu, etAuyu〉|dt ≥ δ‖yu‖2, ∀yu ∈ Hu, (T, δ > 0) .

(7) It is easily verified that the condition (1.9) holds in the case of commutative
systems (i.e. B commutes with A).

(8) Note that the condition (1.9) also holds in the case Hu = H. This special
case has been treated in [12].

3. Robustness

In this section, we study the robustness of the controls (2.2), (2.3) and (2.14)
under a class of perturbations on the dynamic A of (1.1).
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3.1. Strong robustness. In this part, we consider the strong robustness of the
feedbacks (2.2) and (2.3). We show that the stability property of the system (1.1)
remains invariant under a certain class of bounded perturbations. Consider the
perturbed system

dz(t)
dt

= (A + E)z(t) + v(t)Bz(t), z(0) = z0 . (3.1)

Where E is a perturbation of A. Let us define

Λ =
{
E ∈ L(H);E commutes with Pu, E = FB for some F ∈ L(H),

A + E is dissipative and ‖Es‖ <
η

α

}
.

where α, η are given by (2.9).

Proposition 3.1. Let

(i) A generate a linear C0-semigroup S(t) of contractions on H such that (1.7)
holds,

(ii) B be self-adjoint, positive and compact such that (2.1) holds, and
(iii) E ∈ Λ.

Then both the feedbacks (2.2) and (2.3) strongly stabilize the system (3.1).

Proof. Since A + E is dissipative, the operator A + E generates a semigroup of
contractions T (t) (see [13]). Let us show that (2.1) ⇒ (〈BT (t)y, T (t)y〉 = 0 for all
t ≥ 0 =⇒ y = 0). Suppose that 〈BT (t)y, T (t)y〉 = 0 for all t ≥ 0. Since B ≥ 0,
we have B1/2T (t)y = 0 and so BT (t)y = 0 for all t ≥ 0. Using the variation of
constant formula, we obtain

T (t)y = S(t)y +
∫ t

0

S(t− s)ET (s)yds, ∀y ∈ H, (3.2)

which implies that T (t)y = S(t)y, and so 〈BS(t)y, S(t)y〉 >= 0 for all t ≥ 0. It
follows from (2.1) that y = 0.

Taking y = z0s in (3.2) and using the fact that E commutes with Pu, we obtain
the formula

Ts(t)z0s = Ss(t)z0s +
∫ t

0

Ss(t− s)EsTs(s)z0sds,

where Ts(t) is the restriction of T (t) to Hs. Then, using the fact that Ss(t) verifies
(2.9), we obtain

‖Ts(t)z0s‖ ≤ α‖z0s‖ exp(−ηt) + α‖Es‖
∫ t

0

exp(−η(t− s))‖Ts(s)z0s‖ds .

Applying the Gronwall’s inquality, we deduce that

‖Ts(t)z0s‖ ≤ α exp((α‖Es‖ − η)t)‖z0s‖ .

Taking ‖Es‖ < η
α , we conclude that Ts(t) satisifes (2.9). The result of Theorem 2.1

completes the proof. �
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3.2. Exponential robustness. Consider the perturbed system
dz(t)
dt

= (A + E)z(t) + v(t)Bz(t), z(0) = z0, (3.3)

where E is a perturbation of A. In this part, we consider the robustness of the
feedback control law (2.14).

Let us define the set of admissible operator of perturbations

Λ =
{
E ∈ L(H);E commutes with Pu, Eu = BuFu, for some Fu ∈ L(Hu),

Au + Eu is dissipative and ‖Es‖ ≤ ε
η

α
, (0 < ε < 1)

}
.

Proposition 3.2. Let
(i) Au generates a linear C0−semigroup of isometries Su(t) on H such that

(1.7) holds,
(ii) B ∈ L(H) and Bu is self-adjoint, positive such that (2.13) holds, and
(iii) E ∈ Λ.

Then there exists ρ > 0 such that the feedback (2.14) is exponentially robust.

Proof. Since E commutes with Pu, the perturbed system (3.3) can be decomposed
as

dzu(t)
dt

= (Au + Eu)zu(t) + v(t)Buzu(t), zu(0) = z0u ∈ Hu,

and
dzs(t)

dt
= (As + Es)zs(t) + v(t)Bszs(t), zs(0) = z0s ∈ Hs. (3.4)

Using the same techniques as in the proof of Proposition 3.1, we can show that

〈BuTu(t)yu, Tu(t)yu〉 = 0, ∀ t ≥ 0 =⇒ yu = 0

and
‖Ts(t)z0s‖ ≤ α exp((α‖Es‖ − η)t)‖z0s‖ .

We conclude that Ts(t) verifies (2.9) and hence the solution of (3.4) verifies the
estimate (2.19). Taking ρ > 0 such that ρ < (1 − ε) η

α‖B‖2 , we deduce that the
feedback law (2.14) exponentially stabilizes the perturbed system. �

4. Applications

Let us consider the system defined by

∂z(x, t)
∂t

=
∂2z(x, t)

∂x2
+ v(t)Bz(t), ∀x ∈]0, 1[, ∀t > 0,

z′(0, t) = z′(1, t) = 0, ∀t > 0
(4.1)

where the state space is H = L2(0, 1), the operator is Az = ∂2z
∂x2 , for z ∈ D(A) =

{z ∈ H2(0, 1) : z′(0) = z′(1) = 0}. The spectrum of A is given by the simple
eigenvalues λj = −π2(j − 1)2, j ∈ N∗ and eigenfunctions ϕ1(x) = 1 and ϕj(x) =√

2 cos((j − 1)πx) for all j ≥ 2.
For the operator of control B, we consider two situations:
Case 1: B = I. This case has been considered in [11] to obtain strong stabiliz-

ability of (4.1) using the quadratic feedback (1.8). However, in this way one does not
obtain a better convergence than of order of 1/

√
t. In the following, we show that

the feedback (2.14) ensures the exponential stability. In the case
∫ 1

0
z(x, t)dx = 0,

we have zu(t) = 0 for all t ≥ 0, then vu(t) = 0 and z(t) = zs(t) = Ss(t)z0s.
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Let us suppose that
∫ 1

0
z(x, t)dx 6= 0. Here we can take η = α = 1. Then applying

the result of Theorem 2.4, we deduce that for all 0 < ρ < 1, the control vu(t) = −ρ
achieves the exponential stabilization of (4.1) with the rate of convergence β =
min( 1

2 ln( 11
9 ), 1− ρ).

Note that zu(t) can be directly expressed zu(t) = e−tz0u, ∀t ≥ 0. This shows
that the rate of exponential convergence β can be improved since we have 1 >
min( 1

2 ln( 11
9 ), 1− ρ).

Now let us examine the robustness of the control (2.14). Let us reconsider the
above system with the perturbation Ez = ε(z −

∫ 1

0
z(x)dx), 0 < ε < 1. The

perturbed open-loop system remains unstable. However, for all 0 < ρ < 1− ε, the
control v(t) = −ρ exponentially stabilizes the perturbed system.

Case 2: Bz =
∑+∞

j=1 αj < z, ϕj > ϕj , where αj ≥ 0 for all j ≥ 1 and∑+∞
j=1 α2

j < ∞. This case was considered in [12], where it has been showed that
if, αj > 0 for all j ≥ 1 then (1.5) weakly stabilizes (4.1). Here we show that the
stability is in the strong sense. Clearly B is a linear and compact operator, and
from the relation

〈BS(t)y, S(t)y〉 =
+∞∑
j=1

αj |〈z, ϕj〉|2,

we can see that (2.1) holds if αj > 0 for all j ≥ 1. In this case, Theorem 2.1 applies
and the system (4.1) is strongly stabilizable using the controls (2.2) and (2.3); i.e.,

v1(t) = −ρ

+∞∑
j=1

αj |〈z(·, t), ϕj〉|2

and

v2(t) =
−ρ

‖z(·, t)‖2
+∞∑
j=1

αj |〈z(·, t), ϕj〉|2, ∀z0 6= 0 .

Note that (1.4) does not hold, so the existing result of [12] is not applicable to
establish exponential stabilization by the control (1.5).

It is clear that we can apply the result of Theorem 2.4 to deduce that if α1 > 0
and 0 < ρ < 1/α1, then the control defined by vu(t) = −α1ρ, for all z0 such that
z0u 6= 0 ensures the exponential stabilizability of (4.1) with the rate of convergence
β = min(ln(11/9)/2, 1− ρ). With the perturbation

Ez = ε(z −
∫ 1

0

z(x)dx), 0 < ε ≤ 1

on the open-loop system, both controls (2.2) and (2.3) are strongly robust, and for
0 < ε < 1, the control (2.14) is exponentially robust.

Conclusion. In this work we have considered the problem of strong stabilization of
a constrained parabolic bilinear system under the conventional ad-condition (1.3).
Under a weaker condition than (1.4), an exponential stabilization result has been
established. Also the question of robustness of the stabilizing controls is discussed.
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