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EXISTENCE OF ENTIRE SOLUTIONS FOR SEMILINEAR
ELLIPTIC SYSTEMS UNDER THE KELLER-OSSERMAN

CONDITION

ZHIJUN ZHANG, YONGXIU SHI, YANXING XUE

Abstract. Under the Keller-Osserman condition on f + g, we show the ex-
istence and nonexistence of entire solutions for the semilinear elliptic system
∆u = p(x)f(v), ∆v = q(x)g(u), x ∈ RN , where p, q : RN → [0,∞) are
continuous functions.

1. Introduction

The purpose of this paper is to investigate the existence and nonexistence of
entire solutions to the semilinear elliptic system

∆u = p(x)f(v), x ∈ RN (N ≥ 3),

∆v = q(x)g(u), x ∈ RN .
(1.1)

By an entire large solution (u, v), we mean a pair of functions u, v ∈ C2(RN ) that
satisfies (1.1) and

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = +∞. (1.2)

In this article, we assume that p, q, f and g satisfy the following hypotheses:
(H1) p, q : RN → [0,∞) and f, g : [0,∞) → [0,∞) are continuous and nontrivial;
(H2) f and g are nondecreasing on [0,∞) and f(t) > 0, g(t) > 0 for all t > 0;
(H3) H(∞) := limr→∞H(r) = ∞,

where

H(r) :=
∫ r

a

dt√
2(F (t) +G(t))

, r ≥ a > 0, (1.3)

F (t) :=
∫ t

0

f(s)ds, G(t) :=
∫ t

0

g(s)ds. (1.4)

We see that
H ′(r) =

1√
2(F (r) +G(r))

> 0, ∀r > a
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and H has the inverse function H−1 on [a,∞). Denote

φ1(r) := max
|x|=r

p(x), φ2(r) := min
|x|=r

p(x),

ψ1(r) := max
|x|=r

q(x), ψ2(r) := min
|x|=r

q(x).
(1.5)

First we review the single elliptic equation

∆u = p(x)f(u), x ∈ RN . (1.6)

For p ≡ 1 on RN and f satisfying (H1) and (H2), Keller-Osserman [8, 15] first
supplied the necessary and sufficient condition∫ ∞

1

dt√
2F (t)

= ∞ (1.7)

for the existence of entire radial large solutions to (1.6). For the weight p(x) = p(|x|)
and f(u) = uα with α ∈ (0, 1], Lair and Wood [10] proved that (1.6) has a non-
negation entire radial large solution if and only if∫ ∞

0

rp(r)dr = ∞. (1.8)

Recently, Lair [11] obtained the following results.

Lemma 1.1. Let f and b satisfy (H1) and (H2) with f(0) = 0. Suppose

(i) (1.7) holds;
(ii) there exists a positive constant ε such that

∫∞
0
r1+εφ1(r)dr <∞,

(iii) r2N−2φ1(r) is nondecreasing near ∞.

Then (1.6) has one nonnegative nontrivial entire bounded solution. If, on the other
hand, p satisfies ∫ ∞

0

rφ2(r)dr = ∞

and (iii) holds, then (1.6) has no nonnegative nontrivial entire bounded solution.

Lemma 1.2. Let f and b satisfy (H1) and (H2) with f(0) = 0 and p(x) = p(|x|).
Suppose (1.7) holds. Then (1.6) has one nonnegative nontrivial entire solution.
Suppose further that (iii) and (1.8) hold, then any nonnegative nontrivial entire
solution of (1.6) is large. Conversely, if (1.6) has a nonnegative nontrivial entire
large solution, then p satisfies∫ ∞

0

r1+εφ1(r)dr = ∞, ∀ε > 0.

For more works, see for example [1, 2, 4, 9, 10, 11, 18, 20, 21, 22] and the
references therein.

Now let us return to (1.1).
When p(x) = p(|x|), q(x) = q(|x|), f(v) = vα, g(u) = uγ , and 0 < α ≤ γ, Lair

and Wood [12] considered the existence and nonexistence of entire positive radial
solutions to system (1.1). Moreover, when 0 < α ≤ 1 and 0 ≤ γ ≤ 1, Lair [13]
showed that (1.1) has a nonnegative entire radial large solution if and only if p and
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q satisfy both of the following conditions∫ ∞

0

tp(t)
(
t2−N

∫ t

0

sN−3Q1(s)ds
)α

dt = ∞, (1.9)∫ ∞

0

tq(t)
(
t2−N

∫ t

0

sN−3P1(s)ds
)γ

dt = ∞, (1.10)

where

P1(r) =
∫ r

0

τp(τ)dτ, Q1(r) =
∫ r

0

τq(τ)dτ.

Ghanmi, Mâagli, Rădulescu and Zeddini [5] generalized the results in [12] to the
case when f and g are satisfy the condition that: For all c > 0, there exists Lc > 0
such that for all s1, s2 ∈ [c,∞),

|f(s2)− f(s1)|+ |g(s2)− g(s1)| ≤ Lc|s2 − s1|. (1.11)

Recently, the authors in [14] showed the existence of entire positive radial large
solutions for (1.1) under the condition∫ ∞

1

ds

f(s) + g(s)
= ∞. (1.12)

For related works, see [3, 4, 5, 16, 19, 21, 22, 23] and the references therein.
In this paper, we extend some of the existence results for entire positive solutions

in Keller [8], Osserman [15] and Lair [11] to (1.1). Our main results are as the
following.

Theorem 1.3. Under the hypotheses (H1)–(H3). Suppose that
(H4) r2N−2

(
φ1(r) + ψ1(r)

)
is nondecreasing for large r;

(H5) there exists a positive constant ε such that∫ ∞

0

r1+ε
(
φ1(r) + ψ1(r)

)
dr <∞,

then (1.1) has a positive entire bounded solution (u, v).

From Theorem 1.3, we have the following corollaries for the spherically symmetric
case p(x) = p(|x|) and q(x) = q(|x|).

Corollary 1.4. Under hypotheses (H1)–(H3), (1.1) has one positive solution (u, v).
Suppose furthermore that

(H6) P (∞) = Q(∞) = ∞, where

P (∞) := lim
r→∞

P (r), P (r) :=
∫ r

0

t1−N
( ∫ t

0

sN−1p(s)ds
)
dt, r ≥ 0,

Q(∞) := lim
r→∞

Q(r), Q(r) :=
∫ r

0

t1−N
( ∫ t

0

sN−1q(s)ds
)
dt, r ≥ 0.

Then every positive radial entire solution (u, v) of (1.1) is large and satisfies

u(r) ≥ u(0) + f(v(0))P (r), v(r) ≥ v(0) + g(u(0))Q(r), ∀r ≥ 0.

Corollary 1.5. Assume (H1)–(H4). If (1.1) has a non-negative radial entire large
solution, then ∫ ∞

0

r1+ε
(
p(r) + q(r)

)
dr = ∞, ∀ε > 0. (1.13)
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Corollary 1.6. Under hypotheses (H1)–(H3), (1.1) has no radial entire large so-
lutions if p+ q satisfies one of the following conditions:

(i) p(r) + q(r) ≤ Cr2−2N for large r;
(ii) r2N−2

(
p(r) + q(r)

)
is nondecreasing near ∞ and∫ ∞

0

√
p(r) + q(r)dr <∞;

(iii)
∫∞
0

√
Λ(r)dr <∞, where

Λ(r) = max
t∈[0,r]

(
p(t) + q(t)

)
, r ≥ 0. (1.14)

Theorem 1.7. Under hypotheses (H1)–(H3), (1.1) has no radial entire large solu-
tions if p+ q satisifes

0 < lim inf
r→∞

p(r) + q(r)
rβ

≤ lim sup
r→∞

p(r) + q(r)
rβ

<∞, β < −2. (1.15)

Remark 1.8. By (H1) and (H2), we see that (H3) implies∫ ∞

a

ds√
F (s)

=
∫ ∞

a

ds√
G(s)

= ∞.

Remark 1.9. By [10], we see that P (∞) = ∞ if and only if
∫∞
0
rp(r)dr = ∞.

Remark 1.10. By [9], we see that if
∫∞
1

dt√
F (t)

<∞, then
∫∞
1

dt
f(t) <∞. In other

words, if
∫∞
1

dt
f(t) = ∞, then

∫∞
1

dt√
F (t)

= ∞. Conversely, if
∫∞
1

dt√
F (t)

= ∞, then∫∞
1

dt
f(t) = ∞ does not hold. For example,

f(t) = 2(1 + t)(ln(t+ 1)
)2σ−1( ln(t+ 1) + σ

)
, F (t) = (t+ 1)2

(
ln(t+ 1)

)2σ
,

where σ > 0. We can see that
∫∞
1

dt
f(t) = ∞ if and only if σ ∈ (0, 1/2] and∫∞

1
dt√
F (t)

= ∞ if and only if σ ∈ (0, 1].

2. Proof of main theorems

Proof of Theorem 1.3. Suppose (H4) holds. We will show that (1.1) has a solution
by finding a supersolution, (ū, v̄) and a subsolution, (u, v), for which u ≤ ū and
v ≤ v̄. To do this, we first prove the existence of (u, v) to (1.1) by considering the
system of the integral equations

u(r) = β +
∫ r

0

t1−N
( ∫ t

0

sN−1φ1(s)f(v(s))ds
)
dt, r ≥ 0,

v(r) = β +
∫ r

0

t1−N
( ∫ t

0

sN−1ψ1(s)g(u(s))ds
)
dt, r ≥ 0,

(2.1)

where β ≥ a > 0, a is in (1.3). Let {vm}m≥0 and {um}m≥1 be the sequences of
positive continuous functions defined on [0,∞) by

v0(r) = β,

um(r) = β +
∫ r

0

t1−N
( ∫ t

0

sN−1φ1(s)f(vm−1(s))ds
)
dt, r ≥ 0,

vm(t) = β +
∫ r

0

t1−N
( ∫ t

0

sN−1ψ1(s)g(um(s))ds
)
dt, r ≥ 0.

(2.2)
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Obviously, for all r ≥ 0 and m ∈ N, um(r) ≥ β, vm(r) ≥ β and v0 ≤ v1. (H2)
yields u1(r) ≤ u2(r) for all r ≥ 0, then v1(r) ≤ v2(r) for all r ≥ 0. By the same
argument, we obtain that the sequences {um(r)} and {vm(r)} are increasing with
respect to m for r ∈ [0,∞). Moreover, for each r > 0,

u′m(r) = r1−N
( ∫ r

0

sN−1φ1(s)f(vm−1(s))ds
)
≥ 0,

v′m(r) = r1−N
( ∫ r

0

sN−1ψ1(s)g(um(s))ds
)
≥ 0

and (
rN−1

(
um(r) + vm(r)

)′)′
= rN−1

(
φ1(r)f(vm−1(r)) + ψ1(r)g(um(r))

)
≤ rN−1

(
φ1(r) + ψ1(r)

)(
f(vm(r) + um(r)) + g(vm(r) + um(r))

)
.

Let
Λ(r) = max

t∈[0,r]

(
φ1(t) + ψ1(t)

)
, r ≥ 0.

Multiplying this by 2rN−1
(
um(r) + vm(r)

)′ and integrate on [0, r], we obtain(
rN−1

(
um(r) + vm(r)

)′)2

≤ 2
∫ r

0

t2(N−1)
(
φ1(t) + ψ1(t)

)
(
f(vm(t) + um(t)) + g(vm(t) + um(t))

)(
um(t) + vm(t)

)′
dt

≤ 2r2(N−1)Λ(r)
∫ um(r)+vm(r)

2β

(
f(σ) + g(σ)

)
dσ

≤ 2r2(N−1)Λ(r)
(
F (um(r) + vm(r)) +G(um(r) + vm(r))

)
,

and(
um(r) + vm(r)

)′ ≤ √
2Λ(r)

((
F (vm(r) + um(r)) +G(vm(r) + um(r))

))1/2

. (2.3)

Thus ∫ r

0

u′m(t) + v′m(t)
√

2
(
F (um(t) + vm(t)) +G(um(t) + vm(t))

)1/2
dt

=
∫ um(r)+vm(r)

2β

dτ√
2(F (τ) +G(τ))

= H(um(r) + vm(r))−H(2β) ≤
∫ r

0

√
M(t)dt.

Since H−1 is increasing on [0,∞), we have

um(r) + vm(r) ≤ H−1
(
H(2β) +

∫ r

0

√
M(t)dt

)
, ∀r ≥ 0. (2.4)

It follows by (H3) and (2.2) that the sequences {um} and {vm} are bounded and
equi-continuous on [0, c0] for arbitrary c0 > 0. By Arzela-Ascoli theorem, {um}



6 Z. ZHANG, Y. SHI, Y. XUE EJDE-2011/39

and {vm} have subsequences converging uniformly to u and v on [0, c0]. By the
arbitrariness of c0 > 0, we see that (u, v) is a positive entire solution of

∆u = φ1(r)f(v) ≥ p(x)f(v), x ∈ RN ,

∆v = ψ1(r)g(u) ≥ q(x)g(u), x ∈ RN ;
(2.5)

i.e., (u, v) is a positive entire subsolution of (1.1).
Next we prove that (u, v) is bounded. Since (u, v) satisfies(

rN−1u′(r)
)′ = rN−1φ1(r)f(v), (2.6)(

rN−1v′(r)
)′ = rN−1ψ1(r)g(u). (2.7)

Choose R > 0 so that r2N−2
(
φ1(r) + ψ1(r)

)
is nondecreasing on [R,∞) and

u(r) > 0, v(r) > 0, ∀r ≥ R.

Now, since u′(r) ≥ 0 and v′(r) ≥ 0 for r ≥ 0, and (H2) holds, multiplying (2.6)
and (2.7) by rN−1u′(r) and rN−1v′(r), respectively, and integrating from 0 to r,
we have(

rN−1u′(r)
)2 ≤

(
RN−1u′(R)

)2 + 2
( ∫ r

R

t2(N−1)p(t)f(v(t))u′(t)dt
)

≤ C + 2r2(N−1)
(
φ1(r) + ψ1(r)

)( ∫ r

R

d

dt
F (v(t) + u(t))dt

)
≤ C + 2r2(N−1)

(
φ1(r) + ψ1(r)

)
F (v(r) + u(r)),

and (
rN−1v′(r)

)2 ≤ C + 2r2(N−1)
(
φ1(r) + ψ1(r)

)
G(v(r) + u(r)),

for r > R, where C =
(
RN−1

(
u′(R) + v′(R))

)2, which yields

u′(r) + v′(r)

≤
√

2Cr−(N−1) +
√

2(φ1(r) + ψ1(r))
(
G(u(r) + v(r)) + F (v(r) + u(r))

)1/2
,

and

d

dr

∫ u(r)+v(r)

u(R)+v(R)

dτ√
2
(
F (τ) +G(τ)

)
≤
√
Cr1−N

(
G(u(r) + v(r)) + F (v(r) + u(r))

)−1/2 +
√
φ1(r) + ψ1(r).

Integrating the above inequality and using the facts that

G(u(r) + v(r)) + F (v(r) + u(r)) ≥ G(u(R) + v(R)) + F (v(R) + u(R)) = C1,

for all r ≥ R, and√
φ1(r) + ψ1(r) ≤

√
2r1+ε

(
φ1(r) + ψ1(r)

)
r−1−ε ≤ r1+ε

(
φ1(r) + ψ1(r)

)
+ r−(1+ε)

for ε > 0, we have

H(u(r) + v(r)) ≤ H(u(R) + v(R)) +
∫ r

R

s1+ε
(
φ1(s) + ψ1(s)

)
ds+ (εRε)−1

+
√
CC−1

1 (NRN )−1.
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Letting r →∞, we find that (u, v) is bounded since φ1 +ψ1 satisfies (H5) and f+g
satisfies (H3). Thus, Since (u, v) is nondecreasing, we have

lim
r→∞

u(r) = M1 > 0, lim
r→∞

v(r) = M2 > 0.

In the same way, we can see that the system

ū(0) = v̄(0) = max{M1,M2}, ū′(r) = v̄′(r) = 0,

∆ū(x) = ū′′(r) +
N − 1
r

ū′(r) = φ2(r)f(v̄(r)), r > 0,

∆v̄(x) = v̄′′(r) +
N − 1
r

v̄′(r) = ψ2(r)g(ū(r)), r > 0

(2.8)

has a bounded solution (ū, v̄) which is a supersolution for (1.1). It is also clear that

ū(r) ≥M1 ≥ u(r), v̄(r) ≥M2 ≥ v(r), ∀r ≥ 0.

Hence the standard super-sub solution principle (see [17, 7]) implies that (1.1) has
a bounded solution (u, v) such that u(x) ≤ u(x) ≤ ū(x) and v(x) ≤ v(x) ≤ v̄(x) on
RN . This completes the proof. �

Proof of Theorem 1.7. We follow the arguments in ([6, Theorem 4.3] and [22, The-
orem 3.4]) for studying the nonexistence of entire radial large solutions to (1.6).
Let

a(r) = rθ

∫ ∞

r

t
(
p(t) + q(t)

)
dt, r ≥ 0. (2.9)

By (1.15), there exist R0 > 0, C2 > C1 > 0 such that

C1r
β ≤ p(r) + q(r) ≤ C2r

β , r ≥ R0,

so

a′(r) = θrθ−1

∫ ∞

r

t
(
p(t) + q(t)

)
dt− rθ+1

(
p(r) + q(r)

)
= −rβ+θ+1

(
C1 −

C2θ

−β − 2

)
< 0

provided θ ∈
(
0, C1C

−1
2 (−β − 2)

)
; i.e., a is decreasing in [R0,∞). Define

b(r) =
∫ ∞

r

t
(
p(t) + q(t)

)
dt, r ≥ 0. (2.10)

Now suppose that (1.1) has a radial entire large solution (u, v) with u(r) > 0
and v(r) > 0 for all r ≥ R, then for r ≥ R0

u(r) + v(r) = u(0) + v(0) +
1

N − 2

∫ r

0

(
1−

(τ
r

)N−2
)
τ
(
p(τ)f(v(τ))

+ q(τ)g(u(τ))
)
dτ,

≤ u(0) + v(0) +
1

N − 2

∫ r

0

(
1−

(τ
r

)N−2
)
τ
(
p(τ) + q(τ)

)
×

(
f(v(τ) + u(τ)) + g(u(τ) + v(τ))

)
dτ

= C +
C

N − 2

∫ r

R0

(
1−

(τ
r

)N−2
)
τ
(
p(τ) + q(τ)

)
×

(
f(v(τ) + u(τ)) + g(u(τ) + v(τ))

)
dτ.
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Let τ = b−1(s), w = (u+v)◦b−1. By the monotonicity of b and a = rθb in [R0,∞),
t
(
b−1(t)

)θ is increasing in (0, t0], where t0 = b(R0), and

1− rα ≤ Cα(1− r), ∀r ∈ [0, 1] and and fixed α > 0, (2.11)

we obtain, for t ∈ (0, t0],

w(t) = C +
1

N − 2

∫ t0

t

(
1−

(b−1(s)
b−1(t)

)N−2
)(
f(w(s)) + g(w(s))

)
ds

≤ C +
1

N − 2

∫ t0

t

(
1−

( t
s

)(N−2)/θ
)(
f(w(s)) + g(w(s))

)
ds

≤ C +
1

N − 2

∫ t0

t

(
1− t

s

)(
f(w(s)) + g(w(s))

)
ds = z(t).

It is easy to see that z′(t) ≤ 0 for t ∈ (0, t0] and

z′′(t) =
C

(
f(w(t)) + g(w(t))

)
t

≤
C

(
f(z(t)) + g(z(t))

)
t

,

which yields

z′2(t0)− z′2(t) = 2
∫ t0

t

z′′(s)z′(s)ds

≥ 2C
∫ t0

t

(
f(z(s)) + g(z(s))

)
z′(s)

s
ds

≥ 2C
t

∫ t0

t

(
f(z(s)) + g(z(s))

)
z′(s)ds

=
2C
t

(
F (z(t0)) +G(z(t0))− F (z(t))−G(z(t))

)
.

Since limt→0 w(t) = ∞, so is F (z(t)) + G(z(t)). We obtain, for 0 < t < t1 small
enough,

z′2(t) ≤
C

(
F (z(t)) +G(z(t))

)
t

,

and

− C√
t
≤ z′(t)√

F (z(t)) +G(z(t))
≤ 0.

Integrating from t to t1 and letting t→ 0, we obtain∫ ∞

z(t1)

dσ√
F (σ) +G(σ)

≤ C

∫ t1

0

dt√
t

= 2C
√
t1 <∞.

This is a contradiction. The proof is completed. �
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[3] F. Ĉırstea, V. Rădulescu; Entire solutions blowing up at infinity for semilinear elliptic sys-
tems, J. Math. Pures Appl. 81 (2002), 827-846.
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