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INTERVAL CRITERIA FOR OSCILLATION OF SECOND-ORDER
IMPULSIVE DIFFERENTIAL EQUATION WITH MIXED
NONLINEARITIES

VELU MUTHULAKSHMI, ETHIRAJU THANDAPANI

ABSTRACT. We establish sufficient conditions for the oscillation of all solutions
to the second-order impulsive differential equation

(r®a' 1) +p®)2' () + a®)z(t) + > qi(t)|x(t)|* sgna(t) = e(t), t# 7,
i=1
a(mt) = apz(re), ' (o) = bra’ (k).

The results obtained in this paper extend some of the existing results and are
illustrated by examples.

1. INTRODUCTION

Consider the second-order impulsive differential equation, with mixed nonlinear-
ities,

“sgnz(t) =e(t), t# T,

(r(t)2'(8)" + p(t)2' (t) + q(t)(t) + Z qi(t)](t)

x(Tk+) = ak{,C(Tk), x,(Tk+) = bkx/(’Tk),

(1.1)
where t > tg, k € N, 73, is the impulse moments sequence with
0<tg=mp<m < - <1 < ,,.,klim T = 00,
(k) = z(r, ) = lim x(t), z(mt) = lim z(t),
t""'k_o tHT:O
- : +h) _x(Tk) . x(Tk-i-h) —x(Tk+)
’ o - :C(Tk ’ )= ] .
() = 2" (17) e 5 ;o (™) Jim, -

Throughout this paper, assume that the following conditions hold without further
mention:

C1) r € C'([to,0), (0,00)), p, ¢, gi, e € C([to,o0),R), i =1,2...,n;
(C2) a1 >+ >auym >1>ant1 > > ap > 0 are constants;
(C3) by > ax > 0, k € N are constants.

2000 Mathematics Subject Classification. 34C10, 34A37.

Key words and phrases. Oscillation; second order; impulse; damping term;
mixed nonlinearities.

(©2011 Texas State University - San Marcos.
Submitted October 6, 2010. Published March 9, 2011.

1



2 V. MUTHULAKSHMI, E. THANDAPANI EJDE-2011/40

Let J C R be an interval and define
PC(J,R) ={z: J — R: x(t) is piecewise-left-continuous

and has discontinuity of first kind at 77,s}.

By a solution of (I.I)), we mean a function z € PC([t,0),R) with a property
(ra’) € PC([tp,>),R) such that is satisfied for all ¢ > ty3. A nontrivial
solution is called oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory. An equation is called oscillatory if all its solutions are oscillatory.

In recent years the oscillation theory of impulsive differential equations emerging
as an important area of research, since such equations have applications in control
theory, physics, biology, population dynamics, economics, etc. For further applica-
tions and questions concerning existence and uniqueness of solutions of impulsive
differential equation, see for example [3] and the references cited therein.

In [1I 5l [7], the authors established several oscillation criteria for second-order
impulsive differential equations which are particular cases of . Compared to
second order ordinary differential equations [2, 4 6] [8, @l 10 1], the oscillatory
behavior of impulsive second order differential equations received less attention even
though such equations have many applications. Motivated by this observation, in
this paper, we establish some new oscillation criteria for all solutions of . Our
results extend those obtained in [I0] for equation without impulses. Finally some
examples are given to illustrate the results.

2. MAIN RESULTS

We begin with the following notation. Let k(s) = max{i : t¢ < 7; < s} and for
¢; < dj,let rj = max{r(t) : t € [¢;,d;]}, j = 1,2. For two constants ¢, d ¢ {71} with
¢ < d and a function ¢ € C([e,d],R), we define an operator 2 : C([¢,d],R) — R by

d 0, for k(c) = k(d),
Qo] = k(d)
D(Th(e)+1)0(c) + 222K ()42 @(Ti)e(Ti),  for k(c) < k(d),

where

b c - c bi — a;
B(c) = —meFL TRy T
ak(c)+1(Tk(c)+1 - C) ai(Ti - Ti—l)
Following Kong [2] and Philos [5], we introduce a class of functions: Let D =
{(t,s) : to < s < t}, Hi,Hy € CY(D,R). A pair of functions (Hy, Hy) is said to
belong to a function class H, if Hi(t,t) = Ha(t,t) =0, Hy(t,s) > 0, Ha(t,s) >0
for t > s and there exist hy, he € Lioc(D,R) such that
8H1 (t, 8) 8H2(t, S)

T = hl(t,S)Hl(t,S), T = 7h2(t, S)Hg(t,s). (21)

To prove our main results we need the following lemma due to Sun and Wong
[9].

Lemma 2.1. Let {a;}, i = 1,2,...,n, be the n-tuple satisfying aq > -+ > ayy >
1> ame1 > > ap > 0. Then there exist an n-tuple (n1,m2, ... ,7n) satisfying

n
i=1
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which also satisfies either

n
domi<l, 0<mi<l, (2.3)
=1

or
ZmzL 0<m < 1. (2.4)
i=1

Remark 2.2. For a given set of exponents {«;} satisfying a1 > -+ > ay, > 1 >
Qg1 >+ > ap > 0, Lemma 1 ensures the existence of an n-tuple (n1,72,...,7,)

such that either (2.2) and (2.3) hold or (2.2)) and (2.4) hold. When n = 2 and

a1 > 1> as > 0, in the first case, we have

1—0[2(1—7’]0) 0(1(1—7]0)—1
m=—-———""">H Mm=——" """
a1 — Qg ap — Q2
where 7y can be any positive number satisfying 0 < ng < (o3 — 1)/c;. This will
ensure that 0 < 11,72 < 1 and conditions (2.2) and (2.3)) are satisfied. In the second

case, we simply solve (2.2) and (2.4) and obtain
1-— (65) a1 — 1

m=——">H M=

ar —as’ ar —ag

Theorem 2.3. Assume that for any T > 0 , there exist c;,d;,0; ¢ {mx}, j =1,2
such that ¢; < 61 < dy < o < dg < do, and
q(t),q;(t) >0, te€ler,d1]U]ea,da], i=1,2...,n;
e(t) <0, tE€ e, di]; (2.5)
e(t) > 0,t € [ca,ds]

and if there exists (Hy, Hy) € H such that

5
(61 ) / it ;) [Q() - ir(t)(hl(t,cj) _Ir?gg 2]dt
d;
" ﬁ /5 13(d5,0)[ Q) = (1) (Ra(dy, 1) + f(g)?}dt (2.6)
> A(Hy, Hy; ¢j, dj),
where
= #jcj)m Lol + mﬁi [Ha(d;, )] (27)

and

Q(t) = q(t) + kole(t)[™ quh(t)’ ko = Hn{"i no=1- Zm (2.8)
i=0 =1

i=1
and n1,M2, - . ., Ny are positive constants satisfying (2.2) and (2.3) in Lemma 1, then
(1.1) s oscillatory.

Proof. Let x(t) be a solution of (1.1)). Suppose z(t) does not have any zero in
[c1,d1] U [c2,d2]. Without loss of generality, we may assume that z(t) > 0 for
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t € [c1,d1]. When z(t) < 0 for ¢ € [cg,ds], the proof follows the same argument
using the interval [cg, do] instead of [¢1,d;]. Define

te [Cl, dl] (29)

Then for ¢t € [c1,d;1] and t # 7k, we have

" _ _ p(t) w?(t)
4+ @)z E) —e(t)xH(t) — 2w(t) + . (2.10)
; r(t) r(t)
Recall the arithmetic-geometric mean inequality,
Zmui > Hu?, u; >0 (2.11)
i=0 i=0
where n; > 0,2 = 0,1, 2 ,n, are chosen according to given ai,as,...,q, as

in Lemma 1 satisfying (2.2] and . NOW identify ug = ng 'le(t)|z~1(¢) and
w; = n; tqi(t)x (L), i = 1,27 ...,n, in (2.11). Then equation (2.10) becomes

w'(t) > q(t) +ng ™ e(t)[x0( an Mgl (4)gm @D (1) — @w(t) N w2 (t)

r(t) r(t)
w2
— Q) - fggw(t) + r(g), te (1), ¢ # T
(2.12)
Fort=14, k=1,2,..., from , we have
w(n™) = b—kw(Tk). (2.13)

ag

Notice that whether there are or not impulsive moments in [¢1,d1] and [d1,d;], we
must consider the following 4 cases, namely, k(c1) < k(d1) < k(d1); k(c1) = k(61) <
k‘(dl); k‘(Cl) < k:(dl) = k‘(dl) and k‘(Cl) = k(él) = ki(dl)

Case 1. If k(c1) < k(61) < k(dy), then there are impulsive moments 7j(c )41,
Th(c1)+25 > Tk(d1) in [Cl, (51] and Tr(51)+1) Tk(61)4+25 -+ » Tk(dy) in [51, dﬂ respectively.
Multiplying both sides of inequality by Hi(t,c1), then integrating it from c;
to 61 and using , we have
01
Hl (t, Cl)Q(t)dt

C1

S " Hl (t, Cl)w’(t)dt — " Hl (t, Cl)u’;z(g?dt + ; Hl(t, Cl)w(t)fggdt
Th(eq)+1 Th(ep)+2 01
= Hy(t,c1)dw(t 2.14
(/61 " \/7'k(61)+1 " " /743(51) ) ( Jdwtt) ( )
o w(t) p(t)
-/, 01)[ i w(t)@}dt
k(61)

a; — b
= Z Hy(7i,c1) .

i=k(c1)+1 i

w(7;) + Hi(61, c1)w(dr) (2.15)
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1 c
-/ le((t;))[w2(t)+r(t)w(t)(h1(t,cl)fgg)}dt
k(1) a; — b
< Z Hi(7;,¢1) la‘ “w(r;) + Hy(01, c1)w(d1)
i=k(c1)+1 ‘
" Hy(t,¢1) r(t) p(H)\1?
N [“’“”7(}““"”)’@)] dt
O Hy(t, ey)r(t) p(t)\?
* c1 f(hl( 701)7ﬁt)> dt
k(01) a; — b:
= Z Hi (73, ¢1) la. “w(r;) + Hi (61, c1)w(d1)
i=k(c1)+1 ‘
41 2
+i i Hl(t,cl)r(t)(hl(t,cl)fg) dt

On the other hand, multiplying both sides of inequality (2.12) by Hz(d1,t), then
integrating it from d; to di, we have

dy k(d1)

Hg(dl,t)Q(t)dt < Z Hg(dl,Ti)aia;.bi’w(Ti) - Hg(dl,al)w(él)
31 i=k(51)+1 ! (2.16)
1[4 p(t)\2
+3 s Hz(dht)?"(t)(hz(dht)Jr@) dt.

Dividing (2.15)) and (2.16) by H;(d1,c1) and Ha(dy,01) respectively, then adding
them, we obtain

1 51 . e

s [ o0~ ot -2

1 i ! p(t)
o0 -+ 2

. S ai — b (2.17)
- Hi(01.c1) ik%;)Jrl fhinee) i w(r)

1 k(dy) -
+ m i—k%;)ﬂ Hy(dy, ) ; w(Ty).

Now for t € (c1, Th(ey)41)s

n

(rt)z'(t)) +pt)z'(t) = e(t) — q(t)x(t) — Z g;(t)z“ (t) <0

i=1

which implies that 2’(¢) exp (ft %ds) is non-increasing on (c1, Ty(c,)41)- S0
for any t € (c1, Tg(c,)+1], We have

(t) — x(er) = ()t — 1)
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N x()exp(ft %ds)

(s S (t - Cl)
exp ([ ¢ 7(2('3’( )ds)
>/ (t)(t —c1).
for some & € (¢1,t). Since z(c;) > 0, we have
/
_2(t) - 1 .
z(t) T t—a
Letting t — Th(en)+10 it follows that
7(Th(er)+1) r1
W\Tk(c 2 - Z - .
(Ti(eay 1) Th(er)+1 — C1 Th(cr)+1 — C1

Similarly we can prove that on (7;_1,7;),

wir) > ——1  fori=k(e1) +2,....k(61).
Ti — Ti-1
Using (2.18), (2.19) and (C3), we obtain
RO
> la‘ “w(r;) Hy (73, 1)
i=k(c1)+1 ¢
k(61)
bk c — Qk(c bz — Q;
= (c1)+1 ( 1)""1w(Tk(c1)+1)H1(Tk(c1)+1aCl) + Z :
Ok(cr)+1 i—h(c1)+2 a;
k(61)
> =11 | Hi(Tg(e)+1,¢1)0(cr) + Z Hl(Ti,Cl)&?(Ti)]
Z:k}(cl)-‘rQ
= 77"192 [Hl(.,cl)].
Thus, we have
G
Z ——w(r) Hy (7, ¢1) < Q0 [Ha (- e1)],
i=k(c1)+1 g
and
kld1) a; — bs
> 1@} “w(ri)Ha(dy, i) < r1Q§! [Ha(dy, ).
i=k(81)+1 ¢
Therefore, (2.17) becomes
1 5 1 (t 2
— H(t t) — —r(t)| hi(t, —
1 h 1 p(t)
—_— Hy(dy,t t) — — ha(d —
T Tty J, T JEORUC )( 2(d1,1) + (t)) Ja
1 s 71 d
< ——— O [Hq (. ——— Q% [Ha(dy, .
~ Hyi(61,¢1) el en)]+ Hy(dy,61) 5, [Ha(d, )]

= A(Hy, Hajcr,dr)
which contradicts ([2.6)).

EJDE-2011/40

(2.18)

(2.19)

’LU(Ti)Hl(TZ‘, Cl)

(2.20)
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Case 2. If k(c1) = k(d1) < k(dy), there is no impulsive moment in [c1, 01]).Then we
have
g1
Hl(t7cl)Q(t)dt
' 51 51
< / _
> o Hl(tacl)w (t)dt o Hl(ta Cl)|: ’I"(t) ’I"(t
31
= H(Geu(d) - | Hi(t.e1)| =0
< Hy (61, e1)w(6y) + - " u (t,c )r(t)(h (t,c )fp(t))th
Iy 1\01,¢1 1 4 o (% €1 1Y 1 r(t .

Thus using Q3! [H;(.,¢1)] = 0, we obtain

(2.21)

m jl H(t,c1) [Q(t) - ir(t) (hl(t,cl) B @)Q]dt

1 &
I —
H2(d1a51) 51
1 k(d1)

i — b
<— Hy(dy, i) ——w(r;)
Hy(dy,61) i_k%;)ﬂ a;

Qfslll [Ha(dy, )]

(s, )] Q(0) — r(0) (ol 1) + )

e
= Hy(dy,61)
S A(Hl,HQ;Cl,dl),

which is a contradiction. By a similar argument, we can prove the other two cases.
Hence the proof is complete. [l

Remark 2.4. When p(¢t) = 0, Theorem reduces to [B, Theorem 2.2] with
p(t) =1.

The following theorem gives an interval oscillation criteria for equation (1.1]) with
e(t) =0.

Theorem 2.5. Assume that for any T > 0, there exist c1,d1,01 ¢ {Tx} such that
c1 < 01 < dy, and q(t),q;(t) > 0 for t € [c1,d1] and if there exists (Hy,Hs) € H
such that

1 o ey L p(t)\?
H1(51,01) o Hl(t7cl) |:Q(t) - Zr(t) (hl(tvcl) - ’I"(t)> i|dt
1 b — 1 p(t)\2 (2.22)
ey ), e [Q(t) - 47 (hQ(dl,t) + Tt)) ]dt
> A(Hy, Hy;c1,dy),
where . .
QW) =q&)+ ki [T (®), ko=]]n™ (2.23)
i=1 i=1

A is defined as in Theorem [2.3 and n1,n2, ..., n, are positive constants satisfying
(2.2) and (2.4)) in Lemma 1, then (1.1)) is oscillatory.
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Proof. The proof is 1mmed1ate from Theorem [2.3] if we put e(t) = 0,170 = 0 and
applying conditions and (| of Lemma 1 (Il

Next we introduce another function class: a function u belongs to the class E. 4
if u € Cte,d], u(t) £ 0 and u(c) = u(d) = 0.

Theorem 2.6. Assume that for any T > 0, there exist c;,d; ¢ {Tx}, j = 1,2 such
that c; < dy < ca < da, and (2.5)) holds. Moreover if there exists u; € Ec, q; such
that

p(t)

Lh@ww%w—?ﬁw%ﬂw—mwwwfpﬁ”“@wﬂ =tz )

where Q(t) is the same as in Theorem [2.3, then (L.1) is oscillatory.
Proof. Proceed as in the proof of Theorem [2.3|to get (2.12]) and (2.13]).
If k(c1) < k(dy), there are all impulsive moments in [c1, d1]; Ti(e, )41, Ther)+2s

.., Ti(ay)- Multiplying both sides of (2.12)) by u}(t) and integrating over [c1,d1],
then using integration by parts, we obtain

k(dy)
Z uf (1) [w(r;) — w(r;h)]
i=k(c1)+1
> /:1 [Q(t)u%(t) - ir(t) (2u’1(t) _ ;:Eg“l(t)f}dt N (/cjk(qm
( 1) 2
k(d / / % up (H)w(t) + %r(t) (2u'1(t) - 1;23”1(0)} dt
c1)+1 7 Ti-1 Th(dy)

Thus, we have

k(d1) a; — b;

> “w(Ti)ui(Ti) > /dl [Q(t)uf(t) - ir(t) <2u/1 ®) - @M(t))?} "

imh(e)+1 N e r(t)

(2.25)
Proceeding as in the proof of Theorem ﬂ and using and -7 we obtain

L%p@ﬁw—}m@ww—ﬁQMM}ﬁSnmwm

which contradicts our assumption (2.24)).

If k(c1) = k(dy) then Q%1 [u?] = 0 and there is no impulsive moments in [cy, dy].
Similar to the proof of 2.25: , we obtain

d
' 1 p(t) 2
2 /
- - <0.
/C1 QM)u () — 3r(1) (204 () = Ztun () Jat <0
This is a contradiction which completes the proof. ([

Remark 2.7. When p(t) = 0, Theorem reduces to [l Theorem 2.1] with
p(t) =1.
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Theorem 2.8. Assume that for any T > 0, there exist ¢1,dy ¢ {7} such that
c1 < dy, and q(t),q;(t) > 0 for t € [c1,d1] and if there exists u € E,, 4, such that

d
) 1 p(t) )2
2 _ = ’ _P\Y) dif, 2
/C [t - o (2 ) - Zlun) Jae > oo (2.26)
where Q(t) is the same as in Theorem then with e(t) = 0 is oscillatory.

The proof of the above theorem is immediate by putting e(¢t) = 0 and 1y = 0 in
the proof of Theorem [2.6] Next we discuss the oscillatory behavior of the equation
(r(t)a’' () + p(t)2’(t) + q(t)z(t) + 1 (t)x* (t) =0, t# 7,

N =arz(r), 2 (") = bpa' (1), (2.27)

(7
where «; is a ratio of odd positive integers. Before stating our result, we prove

another lemma.

Lemma 2.9. Let u, B and C be positive real numbers and I, m be ratio of odd
positive integers. Then

() I>m+1,0<m<1, u!+MB=w7 > Bu™,

i) 0<l4+m<1, utm 1 4 MyCT=rmy™ > O,

(i) 0<1 L, w4+ MO

where

= ()T () e ()T

The proof of the above lemma follows by using elementary differential calculus,
and hence it is omitted.

Theorem 2.10. Assume that for any T > 0 , there exist c¢,d ¢ {7y} such that
c<d, and q(t) > 0,q1(t) > 0 fort € [c,d] and if there exists u € E. 4 such that

d
1 p(t) \?
2 = / _ P\Y) dr. 2

/C (Quu(t) = 7r(0) (20 (1) 2 (t)u(t)) Jat>rode?  (228)

where i > B+ 1,0 < B <1, Q1(t) = ¢qt) — Mlql(t)(p(t))O:i;*1 where My =
Jel

(%) e1=p=1 (%ﬁ;l) and p(t) is a positive continuous function, then (2.27) is
oscillatory.

Proof. Let x(t) be a solution of (2.27). Suppose z(t) does not have any zero in
[c, d]. Without loss of generality, we may assume that z(t) > 0 for ¢ € [c,d]. Define

_ (')

U)(t) = W, te [C, d]
Then for ¢ € [¢,d] and t # 7, we have
w'(t) = q(t) + qr (2 (t) - fggw(t) 4 “;(g), (2.20)
w2
w'(t) > q(t) + a1 ()2 H(t) — () p(H)2 (1) — fﬁiiw@ + mg)
— ar— p(t) w2(t)
= a(t) + a0 0) (#7740 o0 (1)) — gl + o



10 V. MUTHULAKSHMI, E. THANDAPANI EJDE-2011/40

Thus by Lemma 2(i), we have

t) w(t)

"(t) > Q1 (t) — p®) t . 2.30

w(0)> Qu(t) ~ (o + 2k (230)
Then following the proof of Theorem we obtain a contradiction to (2.28]). Hence
the proof is complete. ([

Theorem 2.11. Assume that for any T > 0 , there exist ¢,d ¢ {7} such that
c<d, and q(t) > 0,q1(t) > 0 fort € [¢,d] and if there exists u € E. 4 such that

/c ’ [Qz(t)uz(t) - %r(t) (2u’(t) - fgu(t)ﬂ dt > r,Q%[u?] (2.31)

where 0 < aq + ag < 1, Q2(t) = q(t) — M2q1(t)(p(t)) a2 where

[

2
My, = (1*1“_17;10‘2)(12‘—31) 1=e1=22 and p(t) is a positive continuous function, then

([2.27) is oscillatory.
Proof. Proceeding as in the proof of Theorem we obtain (2.29) or

_ - ) w?(t)
() = at) + (&) (+™ () — plt "“Qt)—ZLt :
w(0) = alt) + (1) (247 0) = plt)a~ (1)) = Hiluin) + 2
Now use Lemma 2(ii) and then proceed as in the proof of Theorem Thus we
obtain a contradiction to condition (2.31)). This completes the proof. O

Remark 2.12. When ¢;(¢t) = 0, then the results of Theorems [2.10] and [2.11] are
the same and it seems to be new. However, Theorem and Theorem [2.11] are
not applicable when ¢(t) = 0. Therefore, it would be interesting to obtain results
similar to Theorems and which are applicable to the case ¢(t) = 0 and

qi(t) 0.

3. EXAMPLES
In this section, we give some examples to illustrate our results.
Example 3.1. Consider the impulsive differential equation

2" (t) + sinta’ (t) + (Lcost)z(t) + (Iy sint)|z(t)]? sgn z(t)

+ (Iycost)|z(t)|V/? sgna(t) = —cos2t, t# 7%, (3.1)
1 3
x(m*) = 5x(nﬂ), x'(q—kJr) — Zwl(m)’ 7, = 2kT + %7
where k € N, t > tg > 0,72, = 2n7+ %, Topy1 = 2nm+ 5, n =0,1,2,...,1,11,13 are

positive constants. Also note that r; = ro = 1. Now choose 19 = %, m = %, Ny = %
to get ko = 4% and Q(t) = lcost + 4%| — cos 2t| /4 (11 sint)%/3(Iy cos t) /8.
For any T' > 0, we can choose n large enough such that T < ¢; = 2n7w < §; =
2nm+ g <dy =2nm+ § =c2 < d :2n7r+3§” <dg=2nm+5,n=0,1,2,....
If we choose Hi(t,s) = Ha(t,s) = (t — s)? then hi(t,s) = —ha(t,s) = 2.
Then by using the mathematical software Mathematica 5.2, the left hand side of
the inequality with j =11is

m :1 Hi(t e1) [Q(t) - i’"(t) (hl(t,m) - @f}dt
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di
#1751) . Ha(d1,1) [Q(t) B ir(t) <h2(d1,t) + @)2} dt

! (D)
4 2nm+
= 6— l/ ’ (cost)(t — 2nm)?dt
2

ﬂ- nm

1 27L7T+S
—7/ (t — 2nm) (
4 2

nm

2 2nm+% T
) dt + l/ (cost)(2nm + 1 t)2dt
2

nﬂ'-i—1

23/4 T+
+ 421,578, 1/8/ | — cos2t|1/4(smt)5/8(cost)1/8(2n7r+ 1 —t)2dt
2

55/8 nm+§

1 [2nrts ™ -2 2
T e T (2 )]

4/2mr+g(nﬂ'—|—4 ) 2n7r+%—t+bm

~ 0.2400131 + 0.3061441,°/81,1/8 — 4.72546.

Note that there is no impulsive moment in (c1,01) and 7o, € (d1,d1). Also k(é1) =
2n — 1,k(dy) = 2n. Hence the right side of the inequality with j =1 is

1
Hy(dy,61)
64

= sz(dh Tzn)9(51)

o ¥<b2n_a2n) _ E
T 37 Qo T 3r

A(Hy, Hyjer,dy) = Qf[Hy(dy, )]

Thus ([2.6) is satisfied with j = 1 if

1
0.2400131 + 0.3061441,%/31,"/® > 4.72546 + 3—6 = 6.42311.
Y8

In a similar way, the left hand side of the inequality (2.6 with j = 2 is

e [ e [0 - 3100 (i) - 20
e 5 Halde, Q1) ~ 176 (et ) + 20)

~ 0.09941671 + 0.484371,%/81,/% — 4.23605.

Note that 79,41 € (c2,d2) and there is no impulsive moment in (d2,ds). Also
k(c2) = 2n, k(d2) = 2n + 1. Hence the right side of the inequality (2.6) with j = 2
is

A(Hl,HQ,CQ,dz) 95 [Hl( )]

H1(52702)
64
= ﬁHl(T2n+l7c2)9(02)
_ E(b2n+1 - a2n+1) _ 8
3T a2n+4+1 37T.
Thus ([2.6) is satisfied with j = 2 if

0.09941671 + 0.484371,%/31,1/® > 4.23605 + % = 5.08488.
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So, if we choose the constants [, [y, 1> large enough such that

0.2400131 + 0.3061441;>/815'/® > 6.42311,0.09941671 + 0.484371,°/%1,'/® > 5.08488,

then by Theorem equation (3.1]) is oscillatory. In fact, for [ = 20, I; = 30,
lo = 40, equation (3.1)) is oscillatory.

Example 3.2. Consider the impulsive differential equation

(ﬁx/(ﬂ)’ + (2cos4t)z’ (t) + (vo cost)z(t) + (v1 cos 2t)|x(t)|5/2 sgn (1)

+ (y2 cos 2t)|x(t)|/? sgnx(t) = sin2t, ¢ # 2w — g,
1 2 T
z(n 1) = gx(Tk), () = gl‘/(Tk), T = 2km — 3
(3.2)

where k € N, t >ty > 0, v;, ¢ = 0, 1,2 are positive constants.

Now choose 79 = 3, m = 3/8, 12 = 1/8 to get ko = 33% and Q(t) = vyocost +
3;%|sin2t|1/2(71 cos 2t)3/8 (45 cos 2t)1/8. For any T > 0, we can choose n large
enough such that T' < ¢y =2nm — 5, dy = co =2nm, do =2n7 + 5, n=1,2,....
If we take ui(t) = sindt, us(t) = sin8¢ then by using the mathematical software
Mathematica 5.2, we obtain

/ " Q) - 2 (2010 - X))

2nm
= / cos t sin? 4t dt
2

nr—%
4 . 2nm
t s 7138118 / | sin 2¢1/2 (cos 2t)%/8 (cos 2t) /8 sin® 4t dt
2nm—7%
1

2nm
1 2
- /2 . T smat (8 cos 4t — 2 cos 4t(2 + sin 2t) sin 4t) dt

~ 0.359165v0 + 0.673369+,°/5+,1/8 — 6.28071,

nm—

and
/c " [@ey3t) — 3r(n) (2u4r) - fguz(wﬂdt
=7 / e cos tsin® 8t dt
i

2n7r+%
+ W’ylg/g’yzl/g / | sin 2¢'/2 (cos 2t)%/® (cos 2t) /8 sin® 8t dt
2

nm

1 2n7r+% 1 ,
4 /2 3 iz (16088 — 2c0s46(2 + sin 20) sin8t) "dr

~ 0.3549470 + 0.5985517,%/84,1/8 — 0.18481.
Since k(c1) =n —1, k(d1) =n, 11 =1 and k(ca) = k(dz), we obtain
8(b, —an) 8

rlﬂgll [u%] === TQQ?ZZ [ug] =0.
n
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So, if we choose the constants 7y or 71,72 large enough such that
8
0.3591650 + 0.673369+, /8458 > 6.28071 + — = 8.82719,
™

0.35494v0 + 0.5985517,%/8451/8 > 9.1848,

then by Theorem[2.6] equation (3.2)) is oscillatory. In fact, for 7o = 40,71 = 20,72 =
30, equation ([3.2) is oscillatory.

Example 3.3. Consider the impulsive differential equation

2" () + (2sint)x’(t) + (Isint)z(t) + (I cost)x®(t) =0, t# 2kmw + %,

(3.3)

v(rp ") = da(ry), 2/ () =52"(m), 7% =2k7m+ %,

where £k € N, t > tg > 0, [,l; are positive constants. For any T' > 0, we can

choose n large enough such that T' < ¢ = 2nm + &, d = 2nm + 5, n = 1,2,....

Then ¢(t) = Isint > 0, ¢1(t) = l1cost > 0 on [c,d]. If we take u(t) = sin6t,

B = 1,p(t) = 4, we have M; = (3)V/3(3) and Q:(t) = Isint — 4%/3M;(l; cost).
Thus by using the mathematical software Mathematica 5.2, we have

/c ’ [Ql(t)u%) - ir(t) <2u/(t) - @u(t)ﬂ dt

r(t)
2nm+ 5 1\ 1/3 3 2nm+ 5
= l/ sin ¢ sin® 6tdt—44/3(7) <7)Zl/ cos tsin® 6¢ dt
2nm+ 5 4 4 2nm+ g
1 2nm+% 2
— f/ (12cos6t—251ntsin6t) dt
4 2nm+g

~ 0.4360411 — 0.7552450; — 19.4744.
Since k(c) =n —1,k(d) =n,r =1 and k(c) < k(d), we obtain

Q% u?) = %(bna_nan) = 3

™

So, if we choose the constants [,[; such that
0.4360417 — 0.7552451; > 19.4744 + 3 = 20.4293
T

then by Theorem equation (3.3) is oscillatory. In fact, for | = 50,1; = 0.01,
equation ({3.3) is oscillatory.

Example 3.4. Consider the impulsive differential equation
2" (t) — (sin 2)2’ () + ket/2x(t) + kyet/*23(t) = 0, t # 2k,

1 yon 1, (3.4)
= ix(Tk)’ () = §x (Tk), Tk = 2km,

where k € N, t > tg > 0, k, k; are positive constants. Note that a; = %, p(t) =

—sin2t. For any T' > 0, we can choose n large enough such that T' < ¢ = 2nmw — 7,

d=2nr+2% n=1,2,.... Then q(t) = ke'/? > 0, q1(t) = k1e"/* > 0 on [c, d]. If we
take u(t) = cos2t, ag = %, p(t) = 3, we have My = } and Qz(t) = ke'/? — Sfiet/4.
Thus by using the mathematical software Mathematica 5.2, we have

/C ’ {Qg(t)uQ(t) - ir(t) (2u’(t) - fgu(t)ﬂ dt

(")
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2n7r+% 9 2n7r+%
= k/ et/? cos? 2t dt — Ekl / et’* cos? 2t dt
2 2

i .
nm a1 nm a1

4
~ 18.3585k — 8.52225k; — 2.52401.
Since k(c) =n —1, k(d) =n, r1 =1 and k(c) < k(d), we obtain
4

TlQ?[U/Q] = ;.

So, if we choose the constants k, k1 such that

1 2nm+ % 2
- = / ( — 4sin 2t + (sin 2t)(cos 2t)) dt
2

_T
nm P

4
18.3585k — 8.52225k; > 2.52401 + i 3.79725

then by Theorem [2.11} equation ([3.4)) is oscillatory. In fact, for k = ky = 1, equation
(3.4) is oscillatory.
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