
Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 41, pp. 1–20.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

INTERIOR FEEDBACK STABILIZATION OF WAVE EQUATIONS
WITH TIME DEPENDENT DELAY

SERGE NICAISE, CRISTINA PIGNOTTI

Abstract. We study the stabilization problem by interior damping of the
wave equation with boundary or internal time-varying delay feedback in a
bounded and smooth domain. By introducing suitable Lyapunov functionals
exponential stability estimates are obtained if the delay effect is appropriately
compensated by the internal damping.

1. Introduction

Let Ω ⊂ Rn be an open bounded set with boundary Γ of class C2. We assume
that Γ is divided into two parts Γ0 and Γ1; i.e., Γ = Γ0 ∪ Γ1, with Γ0 ∩ Γ1 = ∅ and
meas Γ0 6= 0.

We consider the problem

utt(x, t)−∆u(x, t)− a∆ut(x, t) = 0 in Ω× (0,+∞), (1.1)

u(x, t) = 0 on Γ0 × (0,+∞), (1.2)

µutt(x, t) = −∂(u + aut)
∂ν

(x, t)− kut(x, t− τ(t)) on Γ1 × (0,+∞), (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (1.4)

ut(x, t) = f0(x, t) in Γ1 × (−τ(0), 0), (1.5)

where ν(x) denotes the outer unit normal vector to the point x ∈ Γ and ∂u
∂ν is the

normal derivative. Moreover, τ = τ(t) is the time delay, µ, a, k are real numbers,
with µ ≥ 0, a > 0, and the initial datum (u0, u1, f0) belongs to a suitable space.

It is well-known that the above model is exponentially stable in absence of delay;
that is, if τ(t) ≡ 0. We refer to [2, 18, 17, 19, 14, 16, 15, 30] for the more studied
case a = 0, µ = 0 and to [11, 22, 7, 28, 9] in the case a, µ > 0.

In presence of a constant delay, when µ = 0 and the condition (1.3) is substituted
by

∂u

∂ν
(x, t) = −kut(x, t− τ), Γ1 × (0,+∞),

the system becomes unstable for arbitrarily small delays (see [5]).
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Then, the 1-d version of the above model with µ = 0 in the boundary condition
(1.3) has been considered by Morgül [22] who proposed a class of dynamic boundary
controllers to solve the stability robustness problem.

In the case µ > 0, (1.3) is a so-called dynamic boundary condition. Dynamic
boundary conditions arise in many physical applications, in particular they occur
in elastic models. For instance, these conditions appear in modelling dynamic
vibrations of linear viscoelastic rods and beams which have attached tip masses
at their free ends. See [1, 3, 21, 9] and the references therein for more details.
The above model without delay (e.g. τ = 0) has been proposed in one dimension
by Pellicer and Sòla-Morales [28] as an alternative model for the classical spring-
mass damper system, the case k = 0 being treated in [11]. In both cases, no rates
of convergence are proved. In dimension higher than 1, we refer to Gerbi and
Said-Houari [9] where a nonlinear boundary feedback is even considered and the
exponential growth of the energy is proved if the initial data are large enough. A
different problem with a dynamic boundary condition (without delay), motivated
by the study of flows of gas in a channel with porous walls, is analyzed in [7] where
exponential decay is proved.

On the function τ we assume that there exist positive constants τ0, τ such that

0 < τ0 ≤ τ(t) ≤ τ , ∀t > 0. (1.6)

Moreover, we assume

τ ∈ W 2,∞([0, T ]), ∀T > 0, (1.7)

τ ′(t) ≤ d < 1 ∀t > 0. (1.8)

Under the above assumptions on the time-delay function τ(t) we will prove that
an exponential stability result holds under a suitable assumption between the co-
efficients a and k (namely condition (2.56) below).

We consider also the problem with interior delay

utt(x, t)−∆u(x, t) + a0ut(x, t) + a1ut(x, t− τ(t)) = 0 in Ω× (0,+∞) (1.9)

u(x, t) = 0 on Γ× (0,+∞) (1.10)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω (1.11)

ut(x, t) = g0(x, t) in Ω× (−τ(0), 0), (1.12)

where τ(t) > 0 is the time-varying delay, a0 and a1 are real numbers with a0 > 0,
and the initial datum (u0, u1, g0) belongs to a suitable space.

The above model, with a0 > 0, a1 > 0 and a constant delay τ(t) ≡ τ has been
studied by the authors [23] in the case of mixed homogeneous Dirichlet-Neumann
boundary conditions. Assuming that

0 ≤ a1 < a0 (1.13)

a stabilization result is given, by using a suitable observability estimate. This is
done by applying inequalities obtained from Carleman estimates for the wave equa-
tion by Lasiecka, Triggiani and Yao in [20] and by using compactness-uniqueness
arguments. Instability phenomena when (1.13) is not satisfied are also illustrated.
We refer to [6, 4] for instability examples of related problems in one dimension.

The analogous problem with boundary feedback has been introduced and studied
by Xu, Yung, Li [29] in one-space dimension using a fine spectral analysis and in
higher space dimension by the authors [23].
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The case of time-varying delay has been already studied in [26] in one space
dimension and in general dimension, with a possibly degenerate delay, in [25]. Both
these papers deal with boundary feedback. See also [8] for abstract problems also
under the assumption of non-degeneracy of τ(t).

Here, we will give an exponential stability result for problem (1.9)-(1.12) under
the condition

|a1| <
√

1− d a0 , (1.14)
where d is the constant in (1.8).

The outline of the paper is the following. In section 2 we study well-posedness
and exponential stability of the problem (1.1)–(1.5) with structural damping and
boundary delay in both cases µ > 0 and µ = 0. In section 3 we analyze the problem
with internal delay feedback (1.9)–(1.12).

2. Boundary delay feedback

In this section we concentrate on the problem with boundary delay (1.1)–(1.5).
Let CP be a Poincaré’s type constant defined as the smallest positive constant

such that ∫
Γ1

|v|2 dΓ ≤ CP

∫
Ω

|∇v|2 dx, ∀v ∈ H1
Γ0

(Ω), (2.1)

where, as usual,
H1

Γ0
(Ω) = {u ∈ H1(Ω) : u = 0 on Γ0}.

First of all we will give a well-posedness result under the assumption

|k| ≤ a

CP

√
1− d, (2.2)

where d is the positive constant of assumption (1.8). We have to distinguish the
two cases µ > 0 and µ = 0.

2.1. Well-posedness in the case of dynamic boundary condition. First we
study the well-posedness of (1.1)–(1.5) for µ > 0. We introduce the auxiliary
unknown

z(x, ρ, t) = ut(x, t− τ(t)ρ), x ∈ Γ1, ρ ∈ (0, 1), t > 0. (2.3)
Then, problem (1.1)–(1.5) is equivalent to

utt(x, t)−∆u(x, t)− a∆ut(x, t) = 0 in Ω× (0,+∞), (2.4)

τ(t)zt(x, ρ, t) + (1− τ ′(t)ρ)zρ(x, ρ, t) = 0 in Γ1 × (0, 1)× (0,+∞), (2.5)

u(x, t) = 0 on Γ0 × (0,+∞), (2.6)

µutt(x, t) = −∂(u + aut)
∂ν

(x, t)− kz(x, 1, t) on Γ1 × (0,+∞), (2.7)

z(x, 0, t) = ut(x, t) on Γ1 × (0,∞), (2.8)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω, (2.9)

z(x, ρ, 0) = f0(x,−ρτ(0)) in Γ1 × (0, 1). (2.10)

Let us denote
U := (u, ut, γ1ut, z)T ,

where γ1 is the trace operator on Γ1. Then the previous problem is formally equiv-
alent to

U ′ : = (ut, utt, γ1utt, zt)T



4 S. NICAISE, C. PIGNOTTI EJDE-2011/41

=
(
ut,∆u + a∆ut,−µ−1

(∂(u + aut)
∂ν

(x, t) + kz(·, 1, ·)
)
,
τ ′(t)ρ− 1

τ(t)
zρ

)T

.

Therefore, problem (1.1)–(1.5) can be rewritten as

U ′ = A(t)U,

U(0) =
(
u0, u1, γ1u1, f0(·,− · τ)

)T
,

(2.11)

where the time varying operator A(t) is defined by

A(t)


u
v
v1

z

 :=


v

∆(u + av)
−µ−1

(
∂(u+av)

∂ν + kz(·, 1)
)

τ ′(t)ρ−1
τ(t) zρ

 ,

with domain

D(A(t)) :=
{

(u, v, v1, z)T ∈ H1
Γ0

(Ω)2 × L2(Γ1)× L2(Γ1;H1(0, 1)) :

u + av ∈ E(∆, L2(Ω)),
∂(u + av)

∂ν
∈ L2(Γ1),

v = v1 = z(·, 0)on Γ1

}
,

(2.12)

where
E(∆, L2(Ω)) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}.

Recall that for a function u ∈ E(∆, L2(Ω)), ∂u
∂ν belongs to H−1/2(Γ1) and the next

Green formula is valid (see section 1.5 of [10])∫
Ω

∇u∇wdx = −
∫

Ω

∆uwdx + 〈∂u

∂ν
;w〉Γ1∀w ∈ H1

Γ0
(Ω), (2.13)

where 〈·; ·〉Γ1 means the duality pairing between H−1/2(Γ1) and H1/2(Γ1).
Observe that the domain of A(t) is independent of the time t; i.e.,

D(A(t)) = D(A(0)), t > 0. (2.14)

A(t) is an unbounded operator in H, the Hilbert space defined by

H := H1
Γ0

(Ω)× L2(Ω)× L2(Γ1)× L2(Γ1 × (0, 1)), (2.15)

equipped with the standard inner product

〈 
u
v
v1

z

 ,


ũ
ṽ
ṽ1

z̃

 〉
H

:=
∫

Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx

+
∫

Γ1

v1(x)ṽ1(x)dΓ +
∫

Γ1

∫ 1

0

z(x, ρ)z̃(x, ρ) dρ dΓ.

(2.16)

We can obtain a well-posedness result using semigroup arguments by Kato [12, 13,
27]. The following result is proved in [12, Theorem 1.9].

Theorem 2.1. Assume that
(i) D(A(0)) is a dense subset of H,
(ii) D(A(t)) = D(A(0)) for all t > 0,
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(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H and
the family A = {A(t) : t ∈ [0, T ]} is stable with stability constants C and m
independent of t (i.e. the semigroup (St(s))s≥0 generated by A(t) satisfies
‖St(s)u‖H ≤ Cems‖u‖H, for all u ∈ H and s ≥ 0),

(iv) ∂tA belongs to L∞∗ ([0, T ], B(D(A(0)),H)), the space of equivalent classes of
essentially bounded, strongly measurable functions from [0, T ] into the set
B(D(A(0)),H) of bounded operators from D(A(0)) into H.

Then, problem (2.11) has a unique solution U ∈ C([0, T ],D(A(0))) ∩ C1([0, T ],H)
for any initial datum in D(A(0)).

Therefore, we will check the above assumptions for problem (2.11).

Lemma 2.2. D(A(0)) is dense in H.

Proof. Let (f, g, g1, h)T ∈ H be orthogonal to all elements of D(A(0)); that is,

0 =
〈 

u
v
v1

z

 ,


f
g
g1

h

 〉
H

=
∫

Ω

{∇u(x)∇f(x) + v(x)g(x)}dx +
∫

Γ1

v1g1dΓ +
∫

Γ1

∫ 1

0

z(x, ρ)h(x, ρ)dρdΓ,

for all (u, v, v1, z)T ∈ D(A(0)). We first take u = 0 and v = 0 (then v1 = 0) and
z ∈ D(Γ1 × (0, 1)). As (0, 0, 0, z)T ∈ D(A(0)), we obtain∫

Γ1

∫ 1

0

z(x, ρ)h(x, ρ)dρdΓ = 0.

Since D(Γ1 × (0, 1)) is dense in L2(Γ1 × (0, 1), we deduce that h = 0.
In the same way, by taking u = 0, z = 0 and v ∈ D(Ω) (then v1 = 0) we see that

g = 0. Therefore, for u = 0, z = 0 we deduce also∫
Γ1

g1v1dΓ = 0, ∀v1 ∈ D(Γ1)

and so g1 = 0.
The above orthogonality condition is then reduced to

0 =
∫

Ω

∇u∇fdx, ∀(u, v, v1, z)T ∈ D(A(0)).

By restricting ourselves to v = 0 and z = 0, we obtain∫
Ω

∇u(x)∇f(x)dx = 0, ∀(u, 0, 0, 0)T ∈ D(A(0)).

But we easily see that (u, 0, 0, 0)T ∈ D(A(0)) if and only if u ∈ E(∆, L2(Ω)) ∩
H1

Γ0
(Ω). This set is dense in H1

Γ0
(Ω) (equipped with the inner product 〈., .〉H1

Γ0
(Ω)),

thus we conclude that f = 0. �

Assuming (2.2) we will show that A(t) generates a C0 semigroup on H and using
the variable norm technique of Kato from [13] and Theorem 2.1, that problem (2.11)
has a unique solution.
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Let ξ be a positive constant that satisfies

|k|√
1− d

≤ ξ ≤ 2a

CP
− |k|√

1− d
. (2.17)

Note that this choice of ξ is possible from assumption (2.2).
We define on the Hilbert space H the time dependent inner product

〈 
u
v
v1

z

 ,


ũ
ṽ
ṽ1

z̃

 〉
t
:=

∫
Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx

+ µ

∫
Γ1

v1(x)ṽ1(x)dΓ + ξτ(t)
∫

Γ1

∫ 1

0

z(x, ρ)z̃(x, ρ) dρ dΓ.

(2.18)
Using this time dependent inner product and Theorem 2.1, we can deduce a well-
posedness result.

Theorem 2.3. For any initial datum U0 ∈ D(A(0)) there exists a unique solution

U ∈ C([0,+∞),D(A(0))) ∩ C1([0,+∞),H)

of system (2.11).

Proof. We first observe that

‖φ‖t

‖φ‖s
≤ e

c
2τ0

|t−s|, ∀t, s ∈ [0, T ], (2.19)

where φ = (u, v, v1, z)T and c is a positive constant. Indeed, for all s, t ∈ [0, T ], we
have

‖φ‖2
t − ‖φ‖2

se
c

τ0
|t−s| =

(
1− e

c
τ0
|t−s|

) {∫
Ω

(|∇u(x)|2 + v2)dx + µ

∫
Γ1

v2
1dΓ

}
+ ξ

(
τ(t)− τ(s)e

c
τ0
|t−s|

) ∫
ΓN

∫ 1

0

z2(x, ρ) dρ dΓ.

We notice that 1 − e
c

τ0
|t−s| ≤ 0. Moreover τ(t) − τ(s)e

c
τ0
|t−s| ≤ 0 for some c > 0.

Indeed, τ(t) = τ(s) + τ ′(a)(t− s), where a ∈ (s, t), and thus,

τ(t)
τ(s)

≤ 1 +
|τ ′(a)|
τ(s)

|t− s|.

By (1.7), τ ′ is bounded on [0, T ] and therefore, recalling also (1.6),

τ(t)
τ(s)

≤ 1 +
c

τ0
|t− s| ≤ e

c
τ0
|t−s|,

which proves (2.19).
Now we calculate 〈A(t)U,U〉t for a fixed t. Take U = (u, v, v1, z)T ∈ D(A(t)).

Then,

〈A(t)U,U〉t =
〈 

v
∆(u + av)

−µ−1
(

∂(u+av)
∂ν + kz(·, 1)

)
τ ′(t)ρ−1

τ(t) zρ

 ,


u
v
v1

z

 〉
t
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=
∫

Ω

{∇v(x)∇u(x) + v(x)∆(u(x) + av(x))}dx

− ξ

∫
Γ1

∫ 1

0

(1− τ ′(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ

−
∫

Γ1

(∂(u + av)
∂ν

(x) + kz(x, 1)
)
v(x) dΓ.

So, by Green’s formula,

〈A(t)U,U〉t = −k

∫
Γ1

z(x, 1)v(x)dΓ− a

∫
Ω

|∇v(x)|2dx

− ξ

∫
Γ1

∫ 1

0

(1− τ ′(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ.

(2.20)

Integrating by parts in ρ, we obtain∫
Γ1

∫ 1

0

zρ(x, ρ)z(x, ρ)(1− τ ′(t)ρ) dρ dΓ

=
∫

Γ1

∫ 1

0

1
2

∂

∂ρ
z2(x, ρ)(1− τ ′(t)ρ)dρ dΓ

=
τ ′(t)

2

∫
Γ1

∫ 1

0

z2(x, ρ)dρdΓ +
1
2

∫
Γ1

{z2(x, 1)(1− τ ′(t))− z2(x, 0)}dΓ.

(2.21)

Therefore, from (2.20) and (2.21),

〈A(t)U,U〉t

= −k

∫
Γ1

z(x, 1)v(x)dΓ− a

∫
Ω

|∇v(x)|2dx

− ξ

2

∫
Γ1

{z2(x, 1)(1− τ ′(t))− z2(x, 0)}dΓ− ξτ ′(t)
2

∫
Γ1

∫ 1

0

z2(x, ρ)dρdΓ

= −k

∫
Γ1

z(x, 1)v(x)dΓ− a

∫
Ω

|∇v(x)|2dx− ξ

2

∫
Γ1

z2(x, 1)(1− τ ′(t))dΓ

+
ξ

2

∫
Γ1

v2(x)dΓ− ξτ ′(t)
2

∫
Γ1

∫ 1

0

z2(x, ρ)dρdΓ,

from which, using Cauchy-Schwarz’s inequality, a trace estimate and Poincaré’s
Theorem, it follows that

〈A(t)U,U〉t ≤ −
(
a− |k|CP

2
√

1− d
− ξ

2
CP

) ∫
Ω

|∇v(x)|2dx

−
(ξ

2
(1− d)− |k|

2

√
1− d

) ∫
Γ1

z2(x, 1)dΓ + κ(t)〈U,U〉t,
(2.22)

where

κ(t) =
(τ ′(t)2 + 1)

1
2

2τ(t)
. (2.23)

Now, observe that from (2.17),

〈A(t)U,U〉t − κ(t)〈U,U〉t ≤ 0, (2.24)

which means that the operator Ã(t) = A(t)− κ(t)I is dissipative.
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Moreover,

κ′(t) =
τ ′′(t)τ ′(t)

2τ(t)(τ ′(t)2 + 1)
1
2
− τ ′(t)(τ ′(t)2 + 1)

1
2

2τ(t)2

is bounded on [0, T ] for all T > 0 (by (1.6) and (1.7)) and we have

d

dt
A(t)U =

 0
0

τ ′′(t)τ(t)ρ−τ ′(t)(τ ′(t)ρ−1)
τ(t)2 zρ


with τ ′′(t)τ(t)ρ−τ ′(t)(τ ′(t)ρ−1)

τ(t)2 bounded on [0, T ]. Thus

d

dt
Ã(t) ∈ L∞∗ ([0, T ], B(D(A(0)),H)), (2.25)

the space of equivalence classes of essentially bounded, strongly measurable func-
tions from [0, T ] into B(D(A(0)),H).

Now, we show that λI − A(t) is surjective for fixed t > 0 and λ > 0. Given
(f, g, g1, h)T ∈ H, we seek U = (u, v, v1, z)T ∈ D(A(t)) solution of

(λI −A(t))


u
v
v1

z

 =


f
g
g1

h

 ,

that is verifying
λu− v = f

λv −∆(u + av) = g

λv1 + µ−1

(
∂(u + av)

∂ν
(x) + kz(x, 1)

)
= g1

λz +
1− τ ′(t)ρ

τ(t)
zρ = h.

(2.26)

Suppose that we have found u with the appropriate regularity. Then

v := λu− f (2.27)

and we can determine z. Indeed, by (2.12),

z(x, 0) = v(x), for x ∈ Γ1, (2.28)

and, from (2.26),

λz(x, ρ) +
1− τ ′(t)ρ

τ(t)
zρ(x, ρ) = h(x, ρ), for x ∈ Γ1, ρ ∈ (0, 1). (2.29)

Then, by (2.28) and (2.29), we obtain

z(x, ρ) = v(x)e−λρτ(t) + τ(t)e−λρτ(t)

∫ ρ

0

h(x, σ)eλστ(t)dσ,

if τ ′(t) = 0, and

z(x, ρ) = v(x)eλ
τ(t)
τ′(t) ln(1−τ ′(t)ρ)

+ e
λ

τ(t)
τ′(t) ln(1−τ ′(t)ρ)

∫ ρ

0

h(x, σ)τ(t)
1− τ ′(t)σ

e
−λ

τ(t)
τ′(t) ln(1−τ ′(t)σ)

dσ,
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otherwise. So, from (2.27),

z(x, ρ) = λu(x)e−λρτ(t) − f(x)e−λρτ(t)

+ τ(t)e−λρτ(t)

∫ ρ

0

h(x, σ)eλστ(t)dσ, on Γ1 × (0, 1),
(2.30)

if τ ′(t) = 0, and

z(x, ρ) = λu(x)eλ
τ(t)
τ′(t) ln(1−τ ′(t)ρ) − f(x)eλ

τ(t)
τ′(t) ln(1−τ ′(t)ρ)

+ e
λ

τ(t)
τ′(t) ln(1−τ ′(t)ρ)

∫ ρ

0

h(x, σ)τ(t)
1− τ ′(t)σ

e
−λ

τ(t)
τ′(t) ln(1−τ ′(t)σ)

dσ,
(2.31)

on Γ1 × (0, 1) otherwise.
In particular, if τ ′(t) = 0,

z(x, 1) = λu(x)e−λτ(t) + z0(x), x ∈ Γ1, (2.32)

with z0 ∈ L2(Γ1) defined by

z0(x) = −f(x)e−λτ(t) + τ(t)e−λτ(t)

∫ 1

0

h(x, σ)eλστ(t)dσ, x ∈ Γ1, (2.33)

and, if τ ′(t) 6= 0,

z(x, 1) = λu(x)eλ
τ(t)
τ′(t) ln(1−τ ′(t)) + z0(x), x ∈ Γ1, (2.34)

with z0 ∈ L2(Γ1) defined by

z0(x) = −f(x)eλ
τ(t)
τ′(t) ln(1−τ ′(t))

+ e
λ

τ(t)
τ′(t) ln(1−τ ′(t))

∫ 1

0

h(x, σ)τ(t)
1− τ ′(t)σ

e
−λ

τ(t)
τ′(t) ln(1−τ ′(t)σ)

dσ,
(2.35)

for x ∈ Γ1. Then, we have to find u. In view of the equation λv −∆(u + av) = g,
we set s = u + av and look at s. Now according to (2.27), we may write

v = λu− f = λs− f − λav,

or equivalently

v =
λ

1 + λa
s− 1

1 + λa
f. (2.36)

Hence once s will be found, we will get v by (2.36) and then u by u = s − av, or
equivalently

u =
1

1 + λa
s +

a

1 + λa
f. (2.37)

By (2.36) and (2.26), the function s satisfies

λ2

1 + λa
s−∆s = g +

λ

1 + λa
f in Ω, (2.38)

with the boundary conditions
s = 0 on Γ0, (2.39)

as well as (at least formally)

∂s

∂ν
= µg1 − µλv1 − kz(·, 1) on Γ1,
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which becomes due to (2.36), (2.37), (2.32), (2.34) and the requirement that v1 =
γ1v on Γ1:

∂s

∂ν
= −λ(ke−λτ(t) + µλ)

1 + λa
s + l on Γ1, (2.40)

where

l = µg1 +
λ(µ− kae−λτ(t))

1 + λa
f − kz0 on Γ1

if τ ′(t) = 0, otherwise

∂s

∂ν
= −λ(ke

−λ
τ(t)
τ′(t) ln(1−τ ′(t)) + µλ)

1 + λa
s + l̃ on Γ1, (2.41)

where

l̃ = µg1 +
λ(µ− kae

−λ
τ(t)
τ′(t) ln(1−τ ′(t)))

1 + λa
f − kz0 on Γ1.

From (2.38), integrating by parts, and using (2.39), (2.40), (2.41) we find the vari-
ational problem∫

Ω

(
λ2

1 + λa
sw +∇s · ∇w)dx +

∫
Γ1

λ(ke−λτ + µλ)
1 + λa

swdΓ

=
∫

Ω

(g +
λ

1 + λa
f)wdx +

∫
Γ1

lwdΓ ∀w ∈ H1
Γ0

(Ω)
(2.42)

if τ ′(t) = 0, otherwise∫
Ω

(
λ2

1 + λa
sw +∇s · ∇w)dx +

∫
Γ1

λ(ke−λ τ
τ′ ln(1−τ ′) + µλ)
1 + λa

swdΓ

=
∫

Ω

(g +
λ

1 + λa
f)wdx +

∫
Γ1

l̃wdΓ ∀w ∈ H1
Γ0

(Ω).
(2.43)

As the left-hand side of (2.42), (2.43) is coercive on H1
Γ0

(Ω), the Lax-Milgram
lemma guarantees the existence and uniqueness of a solution s ∈ H1

Γ0
(Ω) of (2.42),

(2.43).
If we consider w ∈ D(Ω) in (2.42), (2.43), we have that s solves (2.38) in D′(Ω)

and thus s = u + av ∈ E(∆, L2(Ω)).
Using Green’s formula (2.13) in (2.42) and using (2.38), we obtain∫

Γ1

λ(ke−λτ + µλ)
1 + λa

swdΓ + 〈 ∂s

∂ν
;w〉Γ1 =

∫
Γ1

lw dΓ,

leading to (2.40) and then to the third equation of (2.26) due to the definition of l
and the relations between u, v and s. We find the same result if τ ′(t) 6= 0.

In conclusion, we have found (u, v, v1, z)T ∈ D(A), which verifies (2.26), and
thus λI − A(t) is surjective for some λ > 0 and t > 0. Again as κ(t) > 0, this
proves that

λI − Ã(t) = (λ + κ(t))I −A(t) is surjective (2.44)

for any λ > 0 and t > 0.
Then, (2.19), (2.24) and (2.44) imply that the family Ã = {Ã(t) : t ∈ [0, T ]} is a

stable family of generators in H with stability constants independent of t, by [13,
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Proposition 1.1]. Therefore, the assumptions (i)-(iv) of Theorem 2.1 are satisifed
by (2.14), (2.19), (2.24), (2.25), (2.44) and Lemma 2.2, and thus, the problem

Ũ ′ = Ã(t)Ũ

Ũ(0) = U0

has a unique solution Ũ ∈ C([0,+∞), D(A(0)))∩C1([0,+∞),H) for U0 ∈ D(A(0)).
The requested solution of (2.52) is then given by

U(t) = eβ(t)Ũ(t)

with β(t) =
∫ t

0
κ(s)ds, because

U ′(t) = κ(t)eβ(t)Ũ(t) + eβ(t)Ũ ′(t)

= κ(t)eβ(t)Ũ(t) + eβ(t)Ã(t)Ũ(t)

= eβ(t)(κ(t)Ũ(t) + Ã(t)Ũ(t))

= eβ(t)A(t)Ũ(t) = A(t)eβ(t)Ũ(t)

= A(t)U(t).

This concludes the proof. �

Theorem 2.4. Assume that (1.6)–(1.7) and (2.2) hold. Then for any initial da-
tum U0 ∈ H there exists a unique solution U ∈ C([0,+∞),H) of problem (2.11).
Moreover, if U0 ∈ D(A(0)), then

U ∈ C([0,+∞),D(A(0))) ∩ C1([0,+∞),H).

2.2. Well-posedness in the case µ = 0. As before, we use the auxiliary unknown
(2.3). Then, problem (1.1)–(1.5), with µ = 0, is equivalent to

utt(x, t)−∆u(x, t)− a∆ut(x, t) = 0 in Ω× (0,+∞), (2.45)

τ(t)zt(x, ρ, t) + (1− τ ′(t)ρ)zρ(x, ρ, t) = 0 in Γ1 × (0, 1)× (0,+∞), (2.46)

u(x, t) = 0 on Γ0 × (0,+∞), (2.47)

∂(u + aut)
∂ν

(x, t) = −kz(x, 1, t) on Γ1 × (0,+∞), (2.48)

z(x, 0, t) = ut(x, t) on Γ1 × (0,∞), (2.49)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω, (2.50)

z(x, ρ, 0) = f0(x,−ρτ(0)) in Γ1 × (0, 1). (2.51)

If we denote U := (u, ut, z)T , then

U ′ := (ut, utt, zt)T =
(

ut,∆u + a∆ut,
τ ′(t)ρ− 1

τ(t)
zρ

)T

.

Therefore, problem (2.45)–(2.51) can be rewritten as

U ′ = A0(t)U,

U(0) = (u0, u1, f0(·,− · τ(0)))T
,

(2.52)
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where the time dependent operator A0(t) is defined by

A0(t)

u
v
z

 :=

 v
∆(u + av)
τ ′(t)ρ−1

τ(t) zρ

 ,

with domain

D(A0(t)) :=
{

(u, v, z)T ∈ H1
Γ0

(Ω)2 × L2(Γ1;H1(0, 1)) : u + av ∈ E(∆, L2(Ω)),

∂(u + av)
∂ν

= −kz(·, 1) on Γ1; v = z(·, 0) on Γ1

}
.

(2.53)

Note that for (u, v, z)T ∈ D(A0(t)), ∂(u+av)
∂ν belongs to L2(Γ1) since z(·, 1) is in

L2(Γ1).
Finally, as above, observe that domain of A0(t) is independent of the time t; i.e.,

D(A0(t)) = D(A0(0)), t > 0.

Denote by H0 the Hilbert space

H0 := H1
Γ0

(Ω)× L2(Ω)× L2(Γ1 × (0, 1)), (2.54)

equipped with the scalar product〈 u
v
z

 ,

ũ
ṽ
z̃

 〉
H0

:=
∫

Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)} dx

+
∫

Γ1

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdΓ,

(2.55)

Arguing analogously to the case µ > 0 we can deduce an existence and uniqueness
result.

Theorem 2.5. Assume that (1.6)–(1.7) and (2.2) hold. Then, for any initial
datum U0 ∈ H0 there exists a unique solution U ∈ C([0,+∞),H0) of problem
(2.52). Moreover, if U0 ∈ D(A0(0)), then

U ∈ C([0,+∞),D(A0(0))) ∩ C1([0,+∞),H0).

Remark 2.6. This well-posedness theorem can be also deduced from the abstract
framework of [8] (see Theorem 2.2 in [8]) for second order evolution equations. On
the contrary, the case µ > 0 is not covered by this abstract result.

2.3. Stability result. Now, we show that problem (1.1)–(1.5) is uniformly expo-
nentially stable under the assumption

|k| < a

CP

√
1− d . (2.56)

We define the energy of system (1.1)–(1.5) as

F (t) :=
1
2

∫
Ω

{u2
t + |∇u|2}dx +

ξ

2

∫ t

t−τ(t)

∫
Γ1

eλ(s−t)u2
t (x, s)dΓds +

µ

2

∫
Γ1

u2
t (x, t)dΓ,

(2.57)
where ξ, λ are suitable positive constants. We fix ξ such that

|k|√
1− d

< ξ <
2a

CP
− |k|√

1− d
. (2.58)
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Note that (2.56) ensures that this choice is possible. Moreover, the parameter λ is
fixed satisfying

λ <
1
τ

∣∣ log
|k|

ξ
√

1− d

∣∣ . (2.59)

Remark that in the case of a constant delay, we can take λ = 0 and in that case
F (t) corresponds to the natural energy of (u, ut, z) (up to the factor 1

2 ), see [24].
Here the time dependence of the delay implies that our system is no more invariant
by translation and therefore we have to replace the arguments from [24] by the use
of an appropriate Lyapunov functional. We start with the following estimate.

Proposition 2.7. Assume (1.6)–(1.7) and (2.56). Then, for any regular solution
of problem (1.1)–(1.5) the energy is decreasing and, for a suitable positive constant
C, we have

F ′(t) ≤ −C
{∫

Ω

|∇ut(x, t)|2dx +
∫

Γ1

u2
t (x, t− τ(t))dΓ

}
− C

∫ t

t−τ(t)

∫
Γ1

eλ(s−t)u2
t (x, s)dΓds.

(2.60)

Proof. Differentiating (2.57), we obtain

F ′(t) =
∫

Ω

{ututt +∇u∇ut}dx +
ξ

2

∫
Γ1

u2
t (x, t)dΓ + µ

∫
Γ1

ut(t)utt(t) dΓ

− ξ

2

∫
Γ1

e−λτ(t)u2
t (x, t− τ(t))(1− τ ′(t))dΓ

− λ
ξ

2

∫ t

t−τ(t)

∫
Γ1

e−λ(t−s)u2
t (x, s)dΓds,

and then, applying Green’s formula,

F ′(t) =
∫

Ω

aut(x, t)∆ut(x, t)dx +
∫

Γ1

ut(t)
∂u

∂ν
(t)dΓ

− ξ

2

∫
Γ1

e−λτ(t)u2
t (x, t− τ(t))(1− τ ′(t))dΓ +

ξ

2

∫
Γ1

u2
t (x, t)dΓ

− λ
ξ

2

∫ t

t−τ(t)

∫
Γ1

e−λ(t−s)u2
t (x, s)dΓds + µ

∫
Γ1

ut(t)utt(t)dΓ.

(2.61)

Integrating once more by parts and using the boundary conditions we obtain

F ′(t) = −a

∫
Ω

|∇ut(x, t)|2dx− k

∫
Γ1

ut(t)ut(t− τ(t))dΓ

− ξ

2

∫
Γ1

e−λτ(t)u2
t (x, t− τ(t))(1− τ ′(t))dΓ +

ξ

2

∫
Γ1

u2
t (x, t)dΓ

− λ
ξ

2

∫ t

t−τ(t)

∫
Γ1

e−λ(t−s)u2
t (x, s)dΓ ds.

(2.62)

Now, applying Cauchy-Schwarz’s inequality and recalling the assumptions (1.6) and
(1.8), we obtain

F ′(t) ≤ −a

∫
Ω

|∇ut(x, t)|2dx +
ξ

2

∫
Γ1

u2
t (x, t)dΓ +

|k|
2
√

1− d

∫
Γ1

u2
t (x, t)dΓ
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+
|k|
2

√
1− d

∫
Γ1

u2
t (t− τ(t))dΓ

− ξ

2
(1− d)e−λτ

∫
Γ1

u2
t (x, t− τ(t))dΓ− λ

ξ

2

∫ t

t−τ(t)

∫
Γ1

e−λ(t−s)u2
t (x, s)dΓ ds

≤ −
(

a− |k|CP

2
√

1− d
− ξ

2
CP

) ∫
Ω

|∇ut(x, t)|2dx

−
(

e−λτ ξ

2
(1− d)− |k|

2

√
1− d

) ∫
Γ1

u2
t (x, t− τ(t))dΓ

− λ
ξ

2

∫ t

t−τ(t)

∫
Γ1

e−λ(t−s)u2
t (x, s)dΓds,

where in the last inequality we also use a trace estimate and Poincaré’s Theorem.
Therefore, (2.60) immediately follows recalling (2.58) and (2.59). �

Now, let us define the Lyapunov functional

F̂ (t) = F (t) + γ

[∫
Ω

u(x, t)ut(x, t)dx + µ

∫
Γ1

u(x, t)ut(x, t)dΓ
]

, (2.63)

where γ is a positive small constant that we will choose later on.
Note that, from Poincaré’s Theorem, the functional F̂ is equivalent to the energy

F , that is, for γ small enough, there exist two positive constant β0
1 , β0

2 such that

β0
1 F̂ (t) ≤ F (t) ≤ β0

2 F̂ (t), ∀t ≥ 0. (2.64)

Lemma 2.8. For any regular solution of problem (1.1)–(1.5),

d

dt

{∫
Ω

u(x, t)ut(x, t)dxdt + µ

∫
Γ1

u(x, t)ut(x, t)dΓ
}

≤ C
{∫

Ω

|∇ut(x, t)|2dx +
∫

Γ1

u2
t (x, t− τ(t))dΓ

}
− 1

2

∫
Ω

|∇u(x, t)|2dx,

(2.65)

for a suitable positive constant C (that is different from the one from Proposition
2.7).

Proof. Differentiating and integrating by parts we have

d

dt

∫
Ω

uutdx =
∫

Ω

u2
t (x, t)dx +

∫
Ω

u(∆u + a∆ut)dx

=
∫

Ω

u2
t (x, t)dx−

∫
Ω

|∇u(x, t)|2dx− a

∫
Ω

∇u(x, t) · ∇ut(x, t)dx

+
∫

Γ1

u(t)
∂(u + aut)

∂ν
(t)dΓ.

(2.66)
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From (2.66), using the boundary condition on Γ1, we obtain

d

dt

{∫
Ω

uutdx + µ

∫
Γ1

u(x, t)ut(x, t)dΓ
}

=
∫

Ω

u2
t (x, t)dx +

∫
Ω

u(∆u + a∆ut)dx + µ

∫
Γ1

u2
t (x, t)dΓ + µ

∫
Γ1

u(x, t)utt(x, t)dΓ

=
∫

Ω

u2
t (x, t)dx−

∫
Ω

|∇u(x, t)|2dx− a

∫
Ω

∇u(x, t) · ∇ut(x, t)dx

− k

∫
Γ1

u(t)ut(t− τ(t))dΓ + µ

∫
Γ1

u2
t (x, t)dΓ.

(2.67)

We can conclude by using Young’s inequality, a trace estimate and Poincaré’s The-
orem. �

Finally using the above results we can deduce an exponential stability estimate.

Theorem 2.9. Assume (1.6)–(1.7) and (2.56). Then there exist positive constants
C1, C2 such that for any solution of problem (1.1)-(1.5),

F (t) ≤ C1F (0)e−C2t, ∀t ≥ 0. (2.68)

Proof. From Lemma 2.8, taking γ sufficiently small in the definition of the Lya-
punov functional F̂ , we have

d

dt
F̂ (t) ≤ −C

{∫
Ω

|∇ut(x, t)|2dx +
∫

Γ1

u2
t (x, t− τ(t))dx

}
− C

∫ t

t−τ(t)

e−λ(t−s)

∫
Γ1

u2
t (x, s)dΓ ds− γ

2

∫
Ω

|∇u(x, t)|2dx,

(2.69)

for a suitable positive constant C that is different from the one in (2.65). Poincaré’s
Theorem implying∫

Ω

|ut(x, t)|2dx +
∫

Γ1

|ut(x, t)|2ds ≤ CP1

∫
Ω

|∇ut(x, t)|2dx,

for some CP1 > 0, we obtain
d

dt
F̂ (t) ≤ −C ′F (t), (2.70)

for a suitable positive constant C ′. This clearly implies the exponential estimate
(2.68) recalling (2.64). �

Remark 2.10. Note that in the case of a constant delay the exponential stability
result holds under the condition |k| < a/CP (corresponding to (2.56) since, in this
case, d = 0), see [24]. On the contrary, if this condition is no more valid, then some
instabilities may occur, we refer to [24] for some illustrations.

3. Internal delay feedback

3.1. Well-posedness. First of all we formulate a well-posedness result under the
assumption

|a1| ≤ a0

√
1− d . (3.1)

Let us set

z(x, ρ, t) = ut(x, t− τ(t)ρ), x ∈ Ω, ρ ∈ (0, 1), t > 0. (3.2)
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Then, problem (1.9)–(1.12) is equivalent to

utt(x, t)−∆u(x, t) + a0ut(x, t) + a1z(x, 1, t) = 0 in Ω× (0,+∞) (3.3)

τ(t)zt(x, ρ, t) + (1− τ ′(t)ρ)zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞) (3.4)

u(x, t) = 0 on ∂Ω× (0,+∞) (3.5)

z(x, 0, t) = ut(x, t) on Ω× (0,∞) (3.6)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (3.7)

z(x, ρ, 0) = g0(x,−ρτ(0)) in Ω× (0, 1). (3.8)

Let us denote U := (u, ut, z)T , then

U ′ := (ut, utt, zt)T =
(
ut,∆u− a0ut − a1z(·, 1, ·), τ ′(t)ρ− 1

τ(t)
zρ

)T

.

Therefore, problem (3.3)–(3.8) can be rewritten as

U ′ = A1(t)U

U(0) = (u0, u1, g0(·,− · τ(0)))T
(3.9)

where the time dependent operator A1(t) is defined by

A1(t)

u
v
z

 :=

 v
∆u− a0v − a1z(·, 1)

τ ′(t)ρ−1
τ(t) zρ

 ,

with domain

D(A1(t)) :=
{

(u, v, z)T ∈
(
H2(Ω) ∩H1

0 (Ω)
)
×H1(Ω)× L2(Ω; H1(0, 1)) :

v = z(·, 0) in Ω
}

.
(3.10)

Note that the domain of A1(t) is independent of the time t; i.e.,

D(A1(t)) = D(A1(0)), t > 0.

Let us introduce the Hilbert space

H1 := H1
0 (Ω)× L2(Ω)× L2(Ω× (0, 1)), (3.11)

equipped with the inner product〈 u
v
z

 ,

ũ
ṽ
z̃

 〉
H1

:=
∫

Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx +
∫

Ω

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdx.

(3.12)

Next we state the well-posedness result then follows from [8, Theorem 2.2] that
extends the well-posedness result of [23] for wave equations with constant delays to
an abstract second order evolution equation with time-varying delay.

Theorem 3.1. Assume (1.6)–(1.7) and (3.1). Then, for any initial datum U0 ∈ H1

there exists a unique solution U ∈ C([0,+∞),H1) of problem (3.9). Moreover, if
U0 ∈ D(A1(0)), then

U ∈ C([0,+∞),D(A1(0))) ∩ C1([0,+∞),H1).
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Remark 3.2. In [25] the authors considered a wave equation with boundary time-
varying delay feedback without the assumption τ(t) > τ0 > 0 of non degeneracy
of τ , but in less general spaces. We expect that a well-posedness result holds also
for problem (1.9)–(1.12) without this restriction on τ . However, we preferred to
consider non degenerate τ in order to avoid technicalities.

3.2. Stability result. We will give an exponential stability result for problem
(1.9)–(1.12) under assumption (1.14). We define the energy of system (1.9)–(1.12)
as

E(t) :=
1
2

∫
Ω

{u2
t + |∇u|2}dx +

ξ

2

∫ t

t−τ(t)

∫
Ω

eλ(s−t)u2
t (x, s)dx ds, (3.13)

where ξ, λ are suitable positive constants. We will fix ξ such that

2a0 −
a1√
1− d

− ξ > 0, ξ − a1√
1− d

> 0, (3.14)

λ <
1
τ

∣∣ log
|a1|

ξ
√

1− d

∣∣ . (3.15)

Note that assumption (1.14) guarantees the existence of such a constant ξ. We
have the following estimate.

Proposition 3.3. Assume (1.6)-(1.7) and (1.14). Then, for any regular solution
of problem (1.9)-(1.12) the energy decays and there exists a positive constant C such
that

E′(t) ≤ −C

∫
Ω

{u2
t (x, t)+u2

t (x, t−τ(t))}−C

∫ t

t−τ(t)

∫
Ω

eλ(s−t)u2
t (x, s)dxds. (3.16)

Proof. Differentiating (3.13), we obtain

E′(t) =
∫

Ω

{ututt +∇u∇ut}dx +
ξ

2

∫
Ω

u2
t (x, t) dx

− ξ

2

∫
Ω

e−λτ(t)u2
t (x, t− τ(t))(1− τ ′(t))dx

− λ
ξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)u2
t (x, s)dxds,

and then, applying Green’s formula,

E′(t) = −a0

∫
Ω

u2
t (x, t)dx−

∫
Ω

a1ut(t)ut(x, t− τ(t))dx

− ξ

2

∫
Ω

e−λτ(t)u2
t (x, t− τ(t))(1− τ ′(t))dx +

ξ

2

∫
Ω

u2
t (x, t)dx

− λ
ξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)u2
t (x, s)dxds.

(3.17)

Now, applying Cauchy-Schwarz’s inequality and recalling the assumptions (1.6) and
(1.8), we obtain

E′(t) ≤ −a0

∫
Ω

u2
t (x, t)dx− a1

∫
Ω

ut(t)ut(t− τ(t))dx +
ξ

2

∫
Ω

u2
t (x, t)dx

− ξ

2
(1− d)e−λτ

∫
Ω

u2
t (x, t− τ(t))dx− λ

ξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)u2
t (x, s)dxds
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≤ −
(

a0 −
|a1|

2
√

1− d
− ξ

2

) ∫
Ω

u2
t (x, t)dx

−
(

e−λτ ξ

2
(1− d)− |a1|

2

√
1− d

) ∫
Ω

u2
t (x, t− τ(t)) dx

− λ
ξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)u2
t (x, s) dx ds

from which easily follows (3.16) recalling (3.14) and (3.15). �

Now, let us introduce the Lyapunov functional

Ê(t) = E(t) + γ

∫
Ω

u(x, t)ut(x, t)dx, (3.18)

where γ is a suitable small positive constant.
Note that, from Poincaré’s Theorem, the functional Ê is equivalent to the energy

E, that is, for γ small enough, there exist two positive constant β1, β2 such that

β1Ê(t) ≤ E(t) ≤ β2Ê(t), ∀t ≥ 0. (3.19)

Lemma 3.4. For any regular solution of problem (1.9)–(1.12),

d

dt

∫
Ω

u(x, t)ut(x, t) dx dt

≤ C

∫
Ω

[u2
t (x, t) + u2

t (x, t− τ(t))]dx− 1
2

∫
Ω

|∇u(x, t)|2dx,

(3.20)

for a suitable positive constants C.

Proof. Differentiating and integrating by parts

d

dt

∫
Ω

uutdx =
∫

Ω

u2
t (x, t)dx +

∫
Ω

u(∆u− a0ut(t)− a1ut(t− τ(t)) dx

=
∫

Ω

u2
t (x, t)dx−

∫
Ω

|∇u(x, t)|2 dx−
∫

Ω

a0u(t)ut(t)dx

+
∫

Ω

a1u(t)ut(t− τ(t)) dx.

(3.21)

We can conclude by using Young’s inequality and Poincaré’s Theorem. �

Therefore, analogously to the case of boundary delay feedback, we can now
obtain a uniform exponential decay estimate.

Theorem 3.5. Assume (1.6)–(1.7) and (1.14). Then there exist positive constants
C1, C2 such that for any solution of problem (1.9)–(1.12),

E(t) ≤ C1E(0)e−C2t, ∀t ≥ 0. (3.22)

Remark 3.6. Using Lemma 3.4 this stability result can be deduced with the help
of Theorem 4.3 of [8]. The difference with [8] relies on the choice of a simpler
Lyapunov functional that renders the proof of the exponential decay more simple.

Remark 3.7. Note that in [23] we have assumed that the coefficient a1 of the delay
term is positive. But this assumption is not necessary. The results of [23] are valid,
with analogous proofs, also for a1 of arbitrary sign satisfying |a1| < a0.
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Remark 3.8. Note that in the proof of the stability estimate we did not use the
condition of non degeneracy of the delay τ(t) ≥ τ0 > 0. So, if u is a regular solution
of problem (1.9)–(1.12) the exponential stability result holds for u also in presence
of a possibly degenerate τ , (cf. Remark 3.2). The same is true for solutions to
problem (1.1)–(1.5).
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