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OPERATOR TYPE EXPANSION-COMPRESSION FIXED POINT
THEOREM

DOUGLAS R. ANDERSON, RICHARD I. AVERY, JOHNNY HENDERSON, XUEYAN LIU

Abstract. This article presents an alternative to the compression and expan-
sion fixed point theorems of functional type by using operators and functions
to replace the functionals and constants that are used in functional compres-
sion and expansion fixed point theorems. Only portions of the boundaries are
required to be mapped outward or inward in the spirit of the original work of
Leggett-Williams. We conclude with an application verifying the existence of
a positive solution to a second-order boundary-value problem.

1. Introduction

Mavridis [7] published the first extension to the work of Leggett-Williams [6] that
replaced the arguments involving functionals with arguments involving operators.
An invariance condition was a key component of the arguments in that paper, that
is, T (KA,B(u, v)∩Kc) ⊂ KA,B(u, v) (condition (i) of Theorem 2.8, the main result
therein). A similar approach was taken in the topological generalizations of fixed
point theorems presented by Kwong [5] which required boundaries to be mapped
inward or outward (invariance-like conditions). The spirit of the Leggett-Williams
fixed point theorems [6] and the functional extensions by Avery [1], Anderson-
Avery-Henderson [2], and Sun-Zhang [9], to mention a few, is that at least one of the
boundaries is void of any invariance like conditions. Anderson-Avery-Henderson [2]
recently published the first results of this nature that do not require either boundary
to have invariance like conditions.

The difficulty in replacing the arguments involving functionals with arguments
involving operators lies in the ability to compare the output of an operator to a
function using the comparison generated by an underlying cone P . That is, for
an operator R and a specified function xR, one needs to be able to say, for any
y ∈ P , that either R(y) < xR or xR ≤ R(y). In this paper we accomplish this by
restricting our attention to a cone P of a real Banach space E which is a subset
of F (K), the set of real valued functions defined on a set K ⊂ R. We introduce
what it means to say that an operator R is comparable to a function xR on a cone
P relative to JR which is a subset of K. This allows us to maintain the spirit of
the original work of Leggett-Williams and the extensions to the outer boundary
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by Anderson-Avery-Henderson by avoiding any invariance-like conditions in our
arguments.

The proof of the main results hinge on the comparability criteria. The Operator
Type Expansion-Compression Fixed Point Theorem can be used to verify the exis-
tence of positive solutions to boundary value problems such as x′′+g(t)f(x, x′) = 0
for t ∈ [0, 1] with x(0) = x′(1) = 0 (see Section 4). In the following example we
illustrate the comparability criteria which will formally be defined in the next sec-
tion. For x in the cone P of increasing, nonnegative functions of C1[0, 1], define
the operator

(Ax)(t) = x′(0)t

which is a continuous linear operator mapping P to P . Let b ∈ (0,∞), τ ∈ (0, 1),
JA = [τ, 1], and xA(t) = bt. Then for all x ∈ P , either

x′(0) < b or b ≤ x′(0).

Hence for all t ∈ JA, either

(Ax)(t) = x′(0)t < bt = xA(t) or xA(t) = bt ≤ x′(0)t = (Ax)(t).

Therefore, for any x ∈ P , either

Ax(t) < xA(t) or xA(t) ≤ Ax(t) ∀ t ∈ JA,

which we will denote as

Ax <JA
xA or xA ≤JA

Ax,

and we say the operator A is comparable to xA on P relative to JA. The operator A
is also an example of both a convex and a concave operator which we will formally
define in the next section.

2. Preliminaries

In this section we will state the definitions that are used in the remainder of the
paper.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if, for all x ∈ P and λ ≥ 0, λx ∈ P , and if x,−x ∈ P then
x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if
y − x ∈ P , and we say that x < y whenever x ≤ y and x 6= y. Let K be a subset
of real numbers and F (K) the set of all real valued functions defined over K. If
J ⊂ K and x, y ∈ F (K) we will say that:

x <J y if and only if x(t) < y(t) for all t ∈ J,

and
x ≤J y if and only if x(t) ≤ y(t) for all t ∈ J.

Furthermore, we will say that

x 5J y if and only if x ≤J y and there exists a t0 ∈ J such that x(t0) = y(t0).

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.
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Definition 2.3. Let P be a cone in a real Banach space E. Then we say that
A : P → P is a continuous concave operator on P if A : P → P is continuous and

tA(x) + (1− t)A(y) ≤ A(tx + (1− t)y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say that B : P → P is a continuous
convex operator on P if B : P → P is continuous and

B(tx + (1− t)y) ≤ tB(x) + (1− t)B(y)

for all x, y ∈ P and t ∈ [0, 1].

Let R and S be operators on a cone P of a real Banach space E which is a subset
of F (K), the set of real valued functions defined on a set K. For JR, JS ⊂ K and
xR, xS ∈ E we define the sets,

PJR
(R, xR) = {y ∈ P : R(y) <JR

xR},

P (R,S, xR, xS , JR, JS) = PJS
(S, xS)− PJR

(R, xR).

Definition 2.4. Let R be an operator on a cone P of a real Banach space E which
is a subset of F (K), the set of real valued functions defined on a set K. For JR ⊂ K
and xR ∈ E, we say that R is comparable to xR on P relative to JR if, given any
y ∈ P , either

R(y) <JR
xR or xR ≤JR

R(y).

Definition 2.5. Let D be a subset of a real Banach space E. If r : E → D is
continuous with r(x) = x for all x ∈ D, then D is a retract of E, and the map r is
a retraction. The convex hull of a subset D of a real Banach space X is given by

conv(D) =
{ n∑

i=1

λixi : xi ∈ D, λi ∈ [0, 1],
n∑

i=1

λi = 1, and n ∈ N
}
.

The following theorem is due to Dugundji and its proof can be found in [8, p.
22].

Theorem 2.6. Let E and X be Banach spaces and let f : C → K be a continuous
mapping, where C is closed in E and K is convex in X. there exists a continuous
mapping f̃ : E → K such that f̃(u) = f(u), u ∈ C.

Yet in establishing our main results, we will use the following form of Dugundji’s
theorem [3, p. 44].

Corollary 2.7. For Banach spaces X and Y , let D ⊂ X be closed and let F :
D → Y be continuous. Then F has a continuous extension F̃ : X → Y such that
F̃ (X) ⊂ conv(F (D)).

Corollary 2.8. Every closed convex set in a Banach space is a retract of the
Banach space.

The following theorem, which establishes the existence and uniqueness of the
fixed point index, is from [4, pp. 82-86]; an elementary proof can be found in [3,
pp. 58 & 238]. The proof of our main result in the next section will invoke the
properties of the fixed point index.

Theorem 2.9. Let X be a retract of a real Banach space E. Then, for every
bounded relatively open subset U of X and every completely continuous operator
A : U → X which has no fixed points on ∂U (relative to X), there exists an integer
i(A,U, X) satisfying the following conditions:
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(G1) Normality: i(A,U, X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;
(G2) Additivity: i(A,U, X) = i(A,U1, X) + i(A,U2, X) whenever U1 and U2 are

disjoint open subsets of U such that A has no fixed points on U − (U1∪U2);
(G3) Homotopy Invariance: i(H(t, ·), U, X) is independent of t ∈ [0, 1] whenever

H : [0, 1] × U → X is completely continuous and H(t, x) 6= x for any
(t, x) ∈ [0, 1]× ∂U ;

(G4) Solution: If i(A,U, X) 6= 0, then A has at least one fixed point in U .
Moreover, i(A,U, X) is uniquely defined.

3. Main Results

Anderson, Avery, and Henderson [2] proved an expansion-compression fixed
point theorem of Leggett-Williams type; imbedded in the proof were two lemmas
which were the primary means of generalizing the fixed point theorems of Leggett-
Williams. The two lemmas in this section are the operator versions of those lemmas
and they will be the essential components in our expansion-compression fixed point
theorem of operator type. The key to Leggett-Williams type arguments is in using
concavity to remove an invariance condition (an inward condition). Note that if
one of A(y) <JA

xA or xA ≤JA
A(y) holds for each y ∈ P (this is the condition

that A is comparable to xA on P relative to JA), then an invariance condition of
the form

(F0) if y ∈ P with B(y) 5JB
xB , then B(Ty) <JB

xB

is equivalent to the following two conditions
(F1) if y ∈ P with B(y) 5JB

xB and xA ≤JA
A(y), then B(Ty) <JB

xB .
(F2) if y ∈ P with B(y) 5JB

xB and A(y) <JA
xA, then B(Ty) <JB

xB .
In the spirit of the original work of Leggett-Williams, using the properties of a
concave operator A, one can replace (F2) with

(F2′) if y ∈ P with B(y) 5JB
xB and A(Ty) <JA

xA, then B(Ty) <JB
xB .

These inward conditions (F1) and (F2′) are used in the next Lemma 3.1. A similar
technique was employed by Anderson, Avery and Henderson to remove outward
conditions in the expansion-compression arguments in [2] and the operator version
appears below as Lemma 3.2. Although the technique appears unmotivated, the
beauty comes in applications when a clever choice of the operator A effortlessly
verifies (F2′). Then verification of (F0) is replaced by verification of (F1) in our
fixed point arguments. Condition (F1) requires fewer y ∈ P to be checked compared
to (F0), therefore it is easier to use in applications. The operator A is only a tool
for obtaining a fixed point of T , consequently it is not part of the conclusion of any
lemma or theorem.

Lemma 3.1. Let F (K) be the set of real valued functions defined on K ⊂ R, JA

and JB be subsets of K with JB being compact, and P be a cone of non-negative
functions in a real Banach space E which is a subset of F (K). Suppose that A is
a concave operator on P , B is a continuous convex operator on P , and T : P → P
is a completely continuous operator. Suppose there exist xA, xB ∈ E such that

(B0) A is comparable to xA on P relative to JA;
(B1) {y ∈ P : xA <JA

A(y) and B(y) <JB
xB} 6= ∅;

(B2) if y ∈ P with B(y) 5JB
xB and xA ≤JA

A(y), then B(Ty) <JB
xB;

(B3) if y ∈ P with B(y) 5JB
xB and A(Ty) <JA

xA, then B(Ty) <JB
xB.
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If PJB
(B, xB) is bounded, then i(T, PJB

(B, xB), P ) = 1.

Proof. By Corollary 2.8, P is a retract of the Banach space E since it is convex
and closed.

Claim 1: Ty 6= y for all y ∈ ∂PJB
(B, xB). Let z0 ∈ ∂PJB

(B, xB). By the continuity
of B and the compactness of JB , B(z0) 5JB

xB . We want to show that z0 is
not a fixed point of T ; so suppose to the contrary that T (z0) = z0. Since A is
comparable to xA on P relative to JA, either A(Tz0) <JA

xA or xA ≤JA
A(Tz0). If

A(Tz0) <JA
xA, then B(Tz0) <JB

xB by condition (B3), and if xA ≤JA
A(Tz0) =

A(z0), then B(Tz0) <JB
xB by condition (B2). Hence, in either case we have that

B(Tz0) <JB
xB and B(z0) 5JB

xB . Thus Tz0 6= z0 and we have verified that T
does not have any fixed points on ∂PJB

(B, xB).
Let z1 ∈ {y ∈ P : xA <JA

A(y) and B(y) <JB
xB} (see condition (B1)), and let

H1 : [0, 1]× PJB
(B, xB) → P be defined by H1(t, y) = (1− t)Ty + tz1. Clearly, H1

is continuous and H1([0, 1]× PJB
(B, xB)) is relatively compact.

Claim 2: H1(t, y) 6= y for all (t, y) ∈ [0, 1] × ∂PJB
(B, xB). Suppose not; that is,

suppose there exists (t1, y1) ∈ [0, 1]× ∂PJB
(B, xB) such that H(t1, y1) = y1. Since

y1 ∈ ∂PJB
(B, xB) we have that B(y1) 5JB

xB . Again, since A is comparable to
xA on P relative to JA, either A(Ty1) <JA

xA or xA ≤JA
A(Ty1).

Case 1: A(Ty1) <JA
xA. By condition (B3), we have B(Ty1) <JB

xB . Since B
is convex on P , then

B(y1) = B((1− t1)Ty1 + t1z1) ≤ (1− t1)B(Ty1) + t1B(z1) <JB
xB ,

which contradicts B(y1) 5JB
xB .

Case 2: xA ≤JA
A(Ty1). Since A is concave on P ,

(1− t1)A(Ty1) + t1A(z1) ≤ A((1− t1)Ty1 + t1z1) = A(y1).

Since P is a cone of non-negative functions,

xA ≤JA
(1− t1)A(Ty1) + t1A(z1) ≤JA

A(y1),

and thus by condition (B2) we have B(Ty1) <JB
xB . This is the same contradiction

we reached in the previous case.
Therefore, we have shown that H1(t, y) 6= y for all (t, y) ∈ [0, 1]× ∂PJB

(B, xB),
and thus by the homotopy invariance property (G3) of the fixed point index,
i(T, PJB

(B, xB), P ) = i(z1, PJB
(B, xB), P ). And by the normality property (G1)

of the fixed point index, i(T, PJB
(B, xB), P ) = i(z1, PJB

(B, xB), P ) = 1. �

Lemma 3.2. Let F (K) be the set of real valued functions defined on K ⊂ R, JC

and JD be subsets of K with JC being compact, and P be a cone of non-negative
functions in a real Banach space E which is a subset of F (K). Suppose that C is
a continuous concave operator on P , D is a convex operator on P , and T : P → P
is a completely continuous operator. Suppose there exist xC , xD ∈ E such that

(A0) D is comparable to xD on P relative to JD;
(A1) {y ∈ P : xC <JC

C(y) and D(y) <JD
xD} 6= ∅;

(A2) if y ∈ P with C(y) 5JC
xC and D(y) ≤JD

xD, then xC <JC
C(Ty);

(A3) if y ∈ P with C(y) 5JC
xC and xD <JD

D(Ty), then xC <JC
C(Ty).

If PJC
(C, xC) is bounded, then i(T, PJC

(C, xC), P ) = 0.
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Proof. By Corollary 2.8, P is a retract of the Banach space E since it is convex
and closed.

Claim 1: Ty 6= y for all y ∈ ∂PJC
(C, xC). Let w0 ∈ ∂PJC

(C, xC). By the continuity
of C and the compactness of JC , C(w0) 5JC

xC . We want to show that w0 is not
a fixed point of T ; so suppose to the contrary that T (w0) = w0. Since D is
comparable to xD on P relative to JD, either xD <JD

D(Tw0) or D(Tw0) ≤JD
xD.

If xD <JD
D(Tw0), then xC <JC

C(Tw0) by condition (A3), and if D(w0) =
D(Tw0) ≤JD

xD, then xC <JC
C(Tw0) by condition (A2). Hence, in either case,

we have that xC <JC
C(Tw0) and C(w0) 5JC

xC . Thus Tw0 6= w0 and we have
verified that T does not have any fixed points on ∂PJC

(C, xC).
Let w1 ∈ {y ∈ P : xC <JC

C(y) and D(y) <JD
xD} (see condition (A1)), and

let H2 : [0, 1]× PJC
(C, xC) → P be defined by H2(t, y) = (1− t)Ty + tw1. Clearly,

H2 is continuous and H2([0, 1]× PJC
(C, xC)) is relatively compact.

Claim 2: H2(t, y) 6= y for all (t, y) ∈ [0, 1] × ∂PJC
(C, xC). Suppose not; that

is, there exists (t2, y2) ∈ [0, 1] × ∂PJC
(C, xC) such that H2(t2, y2) = y2. Since

y2 ∈ ∂PJC
(C, xC), we have that C(y2) 5JC

xC . Also, since D is comparable to xD

on P relative to JD, either xD <JD
D(Ty2) or D(Ty2) ≤JD

xD.
Case 1: xD <JD

D(Ty2). By condition (A3) we have xC <JC
C(Ty2), which is

a contradiction, since

xC <JC
(1− t2)C(Ty2) + t2C(w1) ≤JC

C((1− t2)Ty2 + t2w1) = C(y2) 5JC
xC .

Case 2: D(Ty2) ≤JD
xD. We have that D(y2) ≤JD

xD, since

D(y2) = D((1− t2)Ty2 + t2w1) ≤JD
(1− t2)D(Ty2) + t2D(w1) ≤JD

xD,

where D((1− t2)Ty2 + t2w1) ≤JD
(1− t2)D(Ty2) + t2D(w1) is guaranteed by the

fact that D is convex on P and P is a cone of non-negative functions. Thus by
condition (A2), we have xC <JC

C(Ty2). This is the same contradiction xC <JC
xC

we reached in the previous case.
Therefore, we have shown that H2(t, y) 6= y for all (t, y) ∈ [0, 1]× ∂PJC

(C, xC),
and thus by the homotopy invariance property (G3) of the fixed point index,
i(T, PJC

(C, xC), P ) = i(w1, PJC
(C, xC), P ). And by the solution property (G4)

of the fixed point index (since w1 6∈ PJC
(C, xC) the index cannot be nonzero), we

have i(T, PJC
(C, xC), P ) = i(w1, PJC

(C, xC), P ) = 0. �

Theorem 3.3. Let F (K) be the set of real valued functions defined on K ⊂ R, let
JA, JB, JC and JD be subsets of K such that JB and JC are compact, and let P
be a cone of non-negative functions in a real Banach space E that is a subset of
F (K). Suppose that A and C are concave operators on P and that B and D are
convex operators on P such that B and C are continuous, and that T : P → P is a
completely continuous operator. For J ⊂ K and x, y ∈ F (K) let x <J y (x ≤J y)
if and only if x(t) < y(t) (x(t) ≤ y(t)) for all t ∈ J , whereas x 5J y if and only if
x ≤J y and there exists a t0 ∈ J such that x(t0) = y(t0).

Suppose there exist xA, xB , xC , xD ∈ E such that
(D1) T is LW-outward with respect to PJC

(C, xC) := {y ∈ P : C(y) <JC
xC},

that is, the following conditions are satisfied:
(A0) either D(y) <JD

xD or xD ≤JD
D(y) for any y ∈ P ;

(A1) {y ∈ P : xC <JC
C(y) and D(y) <JD

xD} 6= ∅;
(A2) if y ∈ P with C(y) 5JC

xC and D(y) ≤JD
xD, then xC <JC

C(Ty);
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(A3) if y ∈ P with C(y) 5JC
xC and xD <JD

D(Ty), then xC <JC
C(Ty);

and closure{y ∈ P : C(y) <JC
xC} is bounded.

(D2) T is LW-inward with respect to PJB
(B, xB) := {y ∈ P : B(y) <JB

xB},
that is, the following conditions are satisfied:

(B0) either A(y) <JA
xA or xA ≤JA

A(y) for any y ∈ P ;
(B1) {y ∈ P : xA <JA

A(y) and B(y) <JB
xB} 6= ∅;

(B2) if y ∈ P with B(y) 5JB
xB and xA ≤JA

A(y), then B(Ty) <JB
xB;

(B3) if y ∈ P with B(y) 5JB
xB and A(Ty) <JA

xA, then B(Ty) <JB
xB;

and closure{y ∈ P : B(y) <JB
xB} is bounded.

If

(H1) closure{y ∈ P : B(y) <JB
xB} ( {y ∈ P : C(y) <JC

xC}, then T has
a fixed point y ∈ P such that C(y) <JC

xC with y /∈ closure{u ∈ P :
B(u) <JB

xB},

whereas, if

(H2) closure{y ∈ P : C(y) <JC
xC} ( {y ∈ P : B(y) <JB

xB}, then T has
a fixed point y ∈ P such that B(y) <JB

xB with y /∈ closure{u ∈ P :
C(u) <JC

xC}.

Proof. We will prove the expansive result (H1), as the proof of the compressive
result (H2) is nearly identical. First, define the sets

PJR
(R, xR) := {y ∈ P : R(y) <JR

xR}

and

P (B,C, xB , xC , JB , JC) := PJC
(C, xC)− PJB

(B, xB).

To prove the existence of a fixed point for our operator T in P (B,C, xB , xC , JB , JC),
it is enough for us to show that i(T, P (B,C, xB , xC , JB , JC), P ) 6= 0.

Since T is LW-inward with respect to PJB
(B, xB), we have by Lemma 3.1 that

i(T, PJB
(B, xB), P ) = 1, and since T is LW-outward with respect to PJC

(C, xC),
we have by Lemma 3.2 that i(T, PJC

(C, xC), P ) = 0.
T has no fixed points in PJC

(C, xC) − (PJB
(B, xB) ∪ P (B,C, xB , xC , JB , JC)),

since if y ∈ PJC
(C, xC)− (PJB

(B, xB) ∪ P (B,C, xB , xC , JB , JC)), then either
B(y) 5JB

xB or C(y) 5JC
xC . Now, if B(y) 5JB

xB , then we showed in Lemma
3.1 that y was not a fixed point of T , and if C(y) 5JC

xC , then we showed in
Lemma 3.2 that y was not a fixed point of T . Also, the sets PJB

(B, xB) and
P (B,C, xB , xC , JB , JC) are nonempty, disjoint, open subsets of PJC

(C, xC), since
PJB

(B, xB) ( PJC
(C, xC) implies that P (B,C, xB , xC , JB , JC) = PJC

(C, xC) −
PJB

(B, xB) 6= ∅. Therefore, by the additivity property (G2) of the fixed point
index

i(T, PJC
(C, xC), P ) = i(T, PJB

(B, xB), P ) + i(T, P (B,C, xB , xC , JB , JC), P ).

Consequently, we have i(T, P (B,C, xB , xC , JB , JC), P ) = −1, and thus by the so-
lution property (G4) of the fixed point index, the operator T has a fixed point
y ∈ P (B,C, xB , xC , JB , JC). �
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4. Application

As an application of our main results, we consider the following second order
nonlinear right focal boundary value problem,

x′′ + g(t)f(x, x′) = 0, t ∈ [0, 1], (4.1)

x(0) = x′(1) = 0, (4.2)

where g : [0, 1] → [0,∞) and f : R2 → [0,∞) are continuous.
Let the Banach space E = C1[0, 1] with the norm of ‖x‖ = maxt∈[0,1] |x(t)| +

maxt∈[0,1] |x′(t)|, and define the cone P ⊂ E by

P := {x ∈ E : x(t) ≥ 0, x′(t) ≥ 0, for t ∈ [0, 1], x is concave, and x(0) = 0}.

Then for any x ∈ P , we have ‖x‖ = x(1) + x′(0). And from the concavity of any
x ∈ P , we have that x(t) ≥ tx(1) and x(t) ≤ x′(0)t for t ∈ [0, 1].

It is well known that the Green’s function for −x′′ = 0 and satisfying (4.2) is
given by

G(t, s) = min{t, s}, (t, s) ∈ [0, 1]× [0, 1].

We note that, for any s ∈ [0, 1], G(t, s) ≥ tG(1, s) and G(t, s) is nondecreasing in t.
By using properties of the Green’s function, solutions of (4.1), (4.2) are the fixed

points of the completely continuous operator T : P → E defined by

Tx(t) =
∫ 1

0

G(t, s)g(s)f(x(s), x′(s))ds.

Since (Tx)′′(t) = −g(t)f(x, x′) ≤ 0 on [0, 1] and (Tx)(0) = (Tx)′(1) = 0, we have
T : P → P .

Let τ ∈ (0, 1). For x ∈ P , we define the following operators:

(Ax)(t) = (Cx)(t) = x′(0)t, (Bx)(t) =
(x′(0) + x(1)

2

)
t, (Dx)(t) =

(x(τ)
τ

)
t.

All the above operators are continuous linear operators mapping P to P , and
are convex or concave continuous operators as well. In the following theorem,
we demonstrate how to apply the expansive condition of Theorem 3.3 to prove the
existence of at least one positive solution to (4.1), (4.2).

Theorem 4.1. Suppose there is some τ ∈ (0, 1) and 0 < d < b such that g and f
satisfy

(a) f(u1, u2) > dR τ
0 g(s)ds

, for (u1, u2) ∈ [0, dτ ]× [0, d],

(b) f(u1, u2) < 2bR 1
0 (1+s)g(s)ds

, for (u1, u2) ∈ [0, b]× [0, 2b).

Then the right focal problem (4.1), (4.2) has at least one positive solution y ∈ P
with y′(0) > d and y′(0) + y(1) < 2b.

Proof. We choose xA(t) = bt, xB(t) = b, xC(t) = dt, xD(t) = dτ defined on [0, 1],
and JA = JC = [τ, 1], JB = {1} and JD = {τ}. Then it is easy to see that
JA, JB , JC , JD are compact subsets of [0, 1] and xA, xB , xC , xD ∈ E.

Claim 1: T is LW-inward with respect to PJB
(B, xB). A is comparable to xA on

P relative to JA, since for any y ∈ P , we have (Ay)(t) = y′(0)t ≥ xA(t) = bt, or
(Ay)(t) = y′(0)t < xA(t) = bt, for t ∈ [τ, 1]. Thus A(y) <JA

xA or xA ≤JA
A(y).

Also, {y ∈ P : xA <JA
A(y) and B(y) <JB

xB} 6= ∅, since y0(t) := at(2 − t) ∈ P
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on [0, 1], with a ∈ ( b
2 , 2b

3 ), and (Ay0)(t) = y′0(0)t = 2at > bt = xA(t), for t ∈ [τ, 1] =

JA, and (By0)(1) = y′
0(0)+y0(1)

2 = 2a+a
2 < b = xB(1).

Subclaim 1.1: If y ∈ P with B(y) 5JB
xB and xA ≤JA

A(y), then B(Ty) <JB
xB .

Let y ∈ P with B(y) 5JB
xB and xA ≤JA

A(y). From B(y) 5JB
xB , we have

y′(0) + y(1) = 2b. From xA ≤JA
A(y), we have y′(0) ≥ b. Hence, 0 < y(1) ≤ b and

b ≤ y′(0) < 2b, which implies 0 ≤ y(t) ≤ b and 0 ≤ y′(t) < 2b for t ∈ [0, 1]. Then
by property (b),

f(y(t), y′(t)) <
2b∫ 1

0
(1 + s)g(s)ds

, t ∈ [0, 1],

and so

(BTy)(1) =
(Ty)′(0) + (Ty)(1)

2

=
1
2

∫ 1

0

g(s)f(y(s), y′(s))ds +
1
2

∫ 1

0

sg(s)f(y(s), y′(s))ds

<
1
2

∫ 1

0

(1 + s)g(s)ds · 2b∫ 1

0
(1 + s)g(s)ds

= b = xB(1);

i.e., B(Ty) <JB
xB .

Subclaim 1.2: If y ∈ P with B(y) 5JB
xB and A(Ty) <JA

xA, then B(Ty) <JB
xB .

Let y ∈ P with B(y) 5JB
xB and A(Ty) <JA

xA. From A(Ty) <JA
xA, we get

(Ty)′(0) < b. By the concavity of T (y) on [0, 1], we know that (Ty)(1) ≤ (Ty)′(0) <
b, which implies

(BTy)(1) =
(Ty)(1) + (Ty)′(0)

2
< b;

i.e., B(Ty) <JB
xB .

It is easy to see that PJB
(B, xB) is bounded, thus T is LW-inward with respect

to PJB
(B, xB).

Claim 2: T is LW-outward with respect to PJC
(C, xC). D is comparable to xD

on P relative to JD, since for any y ∈ P , we have (Dy)(τ) = y(τ) ≥ xD(τ) = dτ ,
or (Dy)(τ) = y(τ) < xD(τ) = dτ . Thus Dy <JD

xD or xD ≤JD
Dy. Also,

{y ∈ P : xC <JC
C(y) and D(y) <JD

xD} 6= ∅, since y0(t) := at(2− t) ∈ P on [0, 1]
with a ∈ (d

2 , d
2−τ ), and (Cy0)(t) = y′0(0)t = 2at > dt = xC(t), for t ∈ [τ, 1] = JC ,

and (Dy0)(τ) = aτ(2− τ) < dτ = xD(τ).

Subclaim 2.1: If y ∈ P with C(y) 5JC
xC and D(y) ≤JD

xD, then xC <JC
C(Ty).

Let y ∈ P with C(y) 5JC
xC and D(y) ≤JD

xD. From C(y) 5JC
xC , we have

that y′(0) = d. From D(y) ≤JD
xD, we have that y(τ) ≤ dτ . Hence, for t ∈ [0, τ ],

0 ≤ y(t) ≤ dτ and 0 ≤ y′(t) ≤ d. Then by property (a),

f(y(t), y′(t)) >
d∫ τ

0
g(s)ds

, t ∈ [0, τ ],
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and so for t ∈ [τ, 1],

(CTy)(t) = (Ty)′(0)t =
∫ 1

0

g(s)f(y(s), y′(s))ds · t

≥
∫ τ

0

g(s)f(y(s), y′(s))ds · t

>

∫ τ

0

g(s)ds · dt∫ τ

0
g(s)ds

= dt = xC(t);

i.e., xC <JC
C(Ty).

Subclaim 2.2: If y ∈ P with C(y) 5JC
xC and xD <JD

D(Ty), then xC <JC
C(Ty).

Let y ∈ P with C(y) 5JC
xC and xD <JD

D(Ty). From xD <JD
D(Ty), we

have that (Ty)(τ) > dτ . Hence, (Ty)′(0) ≥ (Ty)(τ)
τ > d. Therefore, (CTy)(t) =

(Ty)′(0)t > dt = xC(t), for t ∈ [τ, 1]; i.e., xC <JC
C(Tx).

It is easy to see that PJC
(C, xC) is bounded, thus T is LW-outward with respect

to PJC
(C, xC).

Claim 3: PJC
(C, xC) ⊂ PJB

(B, xB) and P (C,B, xC , xB , JC , JB) 6= ∅. Let y ∈
PJC

(C, xC). Then, y′(0) ≤ d. From y(1) ≤ y′(0) ≤ d, we have

(By)(1) =
y′(0) + y(1)

2
≤ d + d

2
= d < b = xB(1).

Hence, PJC
(C, xC) ⊂ PJB

(B, xB). Also, P (C,B, xC , xB , JC , JB) 6= ∅, since y0(t) =
at(2− t) ∈ P on [0, 1], with a ∈ (d

2 , 2b
3 ), and (Cy0)(t) = y′(0)t = 2at > dt = xC(t),

for t ∈ [τ, 1], and (By0)(1) = y′
0(0)+y0(1)

2 = 3a
2 < b.

Therefore, by Theorem 3.3, T has a fixed point y in P (C,B, xC , xB , JC , JB). �

Example. Consider the right focal boundary value problem

x′′(t) +
1

t + 1
(x− 1)2ex(1− sin(x′)) = 0, t ∈ [0, 1],

x(0) = x′(1) = 0.

Choose τ = 0.9, d = 0.3, b = 0.6. Then it is easy to verify that this problem
satisfies Theorem 4.1 and hence it has at least one positive solution x on [0, 1] with
x′(0) > 0.3 and x′(0) + x(1) < 1.2.
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