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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
DIVERGENCE TYPE ELLIPTIC EQUATIONS

LIN ZHAO, PEIHAO ZHAO, XIAOXIA XIE

Abstract. We establish the existence and multiplicity of weak solutions of a
problem involving a uniformly convex elliptic operator in divergence form. We
find one nontrivial solution by the mountain pass lemma, when the nonlinear-
ity has a (p − 1)-superlinear growth at infinity, and two nontrivial solutions
by minimization and mountain pass when the nonlinear term has a (p − 1)-
sublinear growth at infinity.

1. Introduction

In this article we study the boundary-value problem

−div(a(x,∇u)) + |u|p−2u = λf(x, u), x ∈ Ω, (1.1)

u(x) = constant, x ∈ ∂Ω, (1.2)∫
∂Ω

a(x,∇u) · n ds = 0, (1.3)

where Ω is a bounded domain in RN , with smooth boundary. We obtain the
existence and multiplicity for the equation

− div(a(x,∇u)) = f(x, u). (1.4)

Such operators arise, for example, from the expression of the p-Laplacian in curvi-
linear coordinates. We refer to the books [5, 11, 13] for the foundation of the
variational methods and refer to the overview papers [1, 2, 4, 6, 7, 8, 9, 10, 12] for
the advances and references of this area. Recently, the Dirichlet problem (1.4) was
studied and obtained one weak solution by the mountain pass lemma in [8], when
the potential satisfies a set of assumptions and f is (p − 1)-superlinear at infinity.
Duc and Vu [2] extended the result of [8], considering the Dirichlet problem (1.4) in
the nonuniform case. Kristály, Lisei and Varga [4] study the Dirichlet problem (1.4),
and obtain three solutions when f is (p− 1)-sublinear at infinity. Yang, Geng and
Yan [12] deal with the singular p-Laplacian type equation and get three solutions
with f having (p−1)-sublinear growth at infinity. Papageorgiou, Rocha and Staicu
[9] consider the nonsmooth p-Laplacian problem, and obtain at least two solutions.
In [7], the sub-supersolution method has been applied to find one solution to the
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problem (1.4) with the boundary condition (1.2) and (1.3) where the nonlinearity
f satisfies the condition: |f(x, u)| ≤ a3(x), with a3 ∈ Lp′(Ω), 1

p + 1
p′ = 1.

The first result of this paper is about the existence of solution of (1.1)-(1.3).
We assume that the nonlinear term f : Ω × R → R satisfies the Ambrosetti-
Rabinowitz type condition and obtain one weak solution by the mountain pass
lemma in Theorem 3.1.

The second result of this paper is about the existence and multiplicity of solutions
for the problem (1.1)-(1.3). Under the growth on f , saying, f is (p − 1)-sublinear
at infinity, we obtain two nontrivial solutions by minimization and mountain pass
lemma in [1, 4, 9], where they do the same thing under different assumptions on f .

We remark that in [2, 4, 8], the function A, with ∇ξA = a(x, ξ), satisfies the
p-uniformly convex condition: there exists a constant k > 0 such that

A(x,
ξ + η

2
) ≤ 1

2
A(x, ξ) +

1
2
A(x, η)− k|ξ − η|p, x ∈ Ω, ξ, η ∈ RN .

However, for the case A(ξ) = |ξ|p, the p-uniform convexity condition is satisfied
only for p ∈ [2,+∞). We assume the function A satisfies the condition (UC) in this
paper, while the condition (UC) is satisfied for A(ξ) = |ξ|p for all p ∈ (1,+∞) (see
[3]).

2. Preliminaries

Let X be a Banach space and X∗ is its topological dual. We denote the duality
brackets for the pair (X∗, X) by 〈·, ·〉 and W 1,p(Ω) (p > 1) is the usual Sobolev
space, equipped with the norm

‖u‖ = ‖u‖W 1,p(Ω) =
( ∫

Ω

|∇u|p + |u|pdx
)1/p

. (2.1)

Let
V = {u ∈ W 1,p(Ω) : u|∂Ω = constant}.

We next claim that V is a closed subspace of W 1,p(Ω) and thus a reflexive Banach
space with the restricted norm of (2.1).

Lemma 2.1 ([7]). V is a Banach space equipped with the norm of (2.1).

Proof. From the definition of V , we set V = {u + c : u ∈ W 1,p
0 (Ω), c ∈ R}. We

assume that vn ∈ V , then vn = un + cn, with un ∈ W 1,p
0 (Ω). If {vn} is Cauchy

sequence in W 1,p(Ω), then for all ε > 0, we have

ε > ‖vn − vm‖W 1,p = ‖un + cn − (um + cm)‖W 1,p

= ‖∇(un − um)‖Lp + ‖un − um + cn − cm‖Lp

≥ ‖∇(un − um)‖Lp .

We obtain that {un} is Cauchy sequence in W 1,p
0 (Ω), so there exists ũ ∈ W 1,p

0 (Ω)
such that

un → ũ inW 1,p
0 (Ω).

As
‖un − um‖Lp ≤ cp‖∇(un − um)‖Lp ≤ cpε,

we have

‖cn − cm‖Lp = ‖un + cn − (um + cm)− un + um‖Lp
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≤ ‖un + cn − (um + cm)‖Lp + ‖un − um‖Lp

≤ ‖vn − vm‖Lp + cp‖un − um‖Lp

≤ ε + cpε.

We conclude that {cn} is a Cauchy sequence in Lp(Ω), and so is in R. We conclude
that there exists c̃ ∈ R, such that

un + cn → ũ + c̃ in V as cn → c̃ in R.

�

Definition 2.2. We say that u ∈ V is a weak solution of the boundary-value
problem (1.1)-(1.3)if∫

Ω

a(x,∇u) · ∇v dx +
∫

Ω

|u|p−2uv dx− λ

∫
Ω

f(x, u)v dx = 0, ∀v ∈ V. (2.2)

Definition 2.3 ([3]). Let A : Ω × RN → R, A = A(x, ξ) be a continuous function
in Ω× RN with continuous derivative with respect to ξ, a(x, ξ) = ∇ξA(x, ξ) = A′.
Define A|∨| : Ω× R → R as follows,

A|∨|(x, t) = sup
|ξ|=t

A(x, ξ), ∀x ∈ Ω.

For every ε, b ∈ (0, 1) and x ∈ Ω, define

Eε,b(x) =
{

(ξ, η) ∈ RN × RN : A(x,
ξ − η

2
) ≥ 1

2
max{A(x, εξ), A(x, εη)},

A(x,
ξ + η

2
) > (1− b)

A(x, ξ) + A(x, η)
2

}
,

and

qε,b(x) = sup{ |ξ − η|
2

: (ξ, η) ∈ Eε,b(x)}.

We say that A satisfies condition (UC) if

lim
b→0

∫
Ω

A|∨|(x, qε,b(x))dx = 0 for every ε ∈ (0, 1).

So a function A is said to be uniformly convex if A satisfies condition (UC).

As in [3], we remark that for A(ξ) = |ξ|p, the p-uniform convexity condition

A(x,
ξ + η

2
) ≤ 1

2
A(x, ξ) +

1
2
A(x, η)− k|ξ − η|p, ∀x ∈ Ω, ξ, η ∈ RN ,

where k is a positive constant, is satisfied only if p ∈ [2,+∞), but (UC) is satisfied
for all p ∈ (1,+∞).

Lemma 2.4 ([5, 11, 13]). Let X be a Banach space and I ∈ C1(X; R) satisfy the
Palais-Smale condition. Suppose

(i) I(0) = 0;
(ii) there exists constants r > 0, a > 0 such that I(u) ≥ a if ‖u‖ = r;
(iii) there exists u1 ∈ X such that ‖u1‖ ≥ r and I(u1) < a.

Define
Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = u1}.

Then
β = inf

γ∈Γ
sup
u∈γ

I(u) ≥ a
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is a critical value.

3. Main result

Let p > 1, A : Ω × RN → R, a(x, ξ) be derivative of A(x, ξ) with respect to ξ,
and we assume that the following conditions hold

(A1) A(x, 0) = 0 for all x ∈ Ω;
(A2) a satisfies the growth condition |a(x, ξ)| ≤ c2(1 + |ξ|p−1) for all x ∈ Ω,

ξ ∈ RN , for some constant c2 > 0;
(A3) A is uniformly convex;
(A4) A is p-subhomogeneous, 0 ≤ a(x, ξ)ξ ≤ pA(x, ξ) for all x ∈ Ω, ξ ∈ RN .
(A5) A satisfies A(x, ξ) ≥ Λ|ξ|p for all x ∈ Ω, ξ ∈ RN , where Λ > 0 is a constant.

Let f : Ω× R → R be a continuous function satisfying the following conditions:
(F1) The subcritical growth condition

|f(x, s)| ≤ c3(1 + |s|q−1), ∀x ∈ Ω, s ∈ R,

where p < q < p∗ = Np
N−p if p < N or p < q < +∞ if p > N ;

(F2) (The Ambrosetti-Rabinowitz condition) F (x, s) =
∫ s

0
f(x, t)dt is θ-super-

homogeneous at infinity; i.e., there exists s0 > 0 such that

0 < θF (x, s) ≤ f(x, s)s, for |s| ≥ s0, x ∈ Ω,

where θ > p;
(F3) lim|s|→0

f(x,s)
|s|p−1 = 0;

(F4) lim|s|→∞
f(x,s)
|s|p−1 = 0;

(F5) There exists s∗ > 0, s∗ ∈ R such that F (x, s∗) > 0, ∀x ∈ Ω.
Our main result is as follows.

Theorem 3.1. Let A : Ω × RN → RN be a potential which satisfies (A1)–(A5),
and let f : Ω × R → R be a continuous function. If f satisfies (F1)–(F3), then
(1.1)-(1.3) has at least one nontrivial weak solution in V , for every λ ∈ R.

Theorem 3.2. Let A : Ω × RN → RN be a potential which satisfies (A1)–(A5),
and let f : Ω×R → R be a continuous function. If f satisfies (F3)–(F5), then there
exists a constant µ > 0, such that for λ ∈ (µ,+∞), problem (1.1)-(1.3) has at least
two nontrivial weak solutions in V .

3.1. Proof of Theorem 3.1. Under the assumptions of Theorem 3.1 we define
the functional

J(u) =
∫

Ω

A(x,∇u) dx +
1
p

∫
Ω

|u|pdx− λ

∫
Ω

F (x, u) dx.

It is easy to see that J : V → R is well defined and J ∈ C1(V ; R). Its derivative is
given by

〈J ′(u), ϕ〉 =
∫

Ω

a(x,∇u) · ∇ϕ dx +
∫

Ω

|u|p−2uϕ dx− λ

∫
Ω

f(x, u)ϕ dx,

for all u, ϕ ∈ V . Thus the weak solution of (1.1)–(1.3) corresponds to the critical
point of the functional J on V .

To prove Theorem 3.1, we apply the mountain pass lemma to this functional.
We will show J satisfies the Palais-Smale condition in the first. Let {un} ⊂ V be a
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Palais-Smale sequence; i.e., J ′(un) → 0 in X∗ and J(un) → l, where l is a constant.
We first show that {un} is bounded in V ,

J(un)− 1
θ
〈J ′(un), un〉 =

∫
Ω

[A(x,∇un)− 1
θ
a(x,∇un) · ∇un]dx

+ (
1
p
− 1

θ
)
∫

Ω

|un|pdx + λ

∫
Ω

[
1
θ
f(x, un)un − F (x, un)]dx,

where θ > p. From condition (A4), we have

J(un)− 1
θ
〈J ′(un), un〉 ≥ (1− p

θ
)
∫

Ω

A(x,∇un)dx + (
1
p
− 1

θ
)
∫

Ω

|un|pdx

+ λ

∫
Ω

[
1
θ
f(x, un)un − F (x, un)]dx,

then

(1− p

θ
)
∫

Ω

A(x,∇un)dx + (
1
p
− 1

θ
)
∫

Ω

|un|pdx

≤ J(un)− 1
θ
〈J ′(un), un〉 − λ

∫
{x:|un(x)|>s0}

[
1
θ
f(x, un)un − F (x, un)]dx + Mm(Ω),

where M = sup{| 1θ f(x, s)s − F (x, s)| : x ∈ Ω, |s| ≤ s0}, and m(Ω) denotes the
Lebesgue measure of Ω.

By (F2) (the Ambrosetti-Rabinowitz condition), we have

(1− p

θ
)
∫

Ω

A(x,∇un)dx + (
1
p
− 1

θ
)
∫

Ω

|un|pdx ≤ J(un)− 1
θ
〈J ′(un), un〉+ Mm(Ω).

By (A5),

(1− p

θ
) min{Λ,

1
p
}(

∫
Ω

|∇un|p + |un|p)dx ≤ J(un)− 1
θ
〈J ′(un), un〉+ Mm(Ω),

where min{Λ, 1
p} denotes the minimum of Λ and 1

p . As

‖un‖ =
( ∫

Ω

|∇un|p + |un|pdx
)1/p

,

we conclude that {un} is bounded in V . Since V is a closed subspace of W 1,p(Ω)
and the reflexivity of W 1,p(Ω), we may extract a weakly convergent subsequence
that we call {un} for simplicity. So we may assume that un ⇀ u weakly in W 1,p(Ω).

Next, we will prove that un converges strongly to u ∈ V . From the derivative of
J we obtain ∫

Ω

a(x,∇un) · ∇(un − u)dx +
∫

Ω

|un|p−2un(un − u)dx

= 〈J ′(un), un − u〉 − λ

∫
Ω

f(x, un)(un − u) dx.

(3.1)

Since ‖J ′(un)‖W−1,p′ → 0 and {un − u} is bounded in V ⊂ W 1,p(Ω), by the
|〈J ′(un), un − u〉| ≤ ‖J ′(un)‖W−1,p′‖un − u‖ it follows that

〈J ′(un), un − u〉 → 0.

From (F1), we have∫
Ω

|f(x, un(x))||un(x)− u(x)|dx
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≤ c3

∫
Ω

|un(x)− u(x)|dx + c3

∫
Ω

|un(x)|q−1|un(x)− u(x)|dx

≤ c3((m(Ω))1/q′ + ‖un‖q−1
Lq )‖un − u‖Lq ,

where 1
q + 1

q′ = 1. Since the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact, with
q < Np

N−p , we obtain un → u strongly in Lq(Ω). So we obtain∫
Ω

|f(x, un(x))||un(x)− u(x)|dx → 0.

Considering the inequality∫
Ω

||un(x)|p−2un(x)(un(x)− u(x))|dx =
∫

Ω

|un(x)|p−1|un(x)− u(x)|dx

≤ ‖un‖p−1
Lp ‖un − u‖Lp ,

and un → u strongly in Lp(Ω), we have∫
Ω

||un(x)|p−2un(x)(un(x)− u(x))|dx.

From (3.1), we may conclude

lim sup
n→∞

〈a(x, un), un − u〉 = lim sup
n→∞

∫
Ω

a(x,∇un) · ∇(un − u)dx ≤ 0,

where 〈a(x, un), un − u〉 denotes
∫
Ω

a(x,∇un) · ∇(un − u)dx.
Therefore, from condition (A3), A is uniformly convex, and the operator a(x, ξ) =

DξA(x, ξ) satisfies the (S+) property. From the (S+) condition in [8, Proposition
2.1], so we have un → u strongly in W 1,p(Ω). Since {un} ⊂ V , V is a closed
subspace of W 1,p(Ω), and we have u ∈ V . So un → u strongly in V .

Next, we show that J satisfies the geometry condition of the mountain pass
lemma; i.e.,

(1) There exists r > 0, such that inf‖u‖=r J(u) = b > 0.
(2) There exists u0 ∈ V such that J(tu0) → −∞, as t → +∞.

Step 1. Fix λ ∈ R, we choose ε > 0 small enough satisfying Λ > λε
pcp

. Then by
(F3), there exists δ > 0 such that |f(x, s)| ≤ ε|s|p−1 for |s| ≤ δ, for all x ∈ Ω.
Integrating the above inequality, we deduce that

F (x, s) ≤ ε

p
|s|p, for |s| ≤ δ.

Consequently, using (F1) and the Sobolev embedding, we have

J(u) ≥
∫

Ω

A(x,∇u)dx +
1
p

∫
Ω

|u|pdx− λ

∫
{x∈Ω:|u(x)|≤δ}

ε

p
|u|pdx

− λ

∫
{x∈Ω:|u|>δ}

c4|u|qdx

≥ min{Λ,
1
p
}‖u‖p − λε

p
cp‖u‖p − λc4‖u‖q

≥
(

min{Λ,
1
p
} − λε

p
cp

)
‖u‖p − λc4‖u‖q = Φ(r),

where r = ‖u‖p, min{Λ, 1
p} > λε

p cp, as ε is small enough. Moreover, Φ(r) > 0 for
r > 0 small enough, since q > p.
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Step 2. Since A is p-subhomogeneous, can be restated as a differential inequality
for the function F in the form

s|s|θ d

ds
(|s|−θF (x, s)) ≥ 0, for |s| ≥ s0.

We infer that for |s| ≥ s0, we have F (x, s) ≥ γ0(x)|s|θ, where

γ0 = s−θ
0 min{F (x, s0), F (x,−s0)} > 0.

Considering condition (A4), we obtain that for some constant k(u) > 0 there holds

J(tu0) =
∫

Ω

A(x, t∇u0)dx +
1
p

∫
Ω

|tu0|pdx− λ

∫
Ω

F (x, tu0)dx

≤ tp
∫

Ω

A(x,∇u0)dx +
1
p
tp

∫
Ω

|u0|pdx− k(u)|λ|tθ + |λ|M1m(Ω),

where M1 = sup{|F (x, s)| : x ∈ Ω, |s| ≤ s0}. Since θ > p, we choose u0 such that
m{x ∈ Ω : u0(x) ≥ s0} > 0. We deduce that J(tu0) → −∞, as t → +∞. For fixed
u0 6= 0 and sufficiently large t > 0, we let u1 = tu0. By Lemma 2.4 (mountain
pass lemma), we obtain the existence of a non-trivial solution u to (1.1)-(1.3). The
proof is completed.

3.2. Proof of Theorem 3.2. We denote

A(u) =
∫

Ω

A(x,∇u)dx +
1
p

∫
Ω

|u|pdx

and F(u) =
∫
Ω

F (x, u)dx, then the functional J is given by J(u) = A(u)− λF(u).

Lemma 3.3 ([4]). For every λ ∈ R, the functional J : V → R is sequentially
weakly lower semicontinuous.

Proof. The functional A being locally uniformly convex is weakly lower semicon-
tionous. From the condition (F4), we have |f(x, s)| ≤ c5(1+ |s|p−1) for every s ∈ R.
Since the embedding V ⊂ W 1,p(Ω) ↪→ Lp(Ω) is compact, we obtain that F is
sequentially weakly lower semicontinuous in the standard method. �

Lemma 3.4. For every λ ∈ R, the functional J is coercive and satisfies the Palais-
Smale condition.

Proof. By (F4), for ε > 0 small enough, there exists δ such that |f(x, s)| ≤ ε|s|p−1

for every |s| ≥ δ. Integrating this inequality, we have

|F (x, s)| ≤ ε

p
|s|p + max

|t|≤δ
|f(x, t)||s|, ∀s ∈ R.

Thus, for every u ∈ V , we obtain

J(u) ≥ A(u)− |λ||F(u)|

≥ min{Λ,
1
p
}‖u‖p − |λ|ε

p

∫
Ω

|u|pdx− |λ|max
|t|≤δ

|f(x, t)|
∫

Ω

|u|dx

≥ min{Λ,
1
p
}‖u‖p − ε|λ|

p

∫
Ω

|u|pdx− |λ|m(Ω)1/p′ max
|t|≤δ

|f(x, t)|
( ∫

Ω

|u|pdx
)1/p

≥
(

min{Λ,
1
p
} − ε|λ|cp

p

)
‖u‖p − c1/p

p |λ|m(Ω)1/p′ max
|t|≤δ

|f(x, t)|‖u‖.
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Since ε is small enough, min{Λ, 1
p} >

ε|λ|cp

p , so we have J(u) → +∞, whenever
‖u‖ → +∞. Hence J is coercive.

The proof of the functional J satisfying the Palais-Smale condition is similar to
Theorem 3.1 The proof is complete. �

Proof of Theorem 3.2. From condition (F5), we have

ρ := sup
u∈V,u 6=0

F(u)
A(u)

≥ F(s∗)
A(s∗)

> 0.

Let µ = 1/ρ. Fix λ ∈ (µ,+∞). From the definition of ρ, there exists some u∗ ∈ V ,
with min{A(u∗),F(u∗)} > 0, such that

1
λ

<
F(u∗)
A(u∗)

.

This implies J(u∗) = A(u∗) − λF(u∗) < 0. By Lemma 3.4, the functional J is
bounded from below, coercive and satisfies the (P-S) condition on V for every
λ > 0. This implies the functional J has a global minimizer u1; i.e.,

J(u1) ≤ J(u) ∀u ∈ V.

Let u = u∗. We have
J(u1) ≤ J(u∗) < 0.

By (F3), there exists δ > 0 such that |f(x, s)| ≤ ε|s|p−1 for |s| < δ, for all x ∈ Ω.
We have

|F (x, s)| ≤ ε

p
|u|pfor|s| ≤ δ. (3.2)

Using (F4), there exists k(δ) > 0 such that |F (x, s)| ≤ k(δ)|s|p ≤ k(δ)|s|q, p < q <
Np

N−p , for |s| > δ. Considering this fact and (3.2), for λ ∈ (µ,+∞) we have

J(u) ≥
∫

Ω

A(x,∇u)dx +
1
p

∫
Ω

|u|pdx− λ

∫
{x∈Ω:|u(x)|≤δ}

ε

p
|u|pdx

− λ

∫
{x∈Ω:|u|>δ}

k(δ)|u|qdx

≥ min{Λ,
1
p
}‖u‖p − λε

p
cp‖u‖p − λk(δ)‖u‖q

≥
(

min{Λ,
1
p
} − λε

p
cp

)
‖u‖p − λk(δ)‖u‖q = Φ(r),

where r = ‖u‖p and q > p. We can take ε small enough, such that min{Λ, 1
p} >

λε
p cp. Moreover, ∃r > 0 small enough and a > 0, such that Φ(r) ≥ a > 0.

Obviously, J(0) = 0. If we denote by Γ the set of all continuous functions γ :
[0, 1] → V , such that γ(0) = 0 and γ(1) = u1. From the mountain pass lemma,
there exists u2 such that J ′(u2) = 0 and

J(u2) = β = inf
γ∈Γ

sup
u∈γ

J(u) ≥ a > 0.

This completes the proof. �
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