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OPTIMIZING SECOND-ORDER DIFFERENTIAL EQUATION
SYSTEMS

TAMÁS HAJBA

Abstract. In this article we study some continuous versions of the Fletcher-
Reeves iteration for minimization described by a system of second-order dif-
ferential equations. This problem has been studied in earlier papers [19, 20]
under the assumption that the minimizing function is strongly convex. Now
instead of the strong convexity, only the convexity of the minimizing function
will be required. We will use the Tikhonov regularization [28, 29] to obtain
the minimal norm solution as the asymptotically stable limit point of the tra-
jectories.

1. Introduction

Let f : Rn → R be a convex, continuously differentiable function. Let us consider
the minimization problem

min
x∈Rn

f(x), (1.1)

where the function f(x) satisfies the following conditions:

f∗ = inf f(x) > −∞, X∗ = {x ∈ Rn : f(x) = f∗} 6= ∅. (1.2)

Several methods have been developed for the solution of this problem. The meth-
ods generated with an iterative process can be modelled with differential equations.
These differential equations are usually called the continuous version of the method.

Modelling the iterative numerical methods of optimization with differential equa-
tions has been investigated in several papers. Some of them deal with either the
gradient or the Newton’s method and model the given method by a system of first
order differential equations (e.g. [2, 3, 5, 8, 10, 14, 15, 16, 21, 9, 22, 23, 33, 34]
etc.). In this article we investigate two models of the continuous version of the
Fletcher-Reeves iteraiton. Both of them lead to the analysis of second-order differ-
ential equation systems (shortly SODE system). One of these models has not been
studied earlier.

There is another approach to the study of second order differential equations
with the optimization that arise in physical problems such as the heavy ball with
friction. Results concerning such type of second-order differential equation models
can be found in [1, 4, 7, 12, 13, 18, 31, 30]. There are also some papers discussing
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higher order methods; e.g. [32, 30, 26]. However, the mentioned papers deal with
SODE systems that are linear in ẋ. Since the Fletcher-Reeves iteration uses the
new state point in the construction of the new direction, our system of second-order
differential equations will not necessary be linear in the first derivative vector ẋ. In
connection with the optimization such type of second-order differential equation has
been investigated in [19] assuming the minimizing function being strongly convex.
The minimizing property of such type of second-order differential equation has not
been investigated yet when the function is convex but necessary strongly convex.
Since in this case the uniqueness of the minimum point can not be guaranteed the
Tikhonov regularization will be used to obtain the so called minimal norm solution.

In this paper we consider the SODE system describing the so called heavy ball
with friction as a simplification of the continuous version of the Fletcher-Reeves
iteration using the old state point in the construction of the new direction. Since
the regularized version of this type of differential equation is known only if the
coefficient of ẋ is constant (see [12, 13]) we will show that the convergence of the
trajectories to the minimal norm solution is valid with function-coefficient, too.

2. Second-order differential equation models of minimization

As it was pointed out in [23] the minimization models modelled by first order
differential systems can be divided into two classes. Those models described by a
system of first order differential equations for which the point x∗ is a stationary
point of the system belong to the first class. In this case the convergence of the
trajectories to x∗ is equivalent with the asymptotic stability of x∗, therefore the
Lyapunov function methods (see e.g. in [27]) are useful to prove the convergence
with an appropriately chosen Lyapunov function (see e.g. [15, 16, 33]). To the
second class of the models belong those continuous first order models, for which
the minimum point is not stationary, but along the trajectories the right hand
side vector of the differential equation system tends to the null-vector if t → ∞.
Following [23] we say in this case, that x∗ is stationary in limit.

We extend this definition for the SODE systems, too. We will say, that a point
is stationary point or stationary in limit point of a SODE system if it is stationary
or stationary in limit point respectively for the equivalent first order system.

We will say, that a SODE system is a minimizing model for the minimization
problem (1.1)-(1.2) if along its trajectories limt→∞ f(x(t)) = f∗. It is convergent
if any trajectory converges in norm to some x∗ ∈ X∗; i.e., ‖x(t) − x∗‖ → 0. The
trajectories of a convergent minimizing model are called minimizing trajectories.

It will be seen that the continuous version of the regularized Fletcher-Reeves
iteration belongs to the class of methods stationary in limit both in the general and
in the simplified cases.

As it was shown in [22, 23] the Lyapunov-type methods are also applicable to
prove the convergence of the trajectories to a point stationary in limit. Namely,
it has been proved, if the chosen Lyapunov function along the trajectory of the
differential equality systems satisfies certain differential inequality on [t0,∞), then
it tends to zero if t →∞. This technique will be used in our proofs, too.

Here we describe one of the appropriate lemmas from [22] which will be fun-
damental in our investigation to prove the convergence of the trajectories to a
stationary in limit minimum point.

Lemma 2.1. Suppose that there exists T0 ≥ 0 such that



EJDE-2011/44 OPTIMIZING SODE SYSTEMS 3

(1) for every fixed τ ≥ T0 the scalar function g(t, τ) is defined and non-negative
for all T0 ≤ t < τ and g(T0, τ) ≤ K uniformly in τ , furthermore, it is
continuously differentiable in t;

(2) g(t, τ) satisfies the following differential inequality:
d
dt

g(t, τ) ≤ −a(t)g(t, τ) + b(t)(τ − t)s (2.1)

for T0 ≤ t < τ where s is nonnegative integer and the functions a(t) > 0
and b(t) are defined for all t ≥ T0 and integrable on any finite interval of
[T0,∞) and they are endowed with the following properties:
(a)

∫∞
T0

a(t)dt = ∞,

(b) limt→∞
b(t)

as+1(t) = 0,

(c) In the case s ≥ 1 the function a(t) is differentiable and

lim
t→∞

ȧ(t)
a2(t)

= 0.

Then limτ→∞ g(τ, τ) = 0.

Proof. From (2.1) we have that

0 ≤ g(τ, τ) ≤ g(T0, τ)e−
R τ

T0
a(ν)dν +

∫ τ

T0

b(θ)(τ − θ)se
R θ

τ
a(ν)dνdθ.

The convergence of the first term to zero follows from the condition 2(a).
By induction on s it can be proved that for all nonnegative integer s the limit

limτ→∞ exp
( ∫ τ

T0
a(ν)dν

)
as(τ) = ∞ holds true and hence we can estimate the sec-

ond term by applying (s+1) times the L’Hospital rule and the conditions 2(b) and
2(c):

lim
τ→∞

∫ τ

T0
b(θ)(τ − θ)s exp

( ∫ θ

T0
a(ν)dν

)
dθ

exp
( ∫ τ

T0
a(ν)dν

)
dθ

= lim
τ→∞

b(τ)s!
[a(τ)]s+1

lim
τ→∞

s∏
j=0

1

1 + j ȧ(τ)
[a(τ)]2

= 0.

�

The function g(t, τ) in the lemma constructed for a SODE problem will be called
Lyapunov-like function of the model.

The focus of our interest is to formulate such SODE systems which are convergent
and minimizing and for which the minimum point with the minimal norm is a
stationary or stationary in limit point. Our motivation to construct such models of
minimization was the following:

The Fletcher-Reeves iteration to minimize a function of n variables starting from
x0 and p0 = −f ′(x0) computes the pair of points

xk+1 = xk + αkpk

pk+1 = −f ′(xk+1) + δkpk k = 1, 2, . . . .

To obtain a convergent process we have to use well defined (here not detailed)
changing rules for the sequences αk and δk.

Taking into consideration that the Fletcher-Reeves iteration uses the new state
point in the construction of the new direction it is easy to see that this iteration can
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be considered as the Euler discretization with step size 1 of the non-autonomous
first-order differential equation system of 2n variables

ẋ = α(t)p (2.2)

ṗ = −∇f(x + α(t)p) + β(t)p, (2.3)

x(t0) = x0, p(t0) = p0, (2.4)

where the changing rule of the parameters are described by continuous functions.
We will refer to the model (2.2)-(2.3) as general model (shortly Model G-FR) of

the continuous version of the Fletcher-Reeves iteration. This model is equivalent
with the SODE system of n variable

ẍ + γ(t))ẋ + α(t)∇f(x + ẋ) = 0, (2.5)

x(t0) = x0, ẋ(t0) = α(t0)p0, (2.6)

where

γ(t) = −β(t)− α̇(t)
α(t)

. (2.7)

If we approximate ∇f(x(t) + α(t)p(t)) with ∇f(x(t)) then we obtain a much
more simple model, namely

ẋ = α(t)p (2.8)

ṗ = −∇f(x) + β(t)p (2.9)

with the initial values (2.4). This model will be called simplified model (shortly
Model S-FR) of the continuous version of the Fletcher-Reeves iteration. This model
is equivalent with the SODE system

ẍ + γ(t)ẋ + α(t)∇f(x) = 0 (2.10)

with the initial values (2.6).
In [19] the asymptotic behavior of the trajectories of the Model G-FR and Model

S-FR have been analyzed. It has been proved that under the assumption of the
strong convexity of the function f(x) there are such harmonizing conditions between
the parameter functions α(t) and β(t) which ensure that the differential equation
system (2.8)-(2.9) or (2.2)-(2.3) is minimizing and the minimum point x∗ is an
asymptotically stable stationary point to which any trajectory tends if t → ∞.
Furthermore, several class of pairs of the functions α(t) and β(t) satisfying the
harmonization conditions has been given in [20].

The behavior of the trajectories of the second-order differential equation (2.10)
has been investigated in several papers assuming that γ(t) is a positive constant
function and α(t) ≡ 1 (e.g. [1, 4, 5, 7, 18]). This is the so called heavy ball with
friction model. A detailed discussion of the minimizing properties of the trajectories
of (2.10) with positive γ(t) and α(t) ≡ 1 functions have been given in the papers
[12, 13].

3. Convergence theorems of the regularized SODE models

The strong convexity is too strict condition for most of the practical optimization
problems.

In this paper we will require only the convexity of the minimizing function. But
under this weaker assumption we can not expect that the set of minimum points
consists of only one point. Therefore, as it will be shown in a numerical example
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in Section 4.2, it can happen that either the discrete Fletcher-Reeves method or its
continuous versions stop in different minimum points starting from different initial
points.

To avoid these problems a regularization technique is generally used. The regu-
larization means that the minimizing function will be approximated with a bundle
of strong convex functions depending on a damping parameter. Choosing the appro-
priate damping parameter one can expect that the sequence of the unique minimum
points of the auxiliary functions tends to one of the well defined minimum point
of the original minimizing function independently from the starting point. The
possibility of this type of regularization is based on the following lemma due to
Tikhonov [28, 29].

Lemma 3.1. Let f : Rn → R be a convex function satisfying (1.2) and λk, k =
1, 2, . . . be a positive monotone decreasing sequence for which limk→∞ λk = 0. Let
the auxiliary strong convex function bundle defined by the sequence

Fk(x) = f(x) +
1
2
λk‖x‖2, k = 1, 2, . . .

and let xk denote the unique minimum point of Fk(x). Then

lim
k→∞

‖xk − x∗‖ = 0,

where x∗ is the minimal norm solution of (1.1); i.e.,

f(x∗) = inf
x∈Rn

f(x) and inf
x∈X∗

‖x‖ = ‖x∗‖,

where X∗ is given in (1.2).

In lots of minimization methods the damping parameter can be synchronized
with the parameters of the used method modifying it step by step. Such regularized
method is the Levenberg-Marquard algorithm [24, 25] for the Newton’s method
which was developed independently from the Tikhonov-regularization.

The regularization of the minimization methods modelled by differential equation
systems means that instead of the function f(x) and its first and higher order partial
derivatives the auxiliary function

F (x, t) = f(x) +
1
2
λ(t)‖x‖2. (3.1)

and its partial derivatives are used where the damping parameter λ(t) continuously
changes in time.

For the continuous gradient method which is modelled by first-order system
of differential equations the regularization technique was applied in [22]. Other
approaches can be found in [5] and [14]. Regularized second and higher order
models have been examined e.g. in [6, 11, 31, 30]. Since second order dynamics
are generally not descent methods hence they allow to overcome some drawbacks
of the steepest descent method.

In the following we will discuss the convergence of the regularized methods mo-
delled by (2.8)-(2.9), (resp. by (2.10)) and by (2.2)-(2.3), (resp. by (2.5)).

3.1. Regularized general model. The regularized general model (shortly RG-FR
model) to solve the problem (1.1) can be given by the following first order system
of differential equations of 2n variables:

ẋ = α(t)p (3.2)
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ṗ = −∇xF (x + α(t)p, t) + β(t)p (3.3)

with the initial values (2.4), where F (x, t) is given by (3.1) and the function λ(t) is
a monotone decreasing positive function. This system is equivalent with the SODE
system of n variables

ẍ + γ(t)ẋ + α(t)∇xF (x + ẋ, t) = 0. (3.4)

with the initial values (2.6), where γ(t) is given by (2.7).
It can be seen that the difference between the RG-FR model and the G-FR model

is that instead of the partial derivatives of the function f(x) the partial derivatives
of the auxiliary function F (x, t) are used.

Proposition 3.2. Let us assume that the following hypotheses are satisfied:

(1) In the minimization problem (1.1) f is defined and continuously differen-
tiable convex function on Rn and its gradient ∇f is local Lipschitz contin-
uous; i.e., it is Lipschitz continuous on all bounded subsets of Rn and the
conditions given in (1.2) on page 1 hold;

(2) The parameter functions α(t), β(t) and γ(t) of the systems (3.2)-(3.3) and
(3.4) fulfills the following conditions:
(a) α(t) is a positive, upper bounded and continuously differentiable and

β(t) is a negative lower bounded function on [t0,∞) ;
(b) γ(t) is a monotone non-increasing, continuously differentiable function

on [t0,∞) and inft≥t0 γ(t) > 1 ;
(3) For the damping parameter λ(t) the following assumptions hold:

(a) λ(t) is a positive continuously differentiable monotone decreasing func-
tion on [t0,∞) and convex for all t ≥ t1;

(b) α(t)λ(t) is a monotone non-increasing function;
(c) limt→∞ λ(t) = limt→∞ λ̇(t) = 0,

lim
t→∞

α̇(t)
α2(t)λ(t)

= lim
t→∞

λ̇(t)
α(t)λ2(t)

= lim
t→∞

λ̇(t)
α2(t)λ(t)

= 0;

(d)
∫∞

t0
α(t)λ(t) = ∞.

Then

(1) the trajectories of (3.2)-(3.3), respectively of (3.4) exist and unique on the
whole half-line [t0,∞) with any initial point (2.4);

(2) the RS-FR model given by (3.2)-(3.3) (or (3.4)) is minimizing; i.e.,

lim
t→∞

f(x(t)) = f(x∗) = inf
x∈Rn

f(x);

(3) the trajectories converge to the minimal norm solution; i.e., if x∗ satisfies
the condition infx∈X∗ ‖x‖ = ‖x∗‖, then limt→∞ ‖x(t)− x∗‖ = 0;

(4) limt→∞ ‖α(t)p(t)‖ = limt→∞ ‖ẋ(t)‖ = 0;
(5) the minimal norm solution x∗ is a stationary in limit minimum point; i.e.,

limt→∞ ‖ẍ(t)‖ = 0.

Proof. The existence and uniqueness of the trajectories on the whole [t0,∞) follows
from the convexity of the function f(x) and the local Lipschitz continuity of the
gradient ∇f(x).
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For every fixed t0 < τ < ∞ the function F (x, τ) defined by (3.1) is a strongly
convex function, therefore it has a unique minimum point x∗τ . Let x∗ be the opti-
mum point of the function f with minimal norm on X∗. It follows from the Lemma
3.1 that limτ→∞ ‖x∗τ − x∗‖ = 0.

We will show that limτ→∞ ‖x(τ) − x∗‖ = 0. To do this it is sufficient to prove
that limτ→∞ ‖x(τ)− x∗τ‖ = 0 since ‖x(τ)− x∗‖ ≤ ‖x(τ)− x∗τ‖+ ‖x∗τ − x∗‖.

Let us introduce the parametric function

g(t, τ) =
1
2
‖x(t)− x∗τ + α(t)p(t)‖2+

+
1
4
α(t)λ(t)‖x(t)− x∗τ‖2 +

1
2
(γ(t)− 1)‖x(t)− x∗τ‖2

for fixed τ ≥ t0.
It follows from the conditions 2(a), 2(b) and 3(a) that g(t, τ) ≥ 0 for all t0 ≤ t ≤

τ . For the derivative of g(t, τ) we have
d
dt

g(t, τ) = −α(t)
〈
∇xF (x(t) + α(t)p(t), t),x(t)− x∗τ + α(t)p(t)

〉
+

+
1
4

d
dt

(α(t)λ(t))‖x(t)− x∗τ‖2 +
1
2
α(t)λ(t)

〈
x(t)− x∗τ , α(t)p(t)

〉
+ (1− γ(t))‖α(t)p(t)‖2 +

1
2
γ̇(t)‖x(t)− x∗τ‖2

for all t0 ≤ t ≤ τ .
Omitting the negative terms and taking into consideration that F (x(t), t) is

strongly convex in its first variable with the convexity modulus 1
2λ(t) for every

t ≥ t0, monotone decreasing in the second variable and x∗τ is the minimum point
of F (x, τ) we have

d
dt

g(t, τ) ≤ α(t)
(
F (x∗τ , t)− F (x(t) + α(t)p(t), t)

)
−

− 1
2
α(t)λ(t)‖x(t)− x∗τ + α(t)p(t)‖2 +

1
2
α(t)λ(t)

〈
x(t)− x∗τ , α(t)p(t)

〉
= α(t)

(
F (x∗τ , t)− F (x∗τ , τ)︸ ︷︷ ︸
=− 1

2 (λ(τ)−λ(t))‖x∗τ‖
2

+F (x∗τ , τ)− F (x(t) + α(t)p(t), τ)︸ ︷︷ ︸
≤0

+ F (x(t) + α(t)p(t), τ)− F (x(t) + α(t)p(t), t)︸ ︷︷ ︸
= 1

2 (λ(τ)−λ(t))‖x(t)+α(t)p(t)‖2≤0

)

− 1
2
α(t)λ(t)‖x(t)− x∗τ + α(t)p(t)‖2 +

1
2
α(t)λ(t)

〈
x(t)− x∗τ , α(t)p(t)

〉
≤ −1

2
α(t)λ(t)‖x(t)− x∗τ + α(t)p(t)‖2 +

1
2
α(t)λ(t)

〈
x(t)− x∗τ , α(t)p(t)

〉
− 1

2
α(t)

(
λ(τ)− λ(t)

)
‖x∗τ‖2.

Under the assumption 3(a) the inequalities

λ(τ)− λ(t) ≥ λ̇(t)(τ − t), λ̇(t) < 0

hold for all t0 ≤ t ≤ τ . Moreover, let us observe that ‖x∗τ‖ is uniformly bounded
since

f(x∗) +
1
2
λ(τ)‖x∗‖2 ≥ f(x∗τ ) +

1
2
λ(τ)‖x∗τ‖2 ≥ f(x∗) +

1
2
λ(τ)‖x∗τ‖2,
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from where ‖x∗τ‖ ≤ ‖x∗‖ = K.
Decomposing − 1

2α(t)λ(t)‖x(t)+α(t)p(t)−x∗τ‖2 into two equal terms and omit-
ting the negative term − 1

4α(t)λ(t)‖α(t)p(t)‖2 we have that

d
dt

g(t, τ) ≤ −1
4
α(t)λ(t)‖x(t) + α(t)p(t)− x∗τ‖2

− 1
4
α(t)λ(t)‖x− x∗τ‖2 −

1
2
α(t)

(
λ(t)− λ(τ)

)
‖x∗τ‖2

= −A(t)
1
2
‖x(t) + α(t)p(t)− x∗τ‖2 −B(t)

1
4
α(t)λ(t)‖x− x∗τ‖2

− C(t)
1
2
(γ(t)− 1)‖x− x∗τ‖2 −

1
2
α(t)λ̇(t)K2(τ − t),

where A(t) = 1
2α(t)λ(t), B(t) = 1

2 and C(t) = 1
4(γ(t)−1)α(t)λ(t) Since γ(t) is

monotone nonincreasing, therefore C(t) ≥ α(t)λ(t)
4(γ(t0)−1) = C1α(t)λ(t). Otherwise,

α(t)λ(t) is decreasing and tends to zero, so there exists T ≥ t0 such that A(t) ≤ 1
2

and C1(t) ≤ 1
2 for every t ≥ T . Consequently, there exists K1 > 0, depending only

on γ(t0) such that

d
dt

g(t, τ) ≤ −K1α(t)λ(t)g(t, τ)− 1
2
α(t)λ̇(t)K2(τ − t).

Conditions 3(c) and 3(d) ensure that g(t, τ) satisfies the conditions of Lemma 2.1
and hence limτ→∞ g(τ, τ) = 0.

Since g(t, τ) is a sum of non-negative functions every member of the sum tends
to 0. This together with condition 2(b) proves the validity of

lim
τ→∞

‖x(τ)− x∗τ‖ = 0 and lim
τ→∞

‖x(τ)− x∗τ + α(τ)p(τ)‖ = 0.

It follows from the triangle inequality that

‖α(τ)p(τ)‖ ≤ ‖x(τ)− x∗τ + α(τ)p(τ)‖+ ‖x(τ)− x∗τ‖ → 0

which proves the limit

lim
τ→∞

‖ẋ(τ)‖ = lim
τ→∞

‖α(τ)p(τ)‖ = 0.

Since

0 ≤ ‖ẍ(t)‖ ≤ α(t)
(
‖∇f(x(t) + α(t)p(t))‖+ λ(t)‖x(t) + α(t)p(t)‖

)
+ γ(t) · ‖ẋ(t)‖,

the gradient ∇f(x) is continuous and the conditions 2(a), 2(b) and 3(c) hold,
therefore ‖ẍ(t)‖ → 0.

Finally, using the continuity of the function f the limit

lim
τ→∞

f(x(τ)) = f(x∗)

holds, too. The last statement is trivial from the definition. �

3.2. Regularized simplified model. Approximating ∇xF (x(t) + α(t)p(t), t) by
∇xF (x(t), t) the regularized simplified model (shortly RS-FR model) to solve the
problem (1.1) can be given by the following first order system of differential equa-
tions:

ẋ = α(t)p (3.5)

ṗ = −∇xF (x, t) + β(t)p (3.6)
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with the initial values (2.4), where F (x, t) is given by (3.1) in which the damping
parameter λ(t) is a positive monotone decreasing function.

The equivalent SODE system is as follows:

ẍ + γ(t)ẋ + α(t)∇xF (x, t) = 0. (3.7)

with the initial values (2.6), where γ(t) is given by (2.7).
The convergence of the trajectories of this SODE to a minimum point of the

function f(x) has been analyzed in detail in papers of [6] and [11] when both α(t)
and γ(t) are constant functions. Now we formulate a theorem on the convergence
of its trajectories to the stationary in limit minimal norm solution with function
parameters and prove it by constructing an appropriate Lyapunov-like function for
the RS-FR model given by (3.5)-(3.6), respectively by (3.7).

Proposition 3.3. Let the following assumptions hold:
(1) In the minimization problem (1.1) f is defined and continuously differen-

tiable convex function on Rn and its gradient ∇f is local Lipschitz contin-
uous and the conditions given in (1.2) on page 1 hold;

(2) The parameter functions α(t) and β(t) satisfy the following conditions
(a) α(t) is a positive upper bounded and β(t) is a negative lower bounded

continuously differentiable function on [t0,∞); both α(t) and β(t) are
continuously differentiable on [t0,∞) and α̇(t)

α(t) is bounded on [t0,∞);

(b) there exists t1 ≥ t0 such that α(t)+β(t) < 0 and β(t)
α(t) is nondecreasing

on [t1,∞);
(3) Let the damping parameter λ(t) satisfy the following conditions

(a) λ(t) is a positive, continuously differentiable monotone decreasing con-
vex function on [t0,∞);

(b) limt→∞ λ(t) = limt→∞ λ̇(t) = limt→∞
λ̇(t)
λ2(t) = 0,

(c)
∫∞

t0
λ(t)dt = ∞;

(d) α(t) + β(t) ≤ −1
2λ(t) for every t1 ≤ t;

(e) − α̇(t)
α(t) −

α(t)
2 ≤ −1

4λ(t) for all t1 ≤ t.

Then
(1) the trajectories of (3.5)-(3.6), respectively of (2.10) exist and unique on the

whole half-line [t0,∞) with any initial point (2.4) (resp. (2.6));
(2) the RS-FR model given by (3.5)-(3.6) (or 3.7) is minimizing; i.e.,

lim
t→∞

f(x(t)) = f(x∗) = inf
x∈Rn

f(x);

(3) the trajectories converge to the minimal norm solution; i.e., if x∗ satisfies
the condition infx∈X∗ ‖x‖ = ‖x∗‖, then limt→∞ ‖x(t)− x∗‖ = 0;

(4) limt→∞ ‖p(t)‖ = limt→∞ ‖ẋ(t)‖ = 0;
(5) the minimal norm solution x∗ is a stationary in limit minimum point; i.e.,

limt→∞ ‖ẍ(t)‖ = 0.

Proof. Analogously to the proof of the Proposition 3.2 it is sufficient to prove that

lim
τ→∞

‖x(τ)− x∗τ‖ = 0.

Let us introduce the function

g(t, τ) =
2

α(t)

(
F (x(t), t)− F (x∗τ , τ)

)
+

1
2
h(t)‖x(t)− x∗τ‖2



10 T. HAJBA EJDE-2011/44

+
1
2
‖x(t)− x∗τ + p(t)‖2 +

1
2
‖p(t)‖2,

where h(t) = −1 − β(t)
α(t) > 0. This function is defined for all t ∈ [t0, τ ], for every

fixed τ < ∞ and g(t, τ) ≥ 0, in these intervals since λ(t) is monotone decreasing.
For all t0 ≤ t ≤ τ the derivative of g(t, τ) by t with a fixed τ is

d
dt

g(t, τ) =
−2α̇(t)
α2(t)

(
F (x(t), t)− F (x∗τ , τ)

)
+

λ̇(t)
α(t)

‖x(t)‖2

+
1
2
ḣ(t)‖x(t)− x∗τ‖2 +

(
α(t) + β(t) + h(t)α(t)

)〈
x(t)− x∗τ ,p(t)

〉
+

(
α(t) + 2β(t)

)
‖p(t)‖2 −

〈
∇xF (x(t), t),x(t)− x∗τ

〉
.

Taking into consideration the conditions 2, 3(a) and 3(c), we obtain

d
dt

g(t, τ) ≤ −2α̇(t)
α2(t)

(
F (x(t), t)− F (x∗τ , τ)

)
− 1

2
λ(t)‖p(t)‖2

−
〈
∇xF (x(t), t),x(t)− x∗τ

〉
,

for all t1 ≤ t ≤ τ .
Since F (x, t) is a strongly convex function in the variable x for all t ≥ t0 and its

convexity modulus is 1
2λ(t) for every t0 ≤ t, therefore for all t ≥ t1, we have the

inequality

−
〈
∇xF (x(t), t),x(t)− x∗τ

〉
≤ −

(
F (x(t), t)− F (x∗τ , t)

)
− 1

2
λ(t)‖x(t)− x∗τ‖2

= −
(
F (x(t), t)− F (x∗τ , τ)

)
−

(
F (x∗τ , τ)− F (x∗τ , t)

)
− 1

2
λ(t)‖x(t)− x∗τ‖2

≤ −
(
F (x(t), t)− F (x∗τ , τ)

)
− 1

2
(
λ(τ)− λ(t)

)
‖x∗τ‖2 −

1
2
λ(t)‖x(t)− x∗τ‖2.

Substituting this inequality into the estimation of d
dtg(t, τ) we can obtain the in-

equality

d
dt

g(t, τ) ≤
(
− 2α̇(t)

α2(t)
− 1

)(
F (x(t), t)− F (x∗τ , τ)

)
− 1

2
λ(t)‖x(t)− x∗τ‖2 −

1
2
λ(t)‖p(t)‖2 − 1

2
(
λ(τ)− λ(t)

)
‖x∗τ‖2.

for all t1 ≤ t ≤ τ . Since the inequality

−‖x(t)− x∗τ‖2 − ‖p‖2 ≤ −1
2
‖x(t)− x∗τ‖2 −

1
2
‖p(t)‖2 − 1

4
‖x(t)− x∗τ + p(t)‖2

and the conditions 3(c)-3(d) of the proposition hold, with the coefficients

A(t) =
α̇(t)
α(t)

+
α(t)
2

, B(t) =
λ(t)
2h(t)

, C(t) =
1
2
λ(t), D(t) =

1
4
λ(t)

we obtain, for all t1 ≤ t ≤ τ ,

d
dt

g(t, τ) ≤ −A(t) · 2
α(t)

(
F (x(t), t)− F (x∗τ , τ)

)
−B(t)

1
2
h(t)‖x(t)− x∗τ‖2

− C(t)
1
2
‖p(t)‖2 −D(t)

1
2
‖x(t)− x∗τ + p(t)‖2 − 1

2
(
λ(τ)− λ(t)

)
‖x∗τ‖2.
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It is obvious that −C(t) ≤ −D(t), and from the condition 3(e) we have that
−A(t) ≤ −D(t), too. After a short calculation we can obtain that

−B(t) ≤ −D(t) if h(t) ≤ 2 and −B(t) ≥ −D(t) if h(t) ≥ 2.

Since h(t) is nonincreasing, there are two cases:
Case 1. h(t) ≥ 2 (or equivalently 3α(t) + β(t) ≤ 0) for all t ≥ t1. In this case
−B(t) = max(−A(t),−B(t),−C(t),−D(t) for all t ≥ t1. It means that

d
dt

g(t, τ) ≤ −B(t)g(t, τ)− 1
2
(
λ(τ)− λ(t)

)
‖x∗τ‖2

for all t1 ≤ t ≤ τ . Using the definition of B(t) and the the fact, that h(t1) ≥ h(t)
for all t ≥ t1 we can give the following upper bound:

−B(t) = − λ(t)
2h(t)

≤ − λ(t)
2h(t1)

,

consequently,
d
dt

g(t, τ) ≤ − λ(t)
2h(t1)

g(t, τ)− 1
2
(
λ(τ)− λ(t)

)
‖x∗τ‖2

for all t1 ≤ t ≤ τ .
Case 2. There exists t2 ≥ t1 such that h(t) ≤ 2 (or equivalently 3α(t) + β(t) ≥ 0)
for all t ≥ t2. Then −D(t) = max(−A(t),−B(t),−C(t),−D(t) for all t ≥ t2,
therefore

d
dt

g(t, τ) ≤ −1
4
λ(t)g(t, τ)− 1

2
(
λ(τ)− λ(t)

)
‖x∗τ‖2

for all t2 ≤ t ≤ τ .
The estimation of the last term in both cases can be done as in the proof of

Proposition 3.2. So, in both cases there exists a positive constant K1 and time
T ≥ t0 such that the inequality

d
dt

g(t, τ) ≤ −K1λ(t)g(t, τ)− 1
2
K2λ̇(t)(τ − t)

holds for all T ≤ t ≤ τ . To complete the proof one can follow the proof of the
Proposition 3.2. �

4. Analysis and comparison of the methods

4.1. Existence of parameters. For both models one can give the triplet of param-
eter functions (α(t), β(t), λ(t)) such that conditions of the propositions are satisfied.
Namely,

(A) for the RG-FR model
(a) if

α(t) = α0,

γ(t) = −β(t) = −β0 −B(1 + t)−b,

λ(t) = L(1 + t)−`,

then the conditions of the proposition 3.2 are fulfilled if either

b = 0, α0 > 0, β0 + B < −1, 0 < ` < 1, L > 0,

or

b > 0, α0 > 0, β0 < −1, B < 0, 0 < ` < 1, L > 0;
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(b) if

λ(t) = α(t) = α0(1 + t)−a,

−β(t) = −β0 −B(1 + t)−1,

then the conditions of the proposition 3.2 are fulfilled if

α0 > 0, β0 < −1,
1
2

> a ≥ B > 0.

(B) for the RS-FR model
(a) if

α(t) = α0,

γ(t) = −β(t) = −β0 −B(1 + t)−`,

λ(t) = L(1 + t)−`,

then the conditions of the proposition 3.3 are fulfilled if

0 < α0, β0 < −α0, B < 0, 0 < ` < 1, L > 0,

(b) if

α(t) = α0(1 + t)−`,

β(t) = −β0(1 + t)−`,

λ(t) = L(1 + t)−`

then the conditions of the proposition 3.3 are fulfilled if

α0 > 0, β0 > 0, L > 0, 0 < ` < 1, 2(α0 − β0) < −L, L < 2α0.

More families of parameters satisfying the conditions of the proposition can be
obtained by the technique given in [20].
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Figure 1. Trajectory of the continuous method for the RS-FR model
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4.2. Comparison of the generalized and simplified models. Let us illustrate
the behaviour of the trajectories of the given models on a numerical example. Let
us minimize the the function

f(x, y, z) = (x + y − 3)2 + (x + z − 3)2.

where f is a convex function and the minimum points of f lie on the line

x = 3− t, y = t, z = t.

The minimum point with the minimum norm is (2, 1, 1). We have solved the RS-
FR model and the RG-FR model with the third ordered Runge-Kutta method with
different parameter functions and with two different initial points x0 = (1, 2, 4) and
x0 = (4, 2,−3) and step size h = 0.1. The results can be seen in Figures 1-reffig2.

On Figure 1 we have drawn the minimizing lines obtained by the discrete Fletcher-
Reeves algorithm which show that starting from different initial points the obtained
minimum points could be different.

On the other hand both the generalized and simplified models converge to the
unique minimal norm solution. However we can see, that the shape of the trajec-
tories are quite different in the two models, especially the RG-FR model gives a
“smoother” trajectory. Since in the RS-FR model ∇xF (x(t) + α(t)p(t), t) is ap-
proximated by ∇xF (x(t), t) we can expect that the RG-FR model converges faster
to the minimum point but the RS-FR model could be easier to solve numerically.

4.3. Comparison of the heavy ball with friction and the simplified models.
Let us consider the system

ẍ + γẋ +∇f(x) + λ(t)x = 0. (4.1)

where γ is a constant. This equation is known as the regularized version of the
heavy ball system with friction model and has been studied in papers [6] and [11].
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If we assume that α(t) ≡ 1 and γ(t) ≡ γ in the RS-FR-model (3.7), then the
regularized heavy ball with friction model can be considered as a special case of it.
In this special case our proposition turns into the following result.

Corollary 4.1. Under assumption 1. of Proposition 3.3, the trajectories of the
SODE system (4.1) exist and unique on the whole half-line [t0,∞) with any initial
point and the following limits hold

lim
t→∞

f(x(t)) = f(x∗) = inf
x∈Rn

f(x), lim
t→∞

‖x(t)− x∗‖ = 0,

where x∗ is the minimal norm solution of (1.1) and

lim
t→∞

‖ẋ(t)‖ = 0, lim
t→∞

‖ẍ(t)‖ = 0,

if the following four conditions hold:
(1) γ > 1;
(2) λ(t) is positive monotone decreasing continuously differentiable convex func-

tion on [t0,∞);
(3) limt→∞ λ(t) = limt→∞ λ̇(t) = limt→∞

λ̇(t)
λ2(t) = 0;

(4)
∫∞

t0
λ(t)dt = ∞.

According to the convergence conditions of the theorems in [6] and [11] the con-
dition 1, the third term of the condition 3 and the convexity of λ(t) can be omitted.
However we wanted to give common conditions which guarantee the convergence
of the trajectories without doing difference between the cases when the coefficient
of ẋ is a positive constant or a function. So, on one hand our result is weaker and
on the other hand it is stronger then the results of [6] and [11].

Otherwise in our models (not only in the simplified but in the generalized one,
too) there is a function parameter α(t) in the coefficient of the gradient of the
function. It is true, that applying a time-transformation t = z(s) this function
parameter turns into constant 1 if we get the transformation from the differential
equation

dz(s)
ds

=
1√

α(z(s))
,

but the transformed γ(z(s)) will be constant only for a special function of γ(t). So,
the heavy ball with friction model with constant γ in general can not be obtained
from our model by time-transformation.

The discrete Fletcher-Reeves iteration has two parameters. Therefore we have
insisted on such models which has two corresponding function parameters, too.

The Fletcher-Reeves iteration has some very favorable properties which have not
been investigated in this paper. It would be interesting to know which properties
preserved in the proposed continuous GM-FR and SM-FR models. This is the
subject of our further research.
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