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MULTIPLICITY OF POSITIVE SOLUTIONS FOR A NAVIER
BOUNDARY-VALUE PROBLEM INVOLVING THE
p-BIHARMONIC WITH CRITICAL EXPONENT

YING SHEN, JIHUI ZHANG

Abstract. By using the Nehari manifold and variational methods, we prove
that a p-biharmonic system has at least two positive solutions when the pair
the parameters satisfy certain inequality.

1. Introduction

In this article, we consider the multiplicity results of positive solutions of the
semilinear p-biharmonic system

∆(|∆u|p−2∆u) =
1
p∗∗

∂F (x, u, v)
∂u

+ λ|u|q−2u in Ω,

∆(|∆v|p−2∆v) =
1
p∗∗

∂F (x, u, v)
∂v

+ µ|v|q−2v in Ω,

u > 0, v > 0 in Ω,
u = v = ∆u = ∆v = 0 on ∂Ω,

(1.1)

where x0 ∈ Ω is a bounded domain in RN with smooth boundary ∂Ω, F ∈ C1(Ω×
(R+)2,R+) is positively homogeneous of degree p∗∗ = pN

N−2p which is the Sobolev
critical exponent; that is, F (x, tu, tv) = tp

∗∗
F (x, u, v) (t > 0) holds for all (x, u, v) ∈

Ω × (R+)2, (∂F (x,u,v)
∂u , ∂F (x,u,v)

∂v ) = ∇F . We assume that 1 < q < p < N
2 , λ > 0,

µ > 0.
In recent years, there have been many article concerned with the existence and

multiplicity of positive solutions for p-biharmonic elliptic problems. Results relating
to these problems can be found in [5, 7, 10, 12, 13, 14, 15, 16] and the references
therein.
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Brown and Wu [2] considered the semilinear elliptic system

−∆u+ u =
α

α+ β
f(x)|u|α−2u|v|β in Ω,

−∆v + v =
β

α+ β
f(x)|u|α|v|β−2v in Ω,

∂u

∂n
= λg(x)|u|q−2u,

∂v

∂n
= µh(x)|v|q−2v on ∂Ω.

(1.2)

where α > 1, β > 1 satisfying 2 < α + β < 2∗ and the weight functions f, g, h are
satisfying the following conditions:

(A) f ∈ C(Ω) with ‖f‖∞ = 1 and f+ = max{f, 0} 6≡ 0;
(B) g, h ∈ C(∂Ω) with ‖g‖∞ = ‖h‖∞ = 1, g± = max{±g, 0} 6≡ 0 and h± =

max{±h, 0} 6≡ 0.

They showed that (1.2) has at least two negative solutions if the pair of the param-
eters (λ, µ) belongs to a certain subset of R2.

Recently, Hsu [11] considered the case F (x, u, v) = 2|u|α|v|β , α > 1, β > 1 satis-
fying α+ β = p∗; i.e., the elliptic system:

−∆pu =
2α

α+ β
|u|α−2u|v|β + λ|u|q−2u in Ω,

−∆pv =
2β

α+ β
|u|α|v|β−2v + µ|v|q−2v in Ω,

u = v = 0 on ∂Ω.

(1.3)

By variational methods, he proved that (1.2) has at least two positive solutions if
the pair of the parameters (λ, µ) belongs to a certain subset of R2.

In this article, we give a simple variational method which is similar to the “fiber-
ing method” of Pohozaev’s ( see [8, 4]) to prove the existence of at least two positive
solutions of problem (1.1). Throughout this paper, we let S be the best Sobolev
embedding constant defined by

S = inf
u∈W 2,p(Ω)∩W 1,p

0 (Ω)\{0}

∫
Ω
|∆u|pdx

(
∫
Ω
|u|p∗∗dx)

p
p∗∗

,

and let

C(p, q,N,K, S, |Ω|) = (
p− q

K(p∗∗ − q)
)

p
p∗∗−q (

p∗∗ − q

p∗∗ − p
|Ω|

p∗∗−q
p∗∗ )−

p
p−q S

N
2p + q

p−q ,

C0 = (
q

p
)

p
p−qC(p, q,N,K, S, |Ω|).

For our results, we need the following assumptions:

(F1) F : Ω × R+ × R+ → R+ is a C1 function and F (x, tu, tv) = tp
∗∗
F (x, u, v)

for all t > 0 and x ∈ Ω, (u, v) ∈ (R+)2;
(F2) F (x, u, 0) = F (x, 0, v) = ∂F

∂u (x, u, 0) = ∂F
∂v (x, 0, v) = 0, where u, v ∈ R+;

(F3) ∂F (x,u,v)
∂u , ∂F (x,u,v)

∂v are strictly increasing functions about u and v for all
u > 0, v > 0.

From assumption (F1), we have the so-called Euler identity

(u, v) · ∇F (x, u, v) = p∗∗F (x, u, v) (1.4)
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and, for a positive constant K,

F (x, u, v) ≤ K(|u|p + |v|p)
p∗∗

p . (1.5)

Theorem 1.1. If λ, µ satisfy 0 < λ
p

p−q + µ
p

p−q < C(p, q,N,K, S, |Ω|), and (F1)–
(F3) hold, then (1.1) has at least one positive solution.

Theorem 1.2. If λ, µ satisfy 0 < λ
p

p−q + µ
p

p−q < C∗0 , (F1)–(F3) hold, where C∗0 =

min{C∗, C0}, and C∗ = min{δ1, ρ
N−2p
p−1

0 , δ2}, then (1.1) has at least two positive
solutions.

Remark 1.3. There are functions satisfying the conditions of Theorems 1.1 and
1.2. For example,

F (x, u, v) =

{
f2
1 (x)|u|3/2|v|5/2 + f2

2 (x) u3v3

u2+v2 if (u, v) 6= (0, 0),
0 if (u, v) = (0, 0),

where f1, f2 ∈ C(Ω) ∩ L∞(Ω) with max{±f1,±f2, 0} 6≡ 0. Obviously, F satisfy
(F1), (F2) and (F3).

This article is organized as follows: In Section 2, we give some notation and
preliminaries. In Section 3, we prove Theorems 1.1 and 1.2.

2. Notation and preliminaries

Problem (1.1) is posed in the framework of the Sobolev space E = (W 2,p(Ω) ∩
W 1,p

0 (Ω))× (W 2,p(Ω) ∩W 1,p
0 (Ω)) with the standard norm

‖(u, v)‖p =
∫

Ω

|∆u|pdx+
∫

Ω

|∆v|pdx = ‖∆u‖p
Lp(Ω) + ‖∆v‖p

Lp(Ω).

In addition, we define ‖u‖Lp(Ω) = (
∫
Ω
|u|pdx)

1
p as the norm of the Sobolev space

Lp(Ω).
A pair of functions (u+, v+) ∈ E, with (u+ := max{u, 0} and v+ := max{v, 0}),

is said to be a weak solution of (1.1) if∫
Ω

(|∆u+|p−2∆u+∆ϕ1 + |∆v+|p−2∆v+∆ϕ2)dx−
1
p∗∗

∫
Ω

∂F (x, u+, v+)
∂u

ϕ1dx

− 1
p∗∗

∫
Ω

∂F (x, u+, v+)
∂v

ϕ2dx− λ

∫
Ω

|u+|q−2uϕ1dx− µ

∫
Ω

|v+|q−2vϕ2dx = 0

for all (ϕ1, ϕ2) ∈ E. Thus, by (1.4) the corresponding energy functional of problem
(1.1) is defined by

Jλ,µ(u+, v+) =
1
p
‖(u+, v+)‖p − 1

p∗∗

∫
Ω

F (x, u+, v+)dx− 1
q
Kλ,µ(u+, v+)

for (u+, v+) ∈ E, where Kλ,µ(u+, v+) = λ
∫
Ω
|u+|qdx+ µ

∫
Ω
|v+|qdx.

To verify Jλ,µ ∈ C1(E,R), we need the following lemmas.

Lemma 2.1. Suppose that (F3) holds. Assume that F ∈ C1(Ω × (R+)2,R+) is
positively homogeneous of degree p∗∗, then ∂F

∂u ,
∂F
∂v ∈ C(Ω×(R+)2,R+) are positively

homogeneous of degree p∗∗ − 1.
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The proof of the above lemma is almost the same as that in Chu and Tang [6],
and it is omitted.

From Lemma 2.1, we obtain the existence of a positive constant M such that for
all x ∈ Ω, ∣∣∂F

∂u
(x, u, v)

∣∣ ≤M(|u|p
∗∗−1 + |v|p

∗∗−1), (2.1)∣∣∂F
∂v

(x, u, v)
∣∣ ≤M(|u|p

∗∗−1 + |v|p
∗∗−1), u, v ∈ R+. (2.2)

As in Willem [16, Theorem A.2], we consider the continuity of the superposition
operator

A : Lp(Ω)× Lp(Ω) → Lq(Ω) : (u, v) 7→ f(x, u, v).

Lemma 2.2. Assume that |Ω| <∞, 1 ≤ p, r <∞, f ∈ C(Ω× R2,R) and

|f(x, u, v)| ≤ c(1 + |u|
p
r + |v|

p
r ).

Then, for every (u, v) ∈ Lp(Ω) × Lp(Ω), f(·, u, v) ∈ Lr(Ω) and the operator A :
Lp(Ω)× Lp(Ω) → Lr(Ω): (u, v) 7→ f(x, u, v) is continuous.

Now we consider the functional ψ(u, v) =
∫
Ω
F (x, u, v)dx.

Lemma 2.3. Assume that |Ω| < ∞, ∂F
∂u , ∂F

∂v ∈ C(Ω × (R+)2) satisfying (2.1),
(2.2), then the functional ψ is of class C1(E,R+) and

〈ψ′(u, v), (a, b)〉 =
∫

Ω

(
∂F (x, u, v)

∂u
a+

∂F (x, u, v)
∂v

b)dx,

where (u, v), (a, b) ∈ E.

Proof. First, we proof the existence of the Gateaux derivative. Given x ∈ Ω and
0 < |t| < 1, by the mean value theorem and (2.1), (2.2), there exists λ1 ∈ [0, 1] such
that

|F (x, u+ ta, v + tb)− F (x, u, v)|
|t|

= |∂F (x, u+ tλ1a, v + tλ1b)
∂u

a|+ |∂F (x, u+ tλ1a, v + tλ1b)
∂v

b|

≤M(|u+ a|p
∗∗−1 + |v + b|p

∗∗−1)|a|+M(|u+ a|p
∗∗−1 + |v + b|p

∗∗−1)|b|

≤ 2p∗∗−2M(|u|p
∗∗−1 + |v|p

∗∗−1 + |a|p
∗∗−1 + |b|p

∗∗−1)(|a|+ |b|).
The Hölder inequality and the Sobolev imbedding theorem imply that

(|u|p
∗∗−1 + |v|p

∗∗−1 + |a|p
∗∗−1 + |b|p

∗∗−1)(|a|+ |b|) ∈ L1(Ω).

It follows from the Lebesgue theorem that

〈ψ′(u, v), (a, b)〉 =
∫

Ω

(
∂F (x, u, v)

∂u
a+

∂F (x, u, v)
∂v

b) dx.

Next, we proof the continuity of the Gateaux derivative. Assume that (un, vn) →
(u, v) in E. By Sobolev imbedding theorem, (un, vn) → (u, v) in Lp∗∗(Ω)×Lp∗∗(Ω).
By Lemma 2.2, we obtain that ∇F (x, un, vn) → ∇F (x, u, v) in Lβ(Ω) where β :=

p∗∗

p∗∗−1 . By the Hölder inequality and Sobolev imbedding theorem,

|〈ψ′(un, vn)− ψ′(u, v), (a, b)〉| ≤ ‖∂F (x, un, vn)
∂u

− ∂F (x, u, v)
∂u

‖Lβ(Ω)‖a‖Lp∗∗ (Ω)



EJDE-2011/47 MULTIPLICITY OF POSITIVE SOLUTIONS 5

+ ‖∂F (x, un, vn)
∂v

− ∂F (x, u, v)
∂v

‖Lβ(Ω)‖b‖Lp∗∗ (Ω)

≤ S−
1
p (‖∂F (x, un, vn)

∂u
− ∂F (x, u, v)

∂u
‖Lβ(Ω)

+ ‖∂F (x, un, vn)
∂v

− ∂F (x, u, v)
∂v

‖Lβ(Ω))‖(a, b)‖

and so

‖ψ′(un, vn)− ψ′(u, v)‖ ≤ S−1/p(‖∂F (x, un, vn)
∂u

− ∂F (x, u, v)
∂u

‖Lβ(Ω)

+ ‖∂F (x, un, vn)
∂v

− ∂F (x, u, v)
∂v

‖Lβ(Ω)) → 0 as n →∞.

�

From the above lemmas, we have Jλ,µ ∈ C1(E,R).
As the energy functional Jλ,µ is not bounded below on E, it is useful to consider

the functional on the Nehari manifold

Nλ,µ = {(u, v) ∈ E\{(0, 0)}|〈J ′λ,µ(u, v), (u, v)〉 = 0}.
Thus, (u, v) ∈ Nλ,µ if and only if

〈J ′λ,µ(u, v), (u, v)〉 = ‖(u, v)‖p −
∫

Ω

F (x, u, v)dx−Kλ,µ(u, v) = 0. (2.3)

Note that Nλ,µ contains every nonzero solution of problem (1.1). Moreover, we
have the following results.

Lemma 2.4. The energy functional Jλ,µ is coercive and bounded below on Nλ,µ.

Proof. If (u, v) ∈ Nλ,µ, then by the Hölder inequality and the Sobolev imbedding
theorem,

Jλ,µ(u, v) =
p∗∗ − p

p∗∗p
‖(u, v)‖p − p∗∗ − q

p∗∗q
Kλ,µ(u, v)

≥ p∗∗ − p

p∗∗p
‖(u, v)‖p − p∗∗ − q

p∗∗q
S−

q
p |Ω|

p∗∗−q
p∗∗ (λ

p
p−q + µ

p
p−q )

p−q
p ‖(u, v)‖q.

(2.4)
Thus, Jλ,µ is coercive and bounded below on Nλ,µ. �

Define Φλ,µ(u, v) = 〈J ′λ,µ(u, v), (u, v)〉. Then for (u, v) ∈ Nλ,µ,

〈Φ′λ,µ(u, v), (u, v)〉 = p‖(u, v)‖p − p∗∗
∫

Ω

F (x, u, v)dx− qKλ,µ(u, v) (2.5)

= (p− p∗∗)
∫

Ω

F (x, u, v)dx− (q − p)Kλ,µ(u, v) (2.6)

= (p− q)‖(u, v)‖p − (p∗∗ − q)
∫

Ω

F (x, u, v)dx (2.7)

= (p− p∗∗)‖(u, v)‖p − (q − p∗∗)Kλ,µ(u, v). (2.8)

Now, we split Nλ,µ into three parts:

N+
λ,µ = {(u, v) ∈ Nλ,µ|〈Φ′λ,µ(u, v), (u, v)〉 > 0};

N0
λ,µ = {(u, v) ∈ Nλ,µ|〈Φ′λ,µ(u, v), (u, v)〉 = 0};

N−
λ,µ = {(u, v) ∈ Nλ,µ|〈Φ′λ,µ(u, v), (u, v)〉 < 0}.
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Then, we have the following results.

Lemma 2.5. Suppose that (u0, v0) is a local minimizer for Jλ,µ on Nλ,µ and that
(u0, v0) 6∈ N0

λ,µ. Then J ′λ,µ(u0, v0) = 0 in E−1 (the dual space of the Sobolev space
E ).

Proof. If (u0, v0) is a local minimizer for Jλ,µ on Nλ,µ, then (u0, v0) is a solution of
the optimization problem minimize Jλ,µ(u, v) subject to Φλ,µ(u, v) = 0. Hence, by
the theory of Lagrange multiplies, there exists θ ∈ R, such that

J ′λ,µ(u0, v0) = θ Φ′λ,µ(u0, v0) in E−1(Ω),

Thus,
〈J ′λ,µ(u0, v0), (u0, v0)〉E = θ〈Φ′λ,µ(u0, v0), (u0, v0)〉E . (2.9)

Since (u0, v0) ∈ Nλ,µ, we have 〈J ′λ,µ(u0, v0), (u0, v0)〉E = 0. Moreover,
〈Φ′λ,µ(u0, v0), (u0, v0)〉E 6= 0, by (2.9), θ = 0. Thus, J ′λ,µ(u0, v0) = 0 in E−1 (the
dual space of the Sobolev space E). �

Lemma 2.6. If
0 < λ

p
p−q + µ

p
p−q < C(p, q,N,K, S, |Ω|),

then N0
λ,µ = ∅.

Proof. Suppose otherwise, that is there exists λ > 0, µ > 0 with

0 < λ
p

p−q + µ
p

p−q < C(p, q,N,K, S, |Ω|)
such that N0

λ,µ 6= ∅. Then for (u, v) ∈ N0
λ,µ, by (2.7), (2.8) we have

0 = 〈Φ′λ,µ(u, v), (u, v)〉 = (p− q)‖(u, v)‖p − (p∗∗ − q)
∫

Ω

F (x, u, v)dx

= (p− p∗∗)‖(u, v)‖p − (q − p∗∗)Kλ,µ(u, v).

By the Minkowski inequality, the Sobolev imbedding theorem and (1.5),∫
Ω

F (x, u, v)dx ≤ K(
∫

Ω

(|u|p + |v|p)
p∗∗

p dx)
p

p∗∗ ·
p∗∗

p

≤ K
(( ∫

Ω

|u|p
∗∗
dx

) p
p∗∗

+
( ∫

Ω

|v|p
∗∗
dx

) p
p∗∗

) p∗∗
p

≤ KS−
p∗∗

p

( ∫
Ω

|∆u|pdx+
∫

Ω

|∆v|pdx
) p∗∗

p

= KS−
p∗∗

p ‖(u, v)‖p∗∗ .

Thus,

‖(u, v)‖ ≥ (
p− q

K(p∗∗ − q)
S

p∗∗
p )

1
p∗∗−p

and
‖(u, v)‖ ≤ (

p∗∗ − q

p∗∗ − p
S−

q
p |Ω|

p∗∗−q
p∗∗ )

1
p−q (λ

p
p−q + µ

p
p−q )

1
p .

This implies
λ

p
p−q + µ

p
p−q ≥ C(p, q,N,K, S, |Ω|),

which is a contradiction. Thus, we conclude that if

0 < λ
p

p−q + µ
p

p−q < C(p, q,N,K, S, |Ω|),
we have N0

λ,µ = ∅. �
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By Lemma 2.6, we write Nλ,µ = N+
λ,µ ∪N

−
λ,µ and define

θλ,µ = inf
(u,v)∈Nλ,µ

Jλ,µ(u, v)

θ+λ,µ = inf
(u,v)∈N+

λ,µ

Jλ,µ(u, v);

θ−λ,µ = inf
(u,v)∈N−

λ,µ

Jλ,µ(u, v).

Then we have the following result.

Lemma 2.7. (i) If 0 < λ
p

p−q + µ
p

p−q < C(p, q,N,K, S, |Ω|), then we have
θλ,µ ≤ θ+λ,µ < 0;

(ii) if 0 < λ
p

p−q + µ
p

p−q < C0, then θ−λ,µ > d0 for some constant

d0 = d0(p, q,N,K, S, |Ω|, λ, µ) > 0.

Proof. (i) Let (u, v) ∈ N+
λ,µ. By (2.7),

p− q

p∗∗ − q
‖(u, v)‖p >

∫
Ω

F (x, u, v)dx

and so

Jλ,µ(u, v) = (
1
p
− 1
q
)‖(u, v)‖p + (

1
q
− 1
p∗∗

)
∫

Ω

F (x, u, v)dx

< [(
1
p
− 1
q
) + (

1
q
− 1
p∗∗

)
p− q

p∗∗ − q
]‖(u, v)‖p

= −2(p− q)
qN

‖(u, v)‖p < 0.

Thus, from the definition of θλ,µ and θ+λ,µ, we can deduce that θλ,µ ≤ θ+λ,µ < 0.
(ii) Let (u, v) ∈ N−

λ,µ. By (2.7),

p− q

p∗∗ − q
‖(u, v)‖p <

∫
Ω

F (x, u, v)dx.

Moreover, by the Minkowski inequality, the Sobolev imbedding theorem, and (1.5),∫
Ω

F (x, u, v)dx ≤ KS−
p∗∗

p ‖(u, v)‖p∗∗ . (2.10)

This implies

‖(u, v)‖ > (
p− q

K(p∗∗ − q)
)

1
p∗∗−pS

N
2p2 for all (u, v) ∈ N−

λ,µ. (2.11)

By (2.4) in the proof of Lemma 2.4

Jλ,µ(u, v) ≥ ‖(u, v)‖q[
p∗∗ − p

p∗∗p
‖(u, v)‖p−q − p∗∗ − q

p∗∗q
S−

q
p |Ω|

p∗∗−q
p∗∗ (λ

p
p−q + µ

p
p−q )

p−q
p ]

> (
p− q

K(p∗∗ − q)
)

q
p∗∗−pS

qN

2p2 [
p∗∗ − p

p∗∗p
S

(p−q)N

2p2 (
p− q

K(p∗∗ − q)
)

p−q
p∗−p

− p∗∗ − q

p∗∗q
S−

q
p |Ω|

p∗∗−q
p∗∗ (λ

p
p−q + µ

p
p−q )

p−q
p ].

Thus, if 0 < |λ|
p

p−q + |µ|
p

p−q < C0, then

Jλ,µ(u, v) > d0 for all (u, v) ∈ N−
λ,µ,
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for some d0 = d0(p, q,N,K, S, |Ω|, λ, µ) > 0. This completes the proof. �

For each (u, v) ∈ E with
∫
Ω
F (x, u, v)dx > 0, set

tmax = (
(p− q)‖(u, v)‖p

(p ∗ ∗ − q)
∫
Ω
F (x, u, v)dx

)
1

p∗∗−p > 0.

Then the following lemma holds, which is similar to the one in Brown and Wu [2,
Lemma 2.6].

Lemma 2.8. For each (u, v) ∈ E with
∫
Ω
F (x, u, v)dx > 0, there are unique 0 <

t+ < tmax < t− such that (t+u, t+v) ∈ N+
λ,µ, (t

−u, t−v) ∈ N−
λ,µ and

Jλ,µ(t+u, t+v) = inf
0≤t≤tmax

Jλ,µ(tu, tv); Jλ,µ(t−u, t−v) = sup
t≥0

Jλ,µ(tu, tv).

3. Proof of Theorems 1.1 and 1.2

We will need the following lemma.

Lemma 3.1. (i) If 0 < λ
p

p−q + µ
p

p−q < C(p, q,N,K, S, |Ω|), then there exists
a (PS)θλ,µ

-sequence {(un, vn)} ⊂ Nλ,µ in E for Jλ,µ;
(ii) if 0 < λ

p
p−q +µ

p
p−q < C0, then there exists a (PS)θ−λ,µ

-sequence {(un, vn)} ⊂
N−

λ,µ in E for Jλ,µ.

The proof of the above lemma is almost the same as that in Wu [17]; we omit it.
First, we establish the existence of a local minimum for Jλ,µ on N+

λ,µ.

Theorem 3.2. If 0 < λ
p

p−q +µ
p

p−q < C(p, q,N,K, S, |Ω|) and (F1)-(F3) hold, then
Jλ,µ has a minimizer (u+

0 , v
+
0 ) in N+

λ,µ and it satisfies

(i) Jλ,µ(u+
0 , v

+
0 ) = θλ,µ = θ+λ,µ;

(ii) (u+
0 , v

+
0 ) is a positive solution of (1.1).

Proof. By the Lemma 3.1(i), there exists a minimizing sequence {(un, vn)} for Jλ,µ

on N
λ,µ

such that

Jλ,µ(un, vn) = θλ,µ + o(1), J ′λ,µ(un, vn) = o(1) in E−1 (3.1)

Then by Lemma 2.4 and the compact imbedding theorem, there exist a subsequence
{(un, vn)} and (u+

0 , v
+
0 ) ∈ E such that

un ⇀ u+
0 weakly in W 2,p(Ω) ∩W 1,p

0 (Ω),

un → u+
0 strongly in Lq(Ω),

vn ⇀ v+
0 weakly in W 2,p(Ω) ∩W 1,p

0 (Ω),

vn → v+
0 strongly in Lq(Ω).

(3.2)

This implies that Kλ,µ(un, vn) → Kλ,µ(u+
0 , v

+
0 ) as n → ∞. By (3.1) and (3.2), it

is easy to prove that (u+
0 , v

+
0 ) is a weak solution of (1.1). Since

Jλ,µ(un, vn) =
2
N
‖(un, vn)‖p − p∗∗ − q

p∗∗q
Kλ,µ(un, vn)

≥ −p
∗∗ − q

p∗∗q
Kλ,µ(un, vn)
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and by Lemma 2.7 (i),

Jλ,µ(un, vn) → θλ,µ < 0 as n→∞.

Letting n → ∞, we see that Kλ,µ(u+
0 , v

+
0 ) > 0. Thus, (u+

0 , v
+
0 ) is a nontrivial

solution of (1.1).
Now it follows that un → u+

0 strongly in W 2,p(Ω) ∩W 1,p
0 (Ω), vn → v+

0 strongly
in W 2,p(Ω) ∩W 1,p

0 (Ω) and Jλ,µ(u+
0 , v

+
0 ) = θλ,µ. By (u+

0 , v
+
0 ) ∈ Nλ,µ and applying

Fatou’s lemma, we obtain

θλ,µ ≤ Jλ,µ(u+
0 , v

+
0 )

=
2
N
‖(u+

0 , v
+
0 )‖p − p∗∗ − q

p∗∗q
Kλ,µ(u+

0 , v
+
0 )

≤ lim inf
n→∞

(
2
N
‖(un, vn)‖p − p∗∗ − q

p∗∗q
Kλ,µ(un, vn))

≤ lim inf
n→∞

Jλ,µ(un, vn) = θλ,µ.

This implies

Jλ,µ(u+
0 , v

+
0 ) = θλ,µ, lim

n→∞
‖(un, vn)‖p = ‖(u+

0 , v
+
0 )‖p.

Let (ũn, ṽn) = (un, vn)− (u+
0 , v

+
0 ), then by Brézis-Lieb lemma [1],

‖(ũn, ṽn)‖p = ‖(un, vn)‖p − ‖(u+
0 , v

+
0 )‖p.

Therefore, un → u+
0 strongly in W 2,p(Ω)∩W 1,p

0 (Ω), vn → v+
0 strongly in W 2,p(Ω)∩

W 1,p
0 (Ω). Moreover, we have (u+

0 , v
+
0 ) ∈ N+

λ,µ. In fact, if (u+
0 , v

+
0 ) ∈ N−

λ,µ,
by Lemma 2.8, there are unique t+0 and t−0 such that (t+0 u

+
0 , t

+
0 v

+
0 ) ∈ N+

λ,µ and
(t−0 u

+
0 , t

−
0 v

+
0 ) ∈ N−

λ,µ. In particular, we have t+0 < t−0 = 1. Since

d

dt
Jλ,µ(t+0 u

+
0 , t

+
0 v

+
0 ) = 0 and

d2

dt2
Jλ,µ(t+0 u

+
0 , t

+
0 v

+
0 ) > 0,

there exists t+0 < t ≤ t−0 such that Jλ,µ(t+0 u
+
0 , t

+
0 v

+
0 ) < Jλ,µ(tu+

0 , tv
+
0 ). By Lemma

2.8,

Jλ,µ(t+0 u
+
0 , t

+
0 v

+
0 ) < Jλ,µ(tu+

0 , tv
+
0 ) ≤ Jλ,µ(t−0 u

+
0 , t

−
0 v

+
0 ) = Jλ,µ(u+

0 , v
+
0 ),

which is a contradiction. It follows from the maximum principle that (u+
0 , v

+
0 ) is a

positive solution of (1.1). This completes the proof. �

The following two lemmas are similar to those in Hsu [11].

Lemma 3.3. If {(un, vn)} ⊂ E is a (PS)c-sequence for Jλ,µ with (un, vn) ⇀ (u, v)
in E, then J ′λ,µ(u, v) = 0, and there exists a positive constant Λ depending on
p, q,N, S and |Ω|, such that Jλ,µ(u, v) ≥ −Λ(λ

p
p−q + µ

p
p−q ).

Lemma 3.4. If {(un, vn)} ⊂ E is a (PS)c-sequence for Jλ,µ, then {(un, vn)} is
bounded in E.

Define

SF := inf
(u,v)∈E

{ ‖(u, v)‖p

(
∫
Ω
F (x, u, v)dx)

p
p∗∗

:
∫

Ω

F (x, u, v)dx > 0}.

We need also the following version of Brézis-Lieb lemma [1].
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Lemma 3.5. Consider F ∈ C1(Ω, (R+)2) with F (x, 0, 0) = 0 and

|∂F (x, u, v)
∂u

|, |∂F (x, u, v)
∂v

| ≤ C1(|u|p−1 + |v|p−1)

for some 1 ≤ p < ∞, C1 > 0. Let (uk, vk) be a bounded sequence in Lp(Ω, (R+)2),
and such that (uk, vk) ⇀ (u, v) weakly in E. Then as k →∞,∫

Ω

F (x, uk, vk)dx→
∫

Ω

F (x, uk − u, vk − v)dx+
∫

Ω

F (x, u, v)dx.

Lemma 3.6. Jλ,µ satisfies the (PS)c condition with c satisfying

−∞ < c < c∞ =
2
N
S

N/(2p)
F − Λ(λ

p
p−q + µ

p
p−q ).

Proof. Let {(un, vn)} ⊂ E be a (PS)c-sequence for Jλ,µ with c ∈ (−∞, c∞). It
follows from Lemma 3.4 that {(un, vn)} is bounded in E, and then (un, vn) ⇀ (u, v)
up to a subsequence, (u, v) is a critical point of Jλ,µ. Furthermore, we may assume

un ⇀ u, vn ⇀ v in W 2,p(Ω) ∩W 1,p
0 (Ω),

un → u, vn → v in Lq(Ω),
un → u, vn → v a.e. on Ω.

Hence we have J ′λ,µ(u, v) = 0 and∫
Ω

(λ|un|q + µ|vn|q)dx→
∫

Ω

(λ|u|q + µ|v|q)dx. (3.3)

Let ũn = un − u, ṽn = vn − v. Then by Brézis-Lieb lemma [1],

‖(ũn, ṽn)‖p → ‖(un, vn)‖p − ‖(u, v)‖p as n→∞. (3.4)

and by Lemma 3.5,∫
Ω

F (x, ũn, ṽn)dx→
∫

Ω

F (x, un, vn)dx−
∫

Ω

F (x, u, v)dx. (3.5)

Since Jλ,µ(un, vn) = c+ o(1), J ′λ,µ(un, vn) = o(1) and (3.3)-(3.5), we deduce that

1
p
‖(ũn, ṽn)‖p − 1

p∗∗

∫
Ω

F (x, ũn, ṽn)dx = c− Jλ,µ(u, v) + o(1). (3.6)

and
‖(ũn, ṽn)‖p −

∫
Ω

F (x, ũn, ṽn)dx = o(1).

Hence, we may assume that

‖(ũn, ṽn)‖p → l,

∫
Ω

F (x, ũn, ṽn)dx→ l. (3.7)

If l = 0, the proof is complete. Assume l > 0, then from (3.7), we obtain

SF l
p

p∗∗ = SF lim
n→∞

(
∫

Ω

F (x, ũn, ṽn)dx)p/p∗∗ ≤ lim
n→∞

‖(ũn, ṽn)‖p = l,

which implies l ≥ S
N/(2p)
F . In addition, from Lemma 3.3, (3.6) and (3.7), we obtain

c = (
1
p
− 1
p∗∗

)l + Jλ,µ(u, v) ≥ 2
N
S

N/(2p)
F − Λ(λ

p
p−q + µ

p
p−q ),

which contradicts c < 2
N S

N/(2p)
F − Λ(λ

p
p−q + µ

p
p−q ). �



EJDE-2011/47 MULTIPLICITY OF POSITIVE SOLUTIONS 11

Lemma 3.7. There exist a nonnegative function (u, v) ∈ E\{(0, 0)} and C∗ > 0
such that for 0 < λ

p
p−q + µ

p
p−q < C∗, we have

sup
t≥0

Jλ,µ(tu, tv) < c∞.

In particular, θ−λ,µ < c∞ for all 0 < λ
p

p−q + µ
p

p−q < C∗.

Proof. Since x0 ∈ Ω, there is ρ0 > 0 such that BN (x0; 2ρ0) ⊂ Ω. Now, we consider
the functional I : E → R defined by

I(u, v) =
1
p
‖(u, v)‖p − 1

p∗∗

∫
Ω

F (x, u, v)dx

and define a cut-off function η(x) ∈ C∞0 (Ω) such that η(x) = 1 for |x − x0| <
ρ0, η(x) = 0 for |x− x0| > 2ρ0, 0 ≤ η ≤ 1 and |∇η| ≤ C. For ε > 0, let

uε(x) = η(x)U(
x

ε
),

where U(·) is a radially symmetric minimizer of { ‖∆u‖p
Lp

‖u‖p

Lp∗∗
}u∈W 2,p(RN )\{0}. Similar

to the work of Brown and Wu [3], we have the following estimates:( ∫
Ω

|uε|p
∗∗
dx

) p
p∗∗

= ε−
N−2p

p ‖U‖p

Lp∗∗ (RN )
+O(ε),∫

Ω

|∆uε|pdx = ε−
N−2p

p ‖∆U‖p
Lp(RN )

+O(1),∫
Ω
|∆uε|pdx

(
∫
Ω
|uε|p∗∗dx)

p
p∗∗

= S +O(ε
N−2p

p ),

(3.8)

Thus, we obtain

‖∆U‖p
Lp(RN )

‖U‖p

Lp∗∗ (RN )

= S = inf
u∈W 2,p(RN )\{0}

‖∆u‖p
Lp(RN )

‖u‖p

Lp∗∗ (RN )

.

Set u0(x) = e1uε(x − x0), v0(x) = e2uε(x − x0) and (u0, v0) ∈ E, where x0 ∈ Ω,
(e1, e2) ∈ (R+)2, and ep

1 + ep
2 = 1 are such that

F (x0, e1, e2) = max
x∈Ω,gp

1+gp
2=1,g1,g2>0

F (x, g1, g2) =: K.

Then, by (F1), (1.5), the definition of SF and (3.8), we obtain

sup
t≥0

I(tu0, tu0) ≤
2
N

(
(ep

1 + ep
2)

∫
Ω
|∆uε|pdx

(
∫
Ω
F (x, e1uε(x− x0), e2uε(x− x0))dx)

p
p∗∗

)N/(2p)

=
2
N

(

∫
Ω
|∆uε|pdx∫

Ω
(|uε(x− x0)|p∗∗F (x, e1, e2)dx)

p
p∗∗

)N/(2p)

≤ 2
N

(
1

K
p

p∗∗
)N/(2p)(S +O(ε

N−2p
p ))N/(2p)

=
2
N

(
1

K
p

p∗∗
)N/(2p)(SN/(2p) +O(ε

N−2p
p ))

≤ 2
N
S

N/(2p)
F +O(ε

N−2p
p ),

(3.9)
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where we have used that

sup
t≥0

(
tp

p
A− tp

∗∗

p∗∗
B) =

2
N

(
A

B
p

p∗∗
)N/(2p), A,B > 0.

We can choose δ1 > 0 such that for all 0 < λ
p

p−q + µ
p

p−q < δ1, so we have

c∞ =
2
N
S

N/(2p)
F − Λ(λ

p
p−q + µ

p
p−q ) > 0.

Using the definitions of Jλ,µ and (u0, v0), we obtain

Jλ,µ(tu0, tv0) ≤
tp

p
‖(u0, v0)‖p for all t ≥ 0, λ, µ > 0,

which implies that there exists t0 ∈ (0, 1) satisfying

sup
0≤t≤t0

Jλ,µ(t0u0, t0v0) < c∞, for all 0 < λ
p

p−q + µ
p

p−q < δ1.

Using the definitions of Jλ,µ and (u0, v0), we obtain

sup
t≥t0

Jλ,µ(tu0, tv0) = sup
t≥t0

(Iλ,µ(tu0, tv0)−
tq

q
Kλ,µ(u0, v0))

≤ 2
N
S

N/(2p)
F +O(ε

N−2p
p )− tq0

q
(eq

1λ+ eq
2µ)

∫
BN (0;ρ0)

|uε|qdx

≤ 2
N
S

N/(2p)
F +O(ε

N−2p
p )− tq0

q
m(λ+ µ)

∫
BN (0;ρ0)

|uε|qdx,

(3.10)

where m = min{eq
1, e

q
2}. Let 0 < ε ≤ ρ

p
p−1
0 , we obtain∫

BN (0;ρ0)

|uε|qdx =
∫

BN (0;ρ0)

1

(ε+ |x|
p

p−1 )
N−2p

p q
dx

≥
∫

BN (0;ρ0)

1

(2ρ
p

p−1
0 )

N−2p
p q

dx = C2(N, p, q, ρ0).

Combining with (3.10) and the above inequality, for all ε = (λ
p

p−q + µ
p

p−q )
p

N−2p ∈
(0, ρ

p
p−1
0 ), we have

sup
t≥t0

Jλ,µ(tu0, tv0) ≤
2
N
S

N/(2p)
F +O(λ

p
p−q + µ

p
p−q )− tq0

q
mC2(λ+ µ). (3.11)

Hence, we can choose δ2 > 0 such that for all 0 < λ
p

p−q + µ
p

p−q < δ2, we obtain

O(λ
p

p−q + µ
p

p−q )− tq0
q
mC2(λ+ µ) < −Λ(λ

p
p−q + µ

p
p−q ).

If we set C∗ = min{δ1, ρ
N−2p
p−1

0 , δ2} and ε = (λ
p

p−q + µ
p

p−q )
p

N−2p then for 0 < λ
p

p−q +
µ

p
p−q < C∗, we have

sup
t≥t0

Jλ,µ(tu0, tv0) < c∞. (3.12)

Finally, we prove that θ−λ,µ < c∞ for all 0 < λ
p

p−q + µ
p

p−q < C∗. Recall that
(u0, v0) = (e1uε, e2uε). It is easy to see that∫

Ω

F (x, u0, v0)dx > 0.
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Combining this with Lemma 2.8, from the definition of θ−λ,µ and (3.11), we obtain
that there exists t0 > 0 such that (t0u0, t0v0) ∈ N−

λ,µ and

θ−λ,µ ≤ Jλ,µ(t0u0, t0v0) ≤ sup
t≥0

Jλ,µ(tu0, tv0) < c∞

for all 0 < λ
p

p−q + µ
p

p−q < C∗. �

Theorem 3.8. If 0 < λ
p

p−q + µ
p

p−q < C∗0 and (F1)–(F3) hold, then Jλ,µ has a
minimizer (u−0 , v

−
0 ) in N−

λ,µ and it satisfies

(i) Jλ,µ(u−0 , v
−
0 ) = θ−λ,µ;

(ii) (u−0 , v
−
0 ) is a positive solution of (1.1).

where C∗0 = min{C∗, C0}.

Proof. By lemma 3.1 (ii), there is a (PS)θ−λ,µ
-sequence {(un, vn)} ⊂ N−

λ,µ in E

for Jλ,µ for all 0 < λ
p

p−q + µ
p

p−q < C0. From Lemmas 3.6, 3.7 and 2.7 (ii), for
0 < λ

p
p−q + µ

p
p−q < C∗, Jλ,µ satisfies (PS)θ−λ,µ

condition and θ−λ,µ > 0. Since
Jλ,µ is coercive on Nλ,µ, we obtain that (un, vn) is bounded in E. Therefore,
there exist a subsequence still denoted by (un, vn) and (u−0 , v

−
0 ) ∈ N−

λ,µ such that
(un, vn) → (u−0 , v

−
0 ) strongly in E and Jλ,µ(u−0 , v

−
0 ) = θ−λ,µ > 0 for all 0 < λ

p
p−q +

µ
p

p−q < C∗0 . Finally, by the same arguments as in the proof of Theorem 3.2, for all
0 < λ

p
p−q + µ

p
p−q < C∗0 , we have that (u−0 , v

−
0 ) is a positive solution of (1.1). �

Now, we complete the proof of Theorems 1.1 and 1.2. By Theorem 3.2, we
obtain that for all 0 < λ

p
p−q + µ

p
p−q < C(p, q,N,K, S, |Ω|), problem (1.1) has a

positive solution (u+
0 , v

+
0 ) ∈ N+

λ,µ. On the other hand, from Theorem 3.8, we
obtain the second positive solution (u−0 , v

−
0 ) ∈ N−

λ,µ for all 0 < λ
p

p−q + µ
p

p−q <

C∗0 < C(p, q,N,K, S, |Ω|). Since N+
λ,µ ∩ N

−
λ,µ = ∅, this implies that (u+

0 , v
+
0 ) and

(u−0 , v
−
0 ) are distinct. This completes the proof of Theorems 1.1 and 1.2.
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