Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 54, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONHOMOGENEOUS ELLIPTIC EQUATIONS WITH DECAYING CYLINDRICAL POTENTIAL AND CRITICAL EXPONENT

MOHAMMED BOUCHEKIF, MOHAMMED EL MOKHTAR OULD EL MOKHTAR

Abstract

We prove the existence and multiplicity of solutions for a nonhomogeneous elliptic equation involving decaying cylindrical potential and critical exponent.

1. Introduction

In this article, we consider the problem

$$
\begin{align*}
-\operatorname{div}\left(|y|^{-2 a} \nabla u\right)-\mu|y|^{-2(a+1)} u & =h|y|^{-2_{*} b}|u|^{2 *-2} u+\lambda g \quad \text { in } \mathbb{R}^{N}, \quad y \neq 0 \\
& u \in \mathcal{D}_{0}^{1,2} \tag{1.1}
\end{align*}
$$

where each point in \mathbb{R}^{N} is written as a pair $(y, z) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}, k$ and N are integers such that $N \geq 3$ and k belongs to $\{1, \ldots, N\} ;-\infty<a<(k-2) / 2 ; a \leq b<a+1$; $2_{*}=2 N /(N-2+2(b-a)) ;-\infty<\mu<\bar{\mu}_{a, k}:=((k-2(a+1)) / 2)^{2} ; g \in \mathcal{H}_{\mu}^{\prime} \cap C\left(\mathbb{R}^{N}\right)$; h is a bounded positive function on \mathbb{R}^{k} and λ is real parameter. Here $\mathcal{H}_{\mu}^{\prime}$ is the dual of \mathcal{H}_{μ}, where \mathcal{H}_{μ} and $\mathcal{D}_{0}^{1,2}$ will be defined later.

Some results are already available for 1.1 in the case $k=N$; see for example [10, 11 and the references therein. Wang and Zhou [10] proved that there exist at least two solutions for 1.1 with $a=0,0<\mu \leq \bar{\mu}_{0, N}=((N-2) / 2)^{2}$ and $h \equiv 1$, under certain conditions on g. Bouchekif and Matallah [2] showed the existence of two solutions of (1.1) under certain conditions on functions g and h, when $0<\mu \leq \bar{\mu}_{0, N}, \lambda \in\left(0, \Lambda_{*}\right),-\infty<a<(N-2) / 2$ and $a \leq b<a+1$, with Λ_{*} a positive constant.

Concerning existence results in the case $k<N$, we cite [6, 7] and the references therein. Musina (7] considered (1.1) with $-a / 2$ instead of a and $\lambda=0$, also (1.1) with $a=0, b=0, \lambda=0$, with $h \equiv 1$ and $a \neq 2-k$. She established the existence of a ground state solution when $2<k \leq N$ and $0<\mu<\bar{\mu}_{a, k}=((k-2+a) / 2)^{2}$ for (1.1) with $-a / 2$ instead of a and $\lambda=0$. She also showed that (1.1) with $a=0$, $b=0, \lambda=0$ does not admit ground state solutions. Badiale et al [1] studied 1.1) with $a=0, b=0, \lambda=0$ and $h \equiv 1$. They proved the existence of at least a nonzero nonnegative weak solution u, satisfying $u(y, z)=u(|y|, z)$ when $2 \leq k<N$ and

[^0]$\mu<0$. Bouchekif and El Mokhtar [3] proved that 1.1] with $a=0, b=0$ admits two distinct solutions when $2<k \leq N, b=N-p(N-2) / 2$ with $p \in\left(2,2^{*}\right]$, $\mu<\bar{\mu}_{0, k}$, and $\lambda \in\left(0, \Lambda_{*}\right)$ where Λ_{*} is a positive constant. Terracini 9 proved that there are no positive solutions of (1.1) with $b=0, \lambda=0$ when $a \neq 0, h \equiv 1$ and $\mu<0$. The regular problem corresponding to $a=b=\mu=0$ and $h \equiv 1$ has been considered on a regular bounded domain Ω by Tarantello 8. She proved that for g in $H^{-1}(\Omega)$, the dual of $H_{0}^{1}(\Omega)$, not identically zero and satisfying a suitable condition, the problem considered admits two distinct solutions.

Before formulating our results, we give some definitions and notation. We denote by $\mathcal{D}_{0}^{1,2}=\mathcal{D}_{0}^{1,2}\left(\mathbb{R}^{k} \backslash\{0\} \times \mathbb{R}^{N-k}\right)$ and $\mathcal{H}_{\mu}=\mathcal{H}_{\mu}\left(\mathbb{R}^{k} \backslash\{0\} \times \mathbb{R}^{N-k}\right)$, the closure of $C_{0}^{\infty}\left(\mathbb{R}^{k} \backslash\{0\} \times \mathbb{R}^{N-k}\right)$ with respect to the norms

$$
\|u\|_{a, 0}=\left(\int_{\mathbb{R}^{N}}|y|^{-2 a}|\nabla u|^{2} d x\right)^{1 / 2}
$$

and

$$
\|u\|_{a, \mu}=\left(\int_{\mathbb{R}^{N}}\left(|y|^{-2 a}|\nabla u|^{2}-\mu|y|^{-2(a+1)}|u|^{2}\right) d x\right)^{1 / 2}
$$

respectively, with $\mu<\bar{\mu}_{a, k}=((k-2(a+1)) / 2)^{2}$ for $k \neq 2(a+1)$.
From the Hardy-Sobolev-Maz'ya inequality, it is easy to see that the norm $\|u\|_{a, \mu}$ is equivalent to $\|u\|_{a, 0}$.

Since our approach is variational, we define the functional $I_{a, b, \lambda, \mu}$ on \mathcal{H}_{μ} by

$$
I(u):=I_{a, b, \lambda, \mu}(u):=(1 / 2)\|u\|_{a, \mu}^{2}-\left(1 / 2_{*}\right) \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2 *} d x-\lambda \int_{\mathbb{R}^{N}} g u d x .
$$

We say that $u \in \mathcal{H}_{\mu}$ is a weak solution of (1.1) if it satisfies

$$
\begin{aligned}
\left\langle I^{\prime}(u), v\right\rangle & =\int_{\mathbb{R}^{N}}\left(|y|^{-2 a} \nabla u \nabla v-\mu|y|^{-2(a+1)} u v-h|y|^{-2 * b}|u|^{2 *-2} u v-\lambda g v\right) d x \\
& =0, \quad \text { for } v \in \mathcal{H}_{\mu}
\end{aligned}
$$

Here $\langle\cdot, \cdot\rangle$ denotes the product in the duality $\mathcal{H}_{\mu}^{\prime}, \mathcal{H}_{\mu}$.
Throughout this work, we consider the following assumptions:
(G) There exist $\nu_{0}>0$ and $\delta_{0}>0$ such that $g(x) \geq \nu_{0}$, for all x in $B\left(0,2 \delta_{0}\right)$;
(H) $\lim _{|y| \rightarrow 0} h(y)=\lim _{|y| \rightarrow \infty} h(y)=h_{0}>0, h(y) \geq h_{0}, y \in \mathbb{R}^{k}$.

Here, $B(a, r)$ denotes the ball centered at a with radius r.
Under some conditions on the coefficients of 1.1 , we split \mathcal{N} in two disjoint subsets \mathcal{N}^{+}and \mathcal{N}^{-}, thus we consider the minimization problems on \mathcal{N}^{+}and \mathcal{N}^{-}.

Remark 1.1. Note that all solutions of (1.1) are nontrivial.
We shall state our main results.
Theorem 1.2. Assume that $3 \leq k \leq N,-1<a<(k-2) / 2,0 \leq \mu<\bar{\mu}_{a, k}$, and (G) holds, then there exists $\Lambda_{1}>0$ such that the (1.1) has at least one nontrivial solution on \mathcal{H}_{μ} for all $\lambda \in\left(0, \Lambda_{1}\right)$.

Theorem 1.3. In addition to the assumptions of the Theorem 1.2, if (H) holds, then there exists $\Lambda_{2}>0$ such that (1.1) has at least two nontrivial solutions on \mathcal{H}_{μ} for all $\lambda \in\left(0, \Lambda_{2}\right)$.

This article is organized as follows. In Section 2, we give some preliminaries. Section 3 and 4 are devoted to the proofs of Theorems 1.2 and 1.3 .

2. Preliminaries

We list here a few integral inequalities. The first one that we need is the Hardy inequality with cylindrical weights [7]. It states that

$$
\bar{\mu}_{a, k} \int_{\mathbb{R}^{N}}|y|^{-2(a+1)} v^{2} d x \leq \int_{\mathbb{R}^{N}}|y|^{-2 a}|\nabla v|^{2} d x, \quad \text { for all } v \in \mathcal{H}_{\mu},
$$

The starting point for studying $(\sqrt{1.1})$ is the Hardy-Sobolev-Maz'ya inequality that is particular to the cylindrical case $k<N$ and that was proved by Maz'ya in 6]. It states that there exists positive constant $C_{a, 2_{*}}$ such that

$$
C_{a, 2_{*}}\left(\int_{\mathbb{R}^{N}}|y|^{-2_{*} b}|v|^{2 *} d x\right)^{2 / 2_{*}} \leq \int_{\mathbb{R}^{N}}\left(|y|^{-2 a}|\nabla v|^{2}-\mu|y|^{-2(a+1)} v^{2}\right) d x
$$

for any $v \in C_{c}^{\infty}\left(\left(\mathbb{R}^{k} \backslash\{0\}\right) \times \mathbb{R}^{N-k}\right)$.
Proposition 2.1 ([6]). The value

$$
\begin{equation*}
S_{\mu, 2_{*}}=S_{\mu, 2_{*}}\left(k, 2_{*}\right):=\inf _{v \in \mathcal{H}_{\mu} \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}\left(|y|^{-2 a}|\nabla v|^{2}-\mu|y|^{-2(a+1)} v^{2}\right) d x}{\left(\int_{\mathbb{R}^{N}}|y|^{-2_{*} b}|v|^{2_{*}} d x\right)^{2 / 2_{*}}} \tag{2.1}
\end{equation*}
$$

is achieved on \mathcal{H}_{μ}, for $2 \leq k<N$ and $\mu \leq \bar{\mu}_{a, k}$.
Definition 2.2. Let $c \in \mathbb{R}, E$ be a Banach space and $I \in C^{1}(E, \mathbb{R})$.
(i) $\left(u_{n}\right)_{n}$ is a Palais-Smale sequence at level c (in short $\left.(P S)_{c}\right)$ in E for I if $I\left(u_{n}\right)=c+o_{n}(1)$ and $I^{\prime}\left(u_{n}\right)=o_{n}(1)$, where $o_{n}(1) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) We say that I satisfies the $(P S)_{c}$ condition if any $(P S)_{c}$ sequence in E for I has a convergent subsequence.
2.1. Nehari manifold. It is well known that I is of class C^{1} in \mathcal{H}_{μ} and the solutions of 1.1 are the critical points of I which is not bounded below on \mathcal{H}_{μ}. Consider the Nehari manifold

$$
\mathcal{N}=\left\{u \in \mathcal{H}_{\mu} \backslash\{0\}:\left\langle I^{\prime}(u), u\right\rangle=0\right\},
$$

Thus, $u \in \mathcal{N}$ if and only if

$$
\begin{equation*}
\|u\|_{a, \mu}^{2}-\int_{\mathbb{R}^{N}} h|y|^{-2 * b}|u|^{2_{*}} d x-\lambda \int_{\mathbb{R}^{N}} g u d x=0 . \tag{2.2}
\end{equation*}
$$

Note that \mathcal{N} contains every nontrivial solution of 1.1. Moreover, we have the following results.

Lemma 2.3. The functional I is coercive and bounded from below on \mathcal{N}.
Proof. If $u \in \mathcal{N}$, then by $(\sqrt{2.2})$ and the Hölder inequality, we deduce that

$$
\begin{align*}
I(u) & =\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{a, \mu}^{2}-\lambda\left(1-\left(1 / 2_{*}\right)\right) \int_{\mathbb{R}^{N}} g u d x \\
& \geq\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{a, \mu}^{2}-\lambda\left(1-\left(1 / 2_{*}\right)\right)\|u\|_{a, \mu}\|g\|_{\mathcal{H}_{\mu}^{\prime}} \tag{2.3}\\
& \geq-\lambda^{2} C_{0},
\end{align*}
$$

where

$$
C_{0}:=C_{0}\left(\|g\|_{\mathcal{H}_{\mu}^{\prime}}\right)=\left[\left(2_{*}-1\right)^{2} / 2_{*} 2\left(2_{*}-2\right)\right]\|g\|_{\mathcal{H}_{\mu}^{\prime}}^{2}>0 .
$$

Thus, I is coercive and bounded from below on \mathcal{N}.

Define

$$
\Psi_{\lambda}(u)=\left\langle I^{\prime}(u), u\right\rangle
$$

Then, for $u \in \mathcal{N}$,

$$
\begin{align*}
\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle & =2\|u\|_{a, \mu}^{2}-2_{*} \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2_{*}} d x-\lambda \int_{\mathbb{R}^{N}} g u d x \\
& =\|u\|_{a, \mu}^{2}-\left(2_{*}-1\right) \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2_{*}} d x \tag{2.4}\\
& =\lambda\left(2_{*}-1\right) \int_{\mathbb{R}^{N}} g u d x-\left(2_{*}-2\right)\|u\|_{a, \mu}^{2}
\end{align*}
$$

Now, we split \mathcal{N} in three parts:

$$
\begin{gathered}
\mathcal{N}^{+}=\left\{u \in \mathcal{N}:\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle>0\right\}, \quad \mathcal{N}^{0}=\left\{u \in \mathcal{N}\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle=0\right\} \\
\mathcal{N}^{-}=\left\{u \in \mathcal{N}:\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle<0\right\}
\end{gathered}
$$

We have the following results.
Lemma 2.4. Suppose that there exists a local minimizer u_{0} for I on \mathcal{N} and $u_{0} \notin$ \mathcal{N}^{0}. Then, $I^{\prime}\left(u_{0}\right)=0$ in $\mathcal{H}_{\mu}^{\prime}$.
Proof. If u_{0} is a local minimizer for I on \mathcal{N}, then there exists $\theta \in \mathbb{R}$ such that

$$
\left\langle I^{\prime}\left(u_{0}\right), \varphi\right\rangle=\theta\left\langle\Psi_{\lambda}^{\prime}\left(u_{0}\right), \varphi\right\rangle
$$

for any $\varphi \in \mathcal{H}_{\mu}$.
If $\theta=0$, then the lemma is proved. If not, taking $\varphi \equiv u_{0}$ and using the assumption $u_{0} \in \mathcal{N}$, we deduce

$$
0=\left\langle I^{\prime}\left(u_{0}\right), u_{0}\right\rangle=\theta\left\langle\Psi_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle
$$

Thus

$$
\left\langle\Psi_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle=0
$$

which contradicts that $u_{0} \notin \mathcal{N}^{0}$.
Let

$$
\begin{equation*}
\Lambda_{1}:=\left(2_{*}-2\right)\left(2_{*}-1\right)^{-\left(2_{*}-1\right) /\left(2_{*}-2\right)}\left[\left(h_{0}\right)^{-1} S_{\mu, 2_{*}}\right]^{2_{*} / 2\left(2_{*}-2\right)}\|g\|_{\mathcal{H}_{\mu}^{\prime}}^{-1} \tag{2.5}
\end{equation*}
$$

Lemma 2.5. We have $\mathcal{N}^{0}=\emptyset$ for all $\lambda \in\left(0, \Lambda_{1}\right)$.
Proof. Let us reason by contradiction. Suppose $\mathcal{N}^{0} \neq \emptyset$ for some $\lambda \in\left(0, \Lambda_{1}\right)$. Then, by 2.4 and for $u \in \mathcal{N}^{0}$, we have

$$
\begin{align*}
\|u\|_{a, \mu}^{2} & =\left(2_{*}-1\right) \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2_{*}} d x \tag{2.6}\\
& =\lambda\left(\left(2_{*}-1\right) /\left(2_{*}-2\right)\right) \int_{\mathbb{R}^{N}} g u d x
\end{align*}
$$

Moreover, by (G), the Hölder inequality and the Sobolev embedding theorem, we obtain

$$
\begin{equation*}
\left[\left(\left(h_{0}\right)^{-1} S_{\mu, 2_{*}}\right)^{2_{*} / 2} /\left(2_{*}-1\right)\right]^{1 /\left(2_{*}-2\right)} \leq\|u\|_{a, \mu} \leq\left[\lambda\left(\left(2_{*}-1\right)\|g\|_{\mathcal{H}_{\mu}^{\prime}} /\left(2_{*}-2\right)\right)\right] \tag{2.7}
\end{equation*}
$$

This implies that $\lambda \geq \Lambda_{1}$, which is a contradiction to $\lambda \in\left(0, \Lambda_{1}\right)$.

$$
\begin{aligned}
& \text { Thus } \mathcal{N}=\mathcal{N}^{+} \cup \mathcal{N}^{-} \text {for } \lambda \in\left(0, \Lambda_{1}\right) \text {. Define } \\
& \qquad c:=\inf _{u \in \mathcal{N}} I(u), \quad c^{+}:=\inf _{u \in \mathcal{N}^{+}} I(u), \quad c^{-}:=\inf _{u \in \mathcal{N}^{-}} I(u) .
\end{aligned}
$$

We need also the following Lemma.
Lemma 2.6. (i) If $\lambda \in\left(0, \Lambda_{1}\right)$, then $c \leq c^{+}<0$.
(ii) If $\lambda \in\left(0,(1 / 2) \Lambda_{1}\right)$, then $c^{-}>C_{1}$, where

$$
\begin{aligned}
C_{1}=C_{1}\left(\lambda, S_{\mu, 2_{*}}\|g\|_{\mathcal{H}_{\mu}^{\prime}}\right)= & \left(\left(2_{*}-2\right) / 2_{*} 2\right)\left(2_{*}-1\right)^{2 /\left(2_{*}-2\right)}\left(S_{\mu, 2_{*}}\right)^{2_{*} /\left(2_{*}-2\right)} \\
& -\lambda\left(1-\left(1 / 2_{*}\right)\right)\left(2_{*}-1\right)^{2 /\left(2_{*}-2\right)}\|g\|_{\mathcal{H}_{\mu}^{\prime}}
\end{aligned}
$$

Proof. (i) Let $u \in \mathcal{N}^{+}$. By (2.4),

$$
\left[1 /\left(2_{*}-1\right)\right]\|u\|_{a, \mu}^{2}>\int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2_{*}} d x
$$

and so

$$
\begin{aligned}
I(u) & =(-1 / 2)\|u\|_{a, \mu}^{2}+\left(1-\left(1 / 2_{*}\right)\right) \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2 *} d x \\
& <\left[(-1 / 2)+\left(1-\left(1 / 2_{*}\right)\right)\left(1 /\left(2_{*}-1\right)\right)\right]\|u\|_{a, \mu}^{2} \\
& =-\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{a, \mu}^{2}
\end{aligned}
$$

we conclude that $c \leq c^{+}<0$.
(ii) Let $u \in \mathcal{N}^{-}$. By (2.4),

$$
\left[1 /\left(2_{*}-1\right)\right]\|u\|_{a, \mu}^{2}<\int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2_{*}} d x
$$

Moreover, by Sobolev embedding theorem, we have

$$
\int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2_{*}} d x \leq\left(S_{\mu, 2_{*}}\right)^{-2_{*} / 2}\|u\|_{a, \mu}^{2_{*}}
$$

This implies

$$
\|u\|_{a, \mu}>\left[\left(2_{*}-1\right)\right]^{-1 /\left(2_{*}-2\right)}\left(S_{\mu, 2_{*}}\right)^{2_{*} / 2\left(2_{*}-2\right)}, \quad \text { for all } u \in \mathcal{N}^{-} .
$$

By (2.3),

$$
I(u) \geq\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{a, \mu}^{2}-\lambda\left(1-\left(1 / 2_{*}\right)\right)\|u\|_{a, \mu}\|g\|_{\mathcal{H}_{\mu}^{\prime}} .
$$

Thus, for all $\lambda \in\left(0,(1 / 2) \Lambda_{1}\right)$, we have $I(u) \geq C_{1}$.
For each $u \in \mathcal{H}_{\mu}$, we write

$$
t_{m}:=t_{\max }(u)=\left[\frac{\|u\|_{a, \mu}}{\left(2_{*}-1\right) \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2_{*}} d x}\right]^{1 /\left(2_{*}-2\right)}>0
$$

Lemma 2.7. Let $\lambda \in\left(0, \Lambda_{1}\right)$. For each $u \in \mathcal{H}_{\mu}$, one has the following:
(i) If $\int_{\mathbb{R}^{N}} g(x) u d x \leq 0$, then there exists a unique $t^{-}>t_{m}$ such that $t^{-} u \in \mathcal{N}^{-}$ and

$$
I\left(t^{-} u\right)=\sup _{t \geq 0} I(t u)
$$

(ii) If $\int_{\mathbb{R}^{N}} g(x) u d x>0$, then there exist unique t^{+}and t^{-}such that $0<t^{+}<$ $t_{m}<t^{-}, t^{+} u \in \mathcal{N}^{+}, t^{-} u \in \mathcal{N}^{-}$,

$$
I\left(t^{+} u\right)=\inf _{0 \leq t \leq t_{m}} I(t u) \text { and } I\left(t^{-} u\right)=\sup _{t \geq 0} I(t u) .
$$

The proof of the above lemma follows from a proof in [5], with minor modifications.

3. Proof of Theorem 1.2

For the proof we need the following results.
Proposition 3.1 ([5). (i) If $\lambda \in\left(0, \Lambda_{1}\right)$, then there exists a minimizing sequence $\left(u_{n}\right)_{n}$ in \mathcal{N} such that

$$
\begin{equation*}
I\left(u_{n}\right)=c+o_{n}(1), \quad I^{\prime}\left(u_{n}\right)=o_{n}(1) \quad \text { in } \mathcal{H}_{\mu}^{\prime} \tag{3.1}
\end{equation*}
$$

where $o_{n}(1)$ tends to 0 as n tends to ∞.
(ii) if $\lambda \in\left(0,(1 / 2) \Lambda_{1}\right)$, then there exists a minimizing sequence $\left(u_{n}\right)_{n}$ in \mathcal{N}^{-} such that

$$
I\left(u_{n}\right)=c^{-}+o_{n}(1), \quad I^{\prime}\left(u_{n}\right)=o_{n}(1) \quad \text { in } \mathcal{H}_{\mu}^{\prime}
$$

Now, taking as a starting point the work of Tarantello [8], we establish the existence of a local minimum for I on \mathcal{N}^{+}.

Proposition 3.2. If $\lambda \in\left(0, \Lambda_{1}\right)$, then I has a minimizer $u_{1} \in \mathcal{N}^{+}$and it satisfies
(i) $I\left(u_{1}\right)=c=c^{+}<0$,
(ii) u_{1} is a solution of 1.1.

Proof. (i) By Lemma $2.3, I$ is coercive and bounded below on \mathcal{N}. We can assume that there exists $u_{1} \in \mathcal{H}_{\mu}$ such that

$$
\begin{gather*}
u_{n} \rightharpoonup u_{1} \quad \text { weakly in } \mathcal{H}_{\mu} \\
u_{n} \rightharpoonup u_{1} \quad \text { weakly in } L^{2_{*}}\left(\mathbb{R}^{N},|y|^{-2_{*} b}\right), \tag{3.2}\\
u_{n} \rightarrow u_{1} \quad \text { a.e in } \mathbb{R}^{N}
\end{gather*}
$$

Thus, by (3.1) and (3.2), u_{1} is a weak solution of (1.1) since $c<0$ and $I(0)=0$. Now, we show that u_{n} converges to u_{1} strongly in \mathcal{H}_{μ}. Suppose otherwise. Then $\left\|u_{1}\right\|_{a, \mu}<\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{a, \mu}$ and we obtain

$$
\begin{aligned}
c & \leq I\left(u_{1}\right)=\left(\left(2_{*}-2\right) / 2_{*} 2\right)\left\|u_{1}\right\|_{a, \mu}^{2}-\lambda\left(1-\left(1 / 2_{*}\right)\right) \int_{\mathbb{R}^{N}} g u_{1} d x \\
& <\liminf _{n \rightarrow \infty} I\left(u_{n}\right)=c
\end{aligned}
$$

We have a contradiction. Therefore, u_{n} converges to u_{1} strongly in \mathcal{H}_{μ}. Moreover, we have $u_{1} \in \mathcal{N}^{+}$. If not, then by Lemma 2.7, there are two numbers t_{0}^{+}and t_{0}^{-}, uniquely defined so that $t_{0}^{+} u_{1} \in \mathcal{N}^{+}$and $t_{0}^{-} u_{1} \in \mathcal{N}^{-}$. In particular, we have $t_{0}^{+}<t_{0}^{-}=1$. Since

$$
\left.\frac{d}{d t} I\left(t u_{1}\right)\right|_{t}=t_{0}^{+}=0, \left.\quad \frac{d^{2}}{d t^{2}} I\left(t u_{1}\right) \right\rvert\, t=t_{0}^{+}>0
$$

there exists $t_{0}^{+}<t^{-} \leq t_{0}^{-}$such that $I\left(t_{0}^{+} u_{1}\right)<I\left(t^{-} u_{1}\right)$. By Lemma 2.7 .

$$
I\left(t_{0}^{+} u_{1}\right)<I\left(t^{-} u_{1}\right)<I\left(t_{0}^{-} u_{1}\right)=I\left(u_{1}\right)
$$

which is a contradiction.

4. Proof of Theorem 1.3

In this section, we establish the existence of a second solution of 1.1). For this, we require the following Lemmas, with C_{0} is given in 2.3).

Lemma 4.1. Assume that (G) holds and let $\left(u_{n}\right)_{n} \subset \mathcal{H}_{\mu}$ be a $(P S)_{c}$ sequence for I for some $c \in \mathbb{R}$ with $u_{n} \rightharpoonup u$ in \mathcal{H}_{μ}. Then, $I^{\prime}(u)=0$ and

$$
I(u) \geq-C_{0} \lambda^{2}
$$

Proof. It is easy to prove that $I^{\prime}(u)=0$, which implies that $\left\langle I^{\prime}(u), u\right\rangle=0$, and

$$
\int_{\mathbb{R}^{N}} h|y|^{-2 * b}|u|^{2 *} d x=\|u\|_{a, \mu}^{2}-\lambda \int_{\mathbb{R}^{N}} g u d x
$$

Therefore,

$$
I(u)=\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{a, \mu}^{2}-\lambda\left(1-\left(1 / 2_{*}\right)\right) \int_{\mathbb{R}^{N}} g u d x
$$

Using (2.3), we obtain

$$
I(u) \geq-C_{0} \lambda^{2}
$$

Lemma 4.2. Assume that (G) holds and for any $(P S)_{c}$ sequence with c is a real number such that $c<c_{\lambda}^{*}$. Then, there exists a subsequence which converges strongly. Here $c_{\lambda}^{*}:=\left(\left(2_{*}-2\right) / 2_{*} 2\right)\left(h_{0}\right)^{-2 /\left(2_{*}-2\right)}\left(S_{\mu, 2_{*}}\right)^{2_{*} /\left(2_{*}-2\right)}-C_{0} \lambda^{2}$.

Proof. Using standard arguments, we get that $\left(u_{n}\right)_{n}$ is bounded in \mathcal{H}_{μ}. Thus, there exist a subsequence of $\left(u_{n}\right)_{n}$ which we still denote by $\left(u_{n}\right)_{n}$ and $u \in \mathcal{H}_{\mu}$ such that

$$
u_{n} \rightharpoonup u \quad \text { weakly in } \mathcal{H}_{\mu}
$$

$$
\begin{gathered}
u_{n} \rightharpoonup u \quad \text { weakly in } L^{2 *}\left(\mathbb{R}^{N},|y|^{-2 * b}\right) . \\
u_{n} \rightarrow u \quad \text { a.e in } \mathbb{R}^{N} .
\end{gathered}
$$

Then, u is a weak solution of (1.1). Let $v_{n}=u_{n}-u$, then by Brézis-Lieb [4], we obtain

$$
\begin{equation*}
\left\|v_{n}\right\|_{a, \mu}^{2}=\left\|u_{n}\right\|_{a, \mu}^{2}-\|u\|_{a, \mu}^{2}+o_{n}(1) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}\left|v_{n}\right|^{2_{*}} d x=\int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}\left|u_{n}\right|^{2_{*}} d x-\int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}|u|^{2 *} d x+o_{n}(1) \tag{4.2}
\end{equation*}
$$

On the other hand, by using the assumption (H), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} h(x)|y|^{-2_{*} b}\left|v_{n}\right|^{2_{*}} d x=h_{0} \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}|y|^{-2_{*} b}\left|v_{n}\right|^{2_{*}} d x \tag{4.3}
\end{equation*}
$$

Since $I\left(u_{n}\right)=c+o_{n}(1), I^{\prime}\left(u_{n}\right)=o_{n}(1)$ and by 4.1, 4.2, and 4.3) we deduce that

$$
\begin{gather*}
(1 / 2)\left\|v_{n}\right\|_{a, \mu}^{2}-\left(1 / 2_{*}\right) \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}\left|v_{n}\right|^{2 *} d x=c-I(u)+o_{n}(1) \tag{4.4}\\
\left\|v_{n}\right\|_{a, \mu}^{2}-\int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}\left|v_{n}\right|^{2_{*}} d x=o_{n}(1)
\end{gather*}
$$

Hence, we may assume that

$$
\begin{equation*}
\left\|v_{n}\right\|_{a, \mu}^{2} \rightarrow l, \quad \int_{\mathbb{R}^{N}} h|y|^{-2 * b}\left|v_{n}\right|^{2 *} d x \rightarrow l \tag{4.5}
\end{equation*}
$$

Sobolev inequality gives $\left\|v_{n}\right\|_{a, \mu}^{2} \geq\left(S_{\mu, 2_{*}}\right) \int_{\mathbb{R}^{N}} h|y|^{-2_{*} b}\left|v_{n}\right|^{2_{*}} d x$. Combining this inequality with 4.5, we obtain

$$
l \geq S_{\mu, 2_{*}}\left(l^{-1} h_{0}\right)^{-2 / 2_{*}}
$$

Either $l=0$ or $l \geq\left(h_{0}\right)^{-2 /\left(2_{*}-2\right)}\left(S_{\mu, 2_{*}}\right)^{2_{*} /\left(2_{*}-2\right)}$. Suppose that

$$
l \geq\left(h_{0}\right)^{-2 /\left(2_{*}-2\right)}\left(S_{\mu, 2_{*}}\right)^{2_{*} /\left(2_{*}-2\right)} .
$$

Then, from (4.4, 4.5 and Lemma 4.1. we obtain

$$
c \geq\left(\left(2_{*}-2\right) / 2_{*} 2\right) l+I(u) \geq c_{\lambda}^{*}
$$

which is a contradiction. Therefore, $l=0$ and we conclude that u_{n} converges to u strongly in \mathcal{H}_{μ}.

Lemma 4.3. Assume that (G) and (H) hold. Then, there exist $v \in \mathcal{H}_{\mu}$ and $\Lambda_{*}>0$ such that for $\lambda \in\left(0, \Lambda_{*}\right)$, one has

$$
\sup _{t \geq 0} I(t v)<c_{\lambda}^{*} .
$$

In particular, $c^{-}<c_{\lambda}^{*}$ for all $\lambda \in\left(0, \Lambda_{*}\right)$.
Proof. Let φ_{ε} be such that

$$
\varphi_{\varepsilon}(x)= \begin{cases}\omega_{\varepsilon}(x) & \text { if } g(x) \geq 0 \text { for all } x \in \mathbb{R}^{N} \\ \omega_{\varepsilon}\left(x-x_{0}\right) & \text { if } g\left(x_{0}\right)>0 \text { for } x_{0} \in \mathbb{R}^{N} \\ -\omega_{\varepsilon}(x) & \text { if } g(x) \leq 0 \text { for all } x \in \mathbb{R}^{N}\end{cases}
$$

where ω_{ε} satisfies (2.1). Then, we claim that there exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\lambda \int_{\mathbb{R}^{N}} g(x) \varphi_{\varepsilon}(x) d x>0 \quad \text { for any } \varepsilon \in\left(0, \varepsilon_{0}\right) \tag{4.6}
\end{equation*}
$$

In fact, if $g(x) \geq 0$ or $g(x) \leq 0$ for all $x \in \mathbb{R}^{N}$, 4.6) obviously holds. If there exists $x_{0} \in \mathbb{R}^{N}$ such that $g\left(x_{0}\right)>0$, then by the continuity of $g(x)$, there exists $\eta>0$ such that $g(x)>0$ for all $x \in B\left(x_{0}, \eta\right)$. Then by the definition of $\omega_{\varepsilon}\left(x-x_{0}\right)$, it is easy to see that there exists an ε_{0} small enough such that

$$
\lambda \int_{\mathbb{R}^{N}} g(x) \omega_{\varepsilon}\left(x-x_{0}\right) d x>0, \quad \text { for any } \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

Now, we consider the functions

$$
f(t)=I\left(t \varphi_{\varepsilon}\right), \quad \tilde{f}(t)=\left(t^{2} / 2\right)\left\|\varphi_{\varepsilon}\right\|_{a, \mu}^{2}-\left(t^{2_{*}} / 2_{*}\right) \int_{\mathbb{R}^{N}} h|y|^{-2 * b}\left|\varphi_{\varepsilon}\right|^{2_{*}} d x
$$

Then, for all $\lambda \in\left(0, \Lambda_{1}\right)$,

$$
f(0)=0<c_{\lambda}^{*} .
$$

By the continuity of f, there exists $t_{0}>0$ small enough such that

$$
f(t)<c_{\lambda}^{*}, \quad \text { for all } t \in\left(0, t_{0}\right) .
$$

On the other hand,

$$
\max _{t \geq 0} \tilde{f}(t)=\left(\left(2_{*}-2\right) / 2_{*} 2\right)\left(h_{0}\right)^{-2 /\left(2_{*}-2\right)}\left(S_{\mu, 2_{*}}\right)^{2_{*} /\left(2_{*}-2\right)}
$$

Then, we obtain

$$
\sup _{t \geq 0} I\left(t \varphi_{\varepsilon}\right)<\left(\left(2_{*}-2\right) / 2_{*} 2\right)\left(h_{0}\right)^{-2 /\left(2_{*}-2\right)}\left(S_{\mu, 2_{*}}\right)^{2_{*} /\left(2_{*}-2\right)}-\lambda t_{0} \int_{\mathbb{R}^{N}} g \varphi_{\varepsilon} d x
$$

Now, taking $\lambda>0$ such that

$$
-\lambda t_{0} \int_{\mathbb{R}^{N}} g \varphi_{\varepsilon} d x<-C_{0} \lambda^{2}
$$

and by (4.6), we obtain

$$
0<\lambda<\left(t_{0} / C_{0}\right)\left(\int_{\mathbb{R}^{N}} g \varphi_{\varepsilon}\right), \quad \text { for } \varepsilon \ll \varepsilon_{0}
$$

Set

$$
\Lambda_{*}=\min \left\{\Lambda_{1},\left(t_{0} / C_{0}\right)\left(\int_{\mathbb{R}^{N}} g \varphi_{\varepsilon}\right)\right\}
$$

We deduce that

$$
\begin{equation*}
\sup _{t \geq 0} I\left(t \varphi_{\varepsilon}\right)<c_{\lambda}, \quad \text { for all } \lambda \in\left(0, \Lambda_{*}\right) . \tag{4.7}
\end{equation*}
$$

Now, we prove that

$$
c^{-}<c_{\lambda}^{*}, \quad \text { for all } \lambda \in\left(0, \Lambda_{*}\right)
$$

By (G) and the existence of w_{n} satisfying 2.1, we have

$$
\lambda \int_{\mathbb{R}^{N}} g w_{n} d x>0 .
$$

Combining this with Lemma 2.7 and from the definition of c^{-}and 4.7), we obtain that there exists $t_{n}>0$ such that $t_{n} w_{n} \in \mathcal{N}^{-}$and for all $\lambda \in\left(0, \Lambda_{*}\right)$,

$$
c^{-} \leq I\left(t_{n} w_{n}\right) \leq \sup _{t \geq 0} I\left(t w_{n}\right)<c_{\lambda}^{*}
$$

Now we establish the existence of a local minimum of I on \mathcal{N}^{-}.
Proposition 4.4. There exists $\Lambda_{2}>0$ such that for $\lambda \in\left(0, \Lambda_{2}\right)$, the functional I has a minimizer u_{2} in \mathcal{N}^{-}and satisfies
(i) $I\left(u_{2}\right)=c^{-}$,
(ii) u_{2} is a solution of 1.1) in \mathcal{H}_{μ},
where $\Lambda_{2}=\min \left\{(1 / 2) \Lambda_{1}, \Lambda_{*}\right\}$ with Λ_{1} defined as in 2.5 and Λ_{*} defined as in the proof of Lemma 4.3 .

Proof. By Proposition 3.1 (ii), there exists a $(P S)_{c^{-}}$sequence for $I,\left(u_{n}\right)_{n}$ in \mathcal{N}^{-} for all $\lambda \in\left(0,(1 / 2) \Lambda_{1}\right)$. From Lemmas 4.2, 4.3 and 2.6 (ii), for $\lambda \in\left(0, \Lambda_{*}\right), I$ satisfies $(P S)_{c^{-}}$condition and $c^{-}>0$. Then, we get that $\left(u_{n}\right)_{n}$ is bounded in \mathcal{H}_{μ}. Therefore, there exist a subsequence of $\left(u_{n}\right)_{n}$ still denoted by $\left(u_{n}\right)_{n}$ and $u_{2} \in \mathcal{N}^{-}$ such that u_{n} converges to u_{2} strongly in \mathcal{H}_{μ} and $I\left(u_{2}\right)=c^{-}$for all $\lambda \in\left(0, \Lambda_{2}\right)$. Finally, by using the same arguments as in the proof of the Proposition 3.2 , for all $\lambda \in\left(0, \Lambda_{1}\right)$, we have that u_{2} is a solution of (1.1).

Now, we complete the proof of Theorem 1.3 By Propositions 3.2 and 4.4 , we obtain that (1.1) has two solutions u_{1} and u_{2} such that $u_{1} \in \mathcal{N}^{+}$and $u_{2} \in \mathcal{N}^{-}$. Since $\mathcal{N}^{+} \cap \overline{\mathcal{N}}^{-}=\emptyset$, this implies that u_{1} and u_{2} are distinct.

References

[1] M. Badiale, M. Guida, S. Rolando; Elliptic equations with decaying cylindrical potentials and power-type nonlinearities, Adv. Differential Equations, 12 (2007) 1321-1362.
[2] M. Bouchekif, A. Matallah; On singular nonhomogeneous elliptic equations involving critical Caffarelli-Kohn-Nirenberg exponent, Ric. Mat., 58 (2009) 207-218.
[3] M. Bouchekif, M. E. O. El Mokhtar; On nonhomogeneous singular elliptic equations with cylindrical weight, preprint Université de Tlemcen, (2010).
[4] H. Brézis, E. Lieb; A Relation between point convergence of functions and convergence of functional, Proc. Amer. Math. Soc., 88 (1983) 486-490.
[5] K. J. Brown, Y. Zang; The Nehari manifold for a semilinear elliptic equation with a signchanging weight function, J. Differential Equations, 193 (2003) 481-499.
[6] M. Gazzini, R. Musina; On the Hardy-Sobolev-Maz'ja inequalities: symmetry and breaking symmetry of extremal functions, Commun. Contemp. Math., 11 (2009) 993-1007.
[7] R. Musina; Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal., 68 (2008) 3972-3986.
[8] G. Tarantello; On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non. Liné aire, 9 (1992) 281-304.
[9] S. Terracini; On positive entire solutions to a class of equations with singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996) 241-264.
[10] Z. Wang, H. Zhou; Solutions for a nonhomogeneous elliptic problem involving critical SobolevHardy exponent in \mathbb{R}^{N}. Acta Math. Sci., 26 (2006) 525-536.
[11] B. Xuan, S. Su, Y. Yan; Existence results for Bré zis-Nirenberg problems with Hardy potential and singular coefficients. Nonlinear Anal., 67 (2007) 2091-2106.

Mohammed Bouchekif
University of Tlemcen, Departement of Mathematics, BO 119, 13000 Tlemcen, Algeria
E-mail address: m_bouchekif@yahoo.fr
Mohammed El Mokhtar Ould El Mokhtar
University of Tlemcen, Departement of Mathematics, BO 119, 13000 Tlemcen, Algeria
E-mail address: med.mokhtar66@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J70.
 Key words and phrases. Hardy-Sobolev-Maz'ya inequality; Palais-Smale condition;
 Nehari manifold; critical exponent.
 (C)2011 Texas State University - San Marcos.

 Submitted February 23, 2011. Published April 27, 2011.

