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NONHOMOGENEOUS ELLIPTIC EQUATIONS WITH
DECAYING CYLINDRICAL POTENTIAL AND CRITICAL

EXPONENT

MOHAMMED BOUCHEKIF, MOHAMMED EL MOKHTAR OULD EL MOKHTAR

Abstract. We prove the existence and multiplicity of solutions for a nonho-
mogeneous elliptic equation involving decaying cylindrical potential and criti-
cal exponent.

1. Introduction

In this article, we consider the problem

−div(|y|−2a∇u)− µ|y|−2(a+1)u = h|y|−2∗b|u|2∗−2u + λg in RN , y 6= 0

u ∈ D1,2
0 ,

(1.1)

where each point in RN is written as a pair (y, z) ∈ Rk×RN−k, k and N are integers
such that N ≥ 3 and k belongs to {1, . . . , N}; −∞ < a < (k− 2)/2; a ≤ b < a + 1;
2∗ = 2N/(N−2+2(b−a)); −∞ < µ < µ̄a,k := ((k−2(a+1))/2)2; g ∈ H′

µ∩C(RN );
h is a bounded positive function on Rk and λ is real parameter. Here H′

µ is the
dual of Hµ, where Hµ and D1,2

0 will be defined later.
Some results are already available for (1.1) in the case k = N ; see for example

[10, 11] and the references therein. Wang and Zhou [10] proved that there exist
at least two solutions for (1.1) with a = 0, 0 < µ ≤ µ̄0,N = ((N − 2)/2)2 and
h ≡ 1, under certain conditions on g. Bouchekif and Matallah [2] showed the
existence of two solutions of (1.1) under certain conditions on functions g and h,
when 0 < µ ≤ µ̄0,N , λ ∈ (0,Λ∗), −∞ < a < (N − 2)/2 and a ≤ b < a + 1, with Λ∗
a positive constant.

Concerning existence results in the case k < N , we cite [6, 7] and the references
therein. Musina [7] considered (1.1) with −a/2 instead of a and λ = 0, also (1.1)
with a = 0, b = 0, λ = 0, with h ≡ 1 and a 6= 2− k. She established the existence
of a ground state solution when 2 < k ≤ N and 0 < µ < µ̄a,k = ((k − 2 + a)/2)2

for (1.1) with −a/2 instead of a and λ = 0. She also showed that (1.1) with a = 0,
b = 0, λ = 0 does not admit ground state solutions. Badiale et al [1] studied (1.1)
with a = 0, b = 0, λ = 0 and h ≡ 1. They proved the existence of at least a nonzero
nonnegative weak solution u, satisfying u(y, z) = u(|y|, z) when 2 ≤ k < N and
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µ < 0. Bouchekif and El Mokhtar [3] proved that (1.1) with a = 0, b = 0 admits
two distinct solutions when 2 < k ≤ N , b = N − p(N − 2)/2 with p ∈ (2, 2∗],
µ < µ̄0,k, and λ ∈ (0,Λ∗) where Λ∗ is a positive constant. Terracini [9] proved
that there are no positive solutions of (1.1) with b = 0, λ = 0 when a 6= 0, h ≡ 1
and µ < 0. The regular problem corresponding to a = b = µ = 0 and h ≡ 1 has
been considered on a regular bounded domain Ω by Tarantello [8]. She proved that
for g in H−1(Ω), the dual of H1

0 (Ω), not identically zero and satisfying a suitable
condition, the problem considered admits two distinct solutions.

Before formulating our results, we give some definitions and notation. We denote
by D1,2

0 = D1,2
0 (Rk\{0} × RN−k) and Hµ = Hµ(Rk\{0} × RN−k), the closure of

C∞
0 (Rk\{0} × RN−k) with respect to the norms

‖u‖a,0 =
( ∫

RN

|y|−2a|∇u|2 dx
)1/2

and

‖u‖a,µ =
( ∫

RN

(|y|−2a|∇u|2 − µ|y|−2(a+1)|u|2) dx
)1/2

,

respectively, with µ < µ̄a,k = ((k − 2(a + 1))/2)2 for k 6= 2(a + 1).
From the Hardy-Sobolev-Maz’ya inequality, it is easy to see that the norm ‖u‖a,µ

is equivalent to ‖u‖a,0.
Since our approach is variational, we define the functional Ia,b,λ,µ on Hµ by

I(u) := Ia,b,λ,µ(u) := (1/2)‖u‖2a,µ − (1/2∗)
∫

RN

h|y|−2∗b|u|2∗ dx− λ

∫
RN

gu dx.

We say that u ∈ Hµ is a weak solution of (1.1) if it satisfies

〈I ′(u), v〉 =
∫

RN

(|y|−2a∇u∇v − µ|y|−2(a+1)uv − h|y|−2∗b|u|2∗−2uv − λgv) dx

= 0, for v ∈ Hµ.

Here 〈·, ·〉 denotes the product in the duality H′
µ,Hµ.

Throughout this work, we consider the following assumptions:
(G) There exist ν0 > 0 and δ0 > 0 such that g(x) ≥ ν0, for all x in B(0, 2δ0);
(H) lim|y|→0 h(y) = lim|y|→∞ h(y) = h0 > 0, h(y) ≥ h0, y ∈ Rk.

Here, B(a, r) denotes the ball centered at a with radius r.

Under some conditions on the coefficients of (1.1), we split N in two disjoint
subsets N+ and N−, thus we consider the minimization problems on N+ and N−.

Remark 1.1. Note that all solutions of (1.1) are nontrivial.

We shall state our main results.

Theorem 1.2. Assume that 3 ≤ k ≤ N , −1 < a < (k − 2)/2, 0 ≤ µ < µ̄a,k, and
(G) holds, then there exists Λ1 > 0 such that the (1.1) has at least one nontrivial
solution on Hµ for all λ ∈ (0,Λ1).

Theorem 1.3. In addition to the assumptions of the Theorem 1.2, if (H) holds,
then there exists Λ2 > 0 such that (1.1) has at least two nontrivial solutions on Hµ

for all λ ∈ (0,Λ2).

This article is organized as follows. In Section 2, we give some preliminaries.
Section 3 and 4 are devoted to the proofs of Theorems 1.2 and 1.3.
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2. Preliminaries

We list here a few integral inequalities. The first one that we need is the Hardy
inequality with cylindrical weights [7]. It states that

µ̄a,k

∫
RN

|y|−2(a+1)v2 dx ≤
∫

RN

|y|−2a|∇v|2 dx, for all v ∈ Hµ,

The starting point for studying (1.1) is the Hardy-Sobolev-Maz’ya inequality that
is particular to the cylindrical case k < N and that was proved by Maz’ya in [6].
It states that there exists positive constant Ca,2∗ such that

Ca,2∗

( ∫
RN

|y|−2∗b|v|2∗ dx
)2/2∗

≤
∫

RN

(|y|−2a|∇v|2 − µ|y|−2(a+1)v2) dx,

for any v ∈ C∞
c ((Rk\{0})× RN−k).

Proposition 2.1 ([6]). The value

Sµ,2∗ = Sµ,2∗(k, 2∗) := inf
v∈Hµ\{0}

∫
RN (|y|−2a|∇v|2 − µ|y|−2(a+1)v2) dx

(
∫

RN |y|−2∗b|v|2∗ dx)2/2∗
(2.1)

is achieved on Hµ, for 2 ≤ k < N and µ ≤ µ̄a,k.

Definition 2.2. Let c ∈ R, E be a Banach space and I ∈ C1(E, R).
(i) (un)n is a Palais-Smale sequence at level c (in short (PS)c) in E for I if

I(un) = c + on(1) and I ′(un) = on(1), where on(1) → 0 as n →∞.
(ii) We say that I satisfies the (PS)c condition if any (PS)c sequence in E for I

has a convergent subsequence.

2.1. Nehari manifold. It is well known that I is of class C1 in Hµ and the so-
lutions of (1.1) are the critical points of I which is not bounded below on Hµ.
Consider the Nehari manifold

N = {u ∈ Hµ\{0} : 〈I ′(u), u〉 = 0},

Thus, u ∈ N if and only if

‖u‖2a,µ −
∫

RN

h|y|−2∗b|u|2∗ dx− λ

∫
RN

gu dx = 0. (2.2)

Note that N contains every nontrivial solution of (1.1). Moreover, we have the
following results.

Lemma 2.3. The functional I is coercive and bounded from below on N .

Proof. If u ∈ N , then by ((2.2) and the Hölder inequality, we deduce that

I(u) = ((2∗ − 2)/2∗2)‖u‖2a,µ − λ(1− (1/2∗))
∫

RN

gu dx

≥ ((2∗ − 2)/2∗2)‖u‖2a,µ − λ(1− (1/2∗))‖u‖a,µ‖g‖H′
µ

≥ −λ2C0,

(2.3)

where
C0 := C0(‖g‖H′

µ
) = [(2∗ − 1)2/2∗2(2∗ − 2)]‖g‖2H′

µ
> 0.

Thus, I is coercive and bounded from below on N . �
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Define
Ψλ(u) = 〈I ′(u), u〉.

Then, for u ∈ N ,

〈Ψ′
λ(u), u〉 = 2‖u‖2a,µ − 2∗

∫
RN

h|y|−2∗b|u|2∗ dx− λ

∫
RN

gu dx

= ‖u‖2a,µ − (2∗ − 1)
∫

RN

h|y|−2∗b|u|2∗ dx

= λ(2∗ − 1)
∫

RN

gu dx− (2∗ − 2)‖u‖2a,µ.

(2.4)

Now, we split N in three parts:

N+ = {u ∈ N : 〈Ψ′
λ(u), u〉 > 0}, N 0 = {u ∈ N〈Ψ′

λ(u), u〉 = 0},
N− = {u ∈ N : 〈Ψ′

λ(u), u〉 < 0}

We have the following results.

Lemma 2.4. Suppose that there exists a local minimizer u0 for I on N and u0 /∈
N 0. Then, I ′(u0) = 0 in H′

µ.

Proof. If u0 is a local minimizer for I on N , then there exists θ ∈ R such that

〈I ′(u0), ϕ〉 = θ〈Ψ′
λ(u0), ϕ〉

for any ϕ ∈ Hµ.
If θ = 0, then the lemma is proved. If not, taking ϕ ≡ u0 and using the

assumption u0 ∈ N , we deduce

0 = 〈I ′(u0), u0〉 = θ〈Ψ′
λ(u0), u0〉.

Thus
〈Ψ′

λ(u0), u0〉 = 0,

which contradicts that u0 /∈ N 0. �

Let

Λ1 := (2∗ − 2)(2∗ − 1)−(2∗−1)/(2∗−2)[(h0)−1Sµ,2∗ ]
2∗/2(2∗−2)‖g‖−1

H′
µ
. (2.5)

Lemma 2.5. We have N 0 = ∅ for all λ ∈ (0,Λ1).

Proof. Let us reason by contradiction. Suppose N 0 6= ∅ for some λ ∈ (0,Λ1). Then,
by (2.4) and for u ∈ N 0, we have

‖u‖2a,µ = (2∗ − 1)
∫

RN

h|y|−2∗b|u|2∗ dx

= λ((2∗ − 1)/(2∗ − 2))
∫

RN

gu dx.

(2.6)

Moreover, by (G), the Hölder inequality and the Sobolev embedding theorem, we
obtain[(

(h0)−1Sµ,2∗

)2∗/2
/(2∗−1)

]1/(2∗−2)

≤ ‖u‖a,µ ≤
[
λ
(
(2∗−1)‖g‖H′

µ
/(2∗−2)

)]
. (2.7)

This implies that λ ≥ Λ1, which is a contradiction to λ ∈ (0,Λ1). �
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Thus N = N+ ∪N− for λ ∈ (0,Λ1). Define

c := inf
u∈N

I(u), c+ := inf
u∈N+

I(u), c− := inf
u∈N−

I(u).

We need also the following Lemma.

Lemma 2.6. (i) If λ ∈ (0,Λ1), then c ≤ c+ < 0.
(ii) If λ ∈ (0, (1/2)Λ1), then c− > C1, where

C1 = C1(λ, Sµ,2∗‖g‖H′
µ
) =

(
(2∗ − 2)/2∗2

)
(2∗ − 1)2/(2∗−2)(Sµ,2∗)

2∗/(2∗−2)

− λ(1− (1/2∗))(2∗ − 1)2/(2∗−2)‖g‖H′
µ
.

Proof. (i) Let u ∈ N+. By (2.4),

[1/(2∗ − 1)]‖u‖2a,µ >

∫
RN

h|y|−2∗b|u|2∗ dx

and so

I(u) = (−1/2)‖u‖2a,µ + (1− (1/2∗))
∫

RN

h|y|−2∗b|u|2∗ dx

< [(−1/2) + (1− (1/2∗))(1/(2∗ − 1))]‖u‖2a,µ

= −((2∗ − 2)/2∗2)‖u‖2a,µ;

we conclude that c ≤ c+ < 0.
(ii) Let u ∈ N−. By (2.4),

[1/(2∗ − 1)]‖u‖2a,µ <

∫
RN

h|y|−2∗b|u|2∗ dx.

Moreover, by Sobolev embedding theorem, we have∫
RN

h|y|−2∗b|u|2∗ dx ≤ (Sµ,2∗)
−2∗/2‖u‖2∗a,µ.

This implies

‖u‖a,µ > [(2∗ − 1)]−1/(2∗−2)(Sµ,2∗)
2∗/2(2∗−2), for all u ∈ N−.

By (2.3),

I(u) ≥ ((2∗ − 2)/2∗2)‖u‖2a,µ − λ(1− (1/2∗))‖u‖a,µ‖g‖H′
µ
.

Thus, for all λ ∈ (0, (1/2)Λ1), we have I(u) ≥ C1. �

For each u ∈ Hµ, we write

tm := tmax(u) = [
‖u‖a,µ

(2∗ − 1)
∫

RN h|y|−2∗b|u|2∗ dx
]1/(2∗−2) > 0.

Lemma 2.7. Let λ ∈ (0,Λ1). For each u ∈ Hµ, one has the following:
(i) If

∫
RN g(x)u dx ≤ 0, then there exists a unique t− > tm such that t−u ∈ N−

and
I(t−u) = sup

t≥0
I(tu).

(ii) If
∫

RN g(x)u dx > 0, then there exist unique t+ and t− such that 0 < t+ <

tm < t−, t+u ∈ N+, t−u ∈ N−,

I(t+u) = inf
0≤t≤tm

I(tu) and I(t−u) = sup
t≥0

I(tu).
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The proof of the above lemma follows from a proof in [5], with minor modifica-
tions.

3. Proof of Theorem 1.2

For the proof we need the following results.

Proposition 3.1 ([5]). (i) If λ ∈ (0,Λ1), then there exists a minimizing sequence
(un)n in N such that

I(un) = c + on(1), I ′(un) = on(1) in H′
µ, (3.1)

where on(1) tends to 0 as n tends to ∞.
(ii) if λ ∈ (0, (1/2)Λ1), then there exists a minimizing sequence (un)n in N−

such that

I(un) = c− + on(1), I ′(un) = on(1) in H′
µ.

Now, taking as a starting point the work of Tarantello [8], we establish the
existence of a local minimum for I on N+.

Proposition 3.2. If λ ∈ (0,Λ1), then I has a minimizer u1 ∈ N+ and it satisfies

(i) I(u1) = c = c+ < 0,
(ii) u1 is a solution of (1.1).

Proof. (i) By Lemma 2.3, I is coercive and bounded below on N . We can assume
that there exists u1 ∈ Hµ such that

un ⇀ u1 weakly in Hµ,

un ⇀ u1 weakly in L2∗(RN , |y|−2∗b),

un → u1 a.e in RN .

(3.2)

Thus, by (3.1) and (3.2), u1 is a weak solution of (1.1) since c < 0 and I(0) = 0.
Now, we show that un converges to u1 strongly in Hµ. Suppose otherwise. Then
‖u1‖a,µ < lim infn→∞ ‖un‖a,µ and we obtain

c ≤ I(u1) = ((2∗ − 2)/2∗2)‖u1‖2a,µ − λ(1− (1/2∗))
∫

RN

gu1 dx

< lim inf
n→∞

I(un) = c.

We have a contradiction. Therefore, un converges to u1 strongly in Hµ. Moreover,
we have u1 ∈ N+. If not, then by Lemma 2.7, there are two numbers t+0 and
t−0 , uniquely defined so that t+0 u1 ∈ N+ and t−0 u1 ∈ N−. In particular, we have
t+0 < t−0 = 1. Since

d

dt
I(tu1)

∣∣
t
= t+0 = 0,

d2

dt2
I(tu1)

∣∣t = t+0 > 0,

there exists t+0 < t− ≤ t−0 such that I(t+0 u1) < I(t−u1). By Lemma 2.7,

I(t+0 u1) < I(t−u1) < I(t−0 u1) = I(u1),

which is a contradiction. �
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4. Proof of Theorem 1.3

In this section, we establish the existence of a second solution of (1.1). For this,
we require the following Lemmas, with C0 is given in (2.3).

Lemma 4.1. Assume that (G) holds and let (un)n ⊂ Hµ be a (PS)c sequence for
I for some c ∈ R with un ⇀ u in Hµ. Then, I ′(u) = 0 and

I(u) ≥ −C0λ
2.

Proof. It is easy to prove that I ′(u) = 0, which implies that 〈I ′(u), u〉 = 0, and∫
RN

h|y|−2∗b|u|2∗ dx = ‖u‖2a,µ − λ

∫
RN

gu dx.

Therefore,

I(u) = ((2∗ − 2)/2∗2)‖u‖2a,µ − λ(1− (1/2∗))
∫

RN

gu dx.

Using (2.3), we obtain
I(u) ≥ −C0λ

2.

�

Lemma 4.2. Assume that (G) holds and for any (PS)c sequence with c is a real
number such that c < c∗λ. Then, there exists a subsequence which converges strongly.
Here c∗λ := ((2∗ − 2)/2∗2)(h0)−2/(2∗−2)(Sµ,2∗)

2∗/(2∗−2) − C0λ
2.

Proof. Using standard arguments, we get that (un)n is bounded in Hµ. Thus, there
exist a subsequence of (un)n which we still denote by (un)n and u ∈ Hµ such that

un ⇀ u weakly in Hµ,

un ⇀ u weakly in L2∗(RN , |y|−2∗b).

un → u a.e in RN .

Then, u is a weak solution of (1.1). Let vn = un − u, then by Brézis-Lieb [4], we
obtain

‖vn‖2a,µ = ‖un‖2a,µ − ‖u‖2a,µ + on(1) (4.1)
and∫

RN

h|y|−2∗b|vn|2∗ dx =
∫

RN

h|y|−2∗b|un|2∗ dx−
∫

RN

h|y|−2∗b|u|2∗ dx+on(1). (4.2)

On the other hand, by using the assumption (H), we obtain

lim
n→∞

∫
RN

h(x)|y|−2∗b|vn|2∗ dx = h0 lim
n→∞

∫
RN

|y|−2∗b|vn|2∗ dx. (4.3)

Since I(un) = c + on(1), I ′(un) = on(1) and by (4.1), (4.2), and (4.3) we deduce
that

(1/2)‖vn‖2a,µ − (1/2∗)
∫

RN

h|y|−2∗b|vn|2∗ dx = c− I(u) + on(1),

‖vn‖2a,µ −
∫

RN

h|y|−2∗b|vn|2∗ dx = on(1).
(4.4)

Hence, we may assume that

‖vn‖2a,µ → l,

∫
RN

h|y|−2∗b|vn|2∗ dx → l. (4.5)
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Sobolev inequality gives ‖vn‖2a,µ ≥ (Sµ,2∗)
∫

RN h|y|−2∗b|vn|2∗ dx. Combining this
inequality with (4.5), we obtain

l ≥ Sµ,2∗(l
−1h0)−2/2∗ .

Either l = 0 or l ≥ (h0)−2/(2∗−2)(Sµ,2∗)
2∗/(2∗−2). Suppose that

l ≥ (h0)−2/(2∗−2)(Sµ,2∗)
2∗/(2∗−2).

Then, from (4.4), (4.5) and Lemma 4.1, we obtain

c ≥ ((2∗ − 2)/2∗2)l + I(u) ≥ c∗λ,

which is a contradiction. Therefore, l = 0 and we conclude that un converges to u
strongly in Hµ. �

Lemma 4.3. Assume that (G) and (H) hold. Then, there exist v ∈ Hµ and Λ∗ > 0
such that for λ ∈ (0,Λ∗), one has

sup
t≥0

I(tv) < c∗λ.

In particular, c− < c∗λ for all λ ∈ (0,Λ∗).

Proof. Let ϕε be such that

ϕε(x) =


ωε(x) if g(x) ≥ 0 for all x ∈ RN

ωε(x− x0) if g(x0) > 0 for x0 ∈ RN

−ωε(x) if g(x) ≤ 0 for all x ∈ RN

where ωε satisfies (2.1). Then, we claim that there exists ε0 > 0 such that

λ

∫
RN

g(x)ϕε(x) dx > 0 for any ε ∈ (0, ε0). (4.6)

In fact, if g(x) ≥ 0 or g(x) ≤ 0 for all x ∈ RN , (4.6) obviously holds. If there exists
x0 ∈ RN such that g(x0) > 0, then by the continuity of g(x), there exists η > 0
such that g(x) > 0 for all x ∈ B(x0, η). Then by the definition of ωε(x− x0), it is
easy to see that there exists an ε0 small enough such that

λ

∫
RN

g(x)ωε(x− x0) dx > 0, for any ε ∈ (0, ε0).

Now, we consider the functions

f(t) = I(tϕε), f̃(t) = (t2/2)‖ϕε‖2a,µ − (t2∗/2∗)
∫

RN

h|y|−2∗b|ϕε|2∗ dx.

Then, for all λ ∈ (0,Λ1),
f(0) = 0 < c∗λ.

By the continuity of f , there exists t0 > 0 small enough such that

f(t) < c∗λ, for all t ∈ (0, t0).

On the other hand,

max
t≥0

f̃(t) = ((2∗ − 2)/2∗2)(h0)−2/(2∗−2)(Sµ,2∗)
2∗/(2∗−2).

Then, we obtain

sup
t≥0

I(tϕε) < ((2∗ − 2)/2∗2)(h0)−2/(2∗−2)(Sµ,2∗)
2∗/(2∗−2) − λt0

∫
RN

gϕε dx.
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Now, taking λ > 0 such that

−λt0

∫
RN

gϕε dx < −C0λ
2,

and by (4.6), we obtain

0 < λ < (t0/C0)
( ∫

RN

gϕε

)
, for ε << ε0.

Set

Λ∗ = min{Λ1, (t0/C0)(
∫

RN

gϕε)}.

We deduce that

sup
t≥0

I(tϕε) < cλ, for all λ ∈ (0,Λ∗). (4.7)

Now, we prove that

c− < c∗λ, for all λ ∈ (0,Λ∗).

By (G) and the existence of wn satisfying (2.1), we have

λ

∫
RN

gwn dx > 0.

Combining this with Lemma 2.7 and from the definition of c− and (4.7), we obtain
that there exists tn > 0 such that tnwn ∈ N− and for all λ ∈ (0,Λ∗),

c− ≤ I(tnwn) ≤ sup
t≥0

I(twn) < c∗λ.

�

Now we establish the existence of a local minimum of I on N−.

Proposition 4.4. There exists Λ2 > 0 such that for λ ∈ (0,Λ2), the functional I
has a minimizer u2 in N− and satisfies

(i) I(u2) = c−,
(ii) u2 is a solution of (1.1) in Hµ,

where Λ2 = min{(1/2)Λ1,Λ∗} with Λ1 defined as in (2.5) and Λ∗ defined as in the
proof of Lemma 4.3.

Proof. By Proposition 3.1 (ii), there exists a (PS)c− sequence for I, (un)n in N−

for all λ ∈ (0, (1/2)Λ1). From Lemmas 4.2, 4.3 and 2.6 (ii), for λ ∈ (0,Λ∗), I
satisfies (PS)c− condition and c− > 0. Then, we get that (un)n is bounded in Hµ.
Therefore, there exist a subsequence of (un)n still denoted by (un)n and u2 ∈ N−

such that un converges to u2 strongly in Hµ and I(u2) = c− for all λ ∈ (0,Λ2).
Finally, by using the same arguments as in the proof of the Proposition 3.2, for all
λ ∈ (0,Λ1), we have that u2 is a solution of (1.1). �

Now, we complete the proof of Theorem 1.3. By Propositions 3.2 and 4.4, we
obtain that (1.1) has two solutions u1 and u2 such that u1 ∈ N+ and u2 ∈ N−.
Since N+ ∩N− = ∅, this implies that u1 and u2 are distinct.
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[4] H. Brézis, E. Lieb; A Relation between point convergence of functions and convergence of
functional, Proc. Amer. Math. Soc., 88 (1983) 486-490.

[5] K. J. Brown, Y. Zang; The Nehari manifold for a semilinear elliptic equation with a sign-
changing weight function, J. Differential Equations, 193 (2003) 481-499.

[6] M. Gazzini, R. Musina; On the Hardy-Sobolev-Maz’ja inequalities: symmetry and breaking
symmetry of extremal functions, Commun. Contemp. Math., 11 (2009) 993-1007.

[7] R. Musina; Ground state solutions of a critical problem involving cylindrical weights, Non-
linear Anal., 68 (2008) 3972-3986.

[8] G. Tarantello; On nonhomogeneous elliptic equations involving critical Sobolev exponent,
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