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EXISTENCE OF SOLUTIONS FOR A SYSTEM OF ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS

ROBERT DALMASSO

Abstract. In this article, we establish the existence of radial solutions for a
system of nonlinear elliptic partial differential equations with Dirichlet bound-
ary conditions. Also we discuss the question of uniqueness, and illustrate our
results with examples.

1. Introduction

In this article, we study the existence for non-trivial solutions (u, v) ∈ (C2(BR))2

of the boundary-value problem

∆u = g(v) in BR ,

∆v = f(u) in BR ,

u =
∂u

∂ν
= 0 on ∂BR ,

(1.1)

where BR denotes the open ball of radius R centered at the origin in Rn (n ≥ 1),
∂/∂ν is the outward normal derivative and f , g satisfy the following hypotheses:

(H1) f , g : R → R are C1 functions;
(H2) g is increasing on (0,∞), g′ > 0 on (−∞, 0), g(0) = 0 and limv→−∞ g(v) =

−∞;
(H3) f, f ′ > 0 on (0,∞).

Now we state our main results.

Theorem 1.1. Let f , g satisfy (H1)–(H3). Assume moreover that
(H4) There exist m, M > 0 such that m ≤ f(u) ≤M for all u ≥ 0.

Then (1.1) has at least one radial solution (u, v) ∈ (C2(BR))2.

Theorem 1.2. Let f , g satisfy (H1)–(H3). Assume moreover that
(H5) f(0) > 0;
(H6) There exist a, b, a′, b′, p > 0 and q ≥ 1 such that pq < 1,

f(u) ≥ aup ∀u ≥ 0 , f(u) ≤ a′up ∀u ≥ 1 ,

b|v|q ≤ |g(v)| ≤ b′|v|q ∀ v ∈ R .
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Then (1.1) has at least one radial solution (u, v) ∈ (C2(BR))2.

When n = 1 we have the following result.

Theorem 1.3. Assume that n = 1. Let f , g satisfy (H1)–(H3). Assume moreover
that

(H7) There exist a, a′, b, b′ > 0 and p, q ≥ 1 such that pq > 1,

aup ≤ f(u) ≤ a′up ∀u ≥ 0 ,

b|v|q ≤ |g(v)| ≤ b′|v|q ∀ v ∈ R ,

Then (1.1) has at least one non-trivial symmetric solution (u, v) ∈ (C2([−R,R])2.

Remark 1.4. Assumptions (H2) and (H4) (resp. (H5)) imply that if a solution
(u, v) ∈ (C2(BR))2 of (1.1) exists, then u 6= 0 and v 6= 0.

The particular case of homogeneous nonlinearities f(u) = |u|p, g(v) = |v|q−1v
with p, q > 0 has been studied in [1].

When n = 1 and g(v) = v the uniqueness of a non-trivial solution was proved in
[2] for f : R → [0,∞) C1 and satisfying the following condition:

0 < f(u) < uf ′(u) for u > 0 .

An existence result was also given.
Since we are interested in radial solutions the problem reduces to the one-

dimensional (singular if n ≥ 2) boundary-value problem

∆u = g(v) in [0, R) ,

∆v = f(u) in [0, R) ,

u(R) = u′(R) = u′(0) = v′(0) = 0 ,
(1.2)

where ∆ denotes the polar form of the Laplacian

∆ = r1−n d

dr
(rn−1 d

dr
) .

In Section 2 we give some preliminary results. Theorems 1.1 and 1.2 are proved
in Section 3. We also give two other existence theorems. Theorem 1.3 is proved in
Section 4. We examine the uniqueness question in Section 5. Finally in Section 6
we give some examples.

2. Preliminaries

Throughout this section we assume that f and g satisfy (H1)–(H3). When n ≥ 3
we also assume that f verifies (H5) or that f and g satisfy the following conditions:

(H8) There exist a, b, p, q > 0 such that

f(u) ≥ aup ∀u ≥ 0 , |g(−v)| ≥ bvq ∀ v ≥ 0 ,
1

p+ 1
+

1
q + 1

>
n− 2
n

.

Notice that when pq ≤ 1 we have

1
p+ 1

+
1

q + 1
≥ 1 .
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We will use a two-dimensional shooting argument as in [1]. Let α, β > 0. We
introduce the inital value problem

∆u(r) = g(v(r)) , r ≥ 0 ,

∆v(r) = f(u(r)) , r ≥ 0 ,

u(0) = α , v(0) = −β , u′(0) = v′(0) = 0 .
(2.1)

Lemma 2.1. Let α, β > 0 be fixed. If (u, v) ∈ (C2([0,∞))2 is a solution of (2.1)
such that uu′ < 0 on (0,∞), then v < 0 on (0,∞).

Proof. We have 0 < u ≤ α on [0,∞). Therefore, by (H3),

rn−1v′(r) =
∫ r

0

sn−1f(u(s)) ds > 0 for r > 0 . (2.2)

Assume that the conclusion of the lemma is false. Then (2.2) implies that there
exist a, b > 0 such that

v(r) ≥ a for r ≥ b .

With the help of (H2) we deduce that

(rn−1u′(r))′ ≥ g(a)rn−1 for r ≥ b ,

hence

rn−1u′(r) ≥ g(a)
rn − bn

n
+ bn−1u′(b) for r ≥ b ,

which implies, using (H2) again, that u′(r) > 0 for r large and we reach a contra-
diction. �

Now we define the functions F , G and Gn by

F (u) =
∫ u

0

f(s) ds , G(v) =
∫ v

0

g(s) ds u, v ∈ R ,

Gn(r, s) =


r − s if n = 1 ,
s ln( r

s ) if n = 2 ,
s

n−2 (1− ( s
r )n−2) if n ≥ 3 .

Lemma 2.2. Let α, β > 0 be fixed. Assume that for some a > 0, (u, v) ∈
(C2([0, a])2 is a solution of (2.1) on [0, a] such that uu′ < 0 on (0, a). Then

|v(r)| ≤ max(β,G−1(F (α) +G(−β))) , 0 ≤ r ≤ a ,

where G−1 denotes the inverse of G : [0,∞) → [0,∞).

Proof. We have 0 < u ≤ α on [0, a). As in Lemma 2.1 we deduce that v′ > 0 on
(0, a]. We have ∫ r

0

(v′∆u+ u′∆v) ds =
∫ r

0

(g(v)v′ + f(u)u′) ds ,

for r ∈ [0, a]. Since∫ r

0

(v′∆u+ u′∆v) ds =
∫ r

0

(u′v′)′ ds+ 2(n− 1)
∫ r

0

u′(s)v′(s)
s

ds

= u′(r)v′(r) + 2(n− 1)
∫ r

0

u′(s)v′(s)
s

ds ,
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and ∫ r

0

(g(v)v′ + f(u)u′) ds = G(v(r)) + F (u(r))−G(−β)− F (α) ,

we obtain

F (u(r)) +G(v(r)) = F (α) +G(−β(α)) + u′(r)v′(r) + 2(n− 1)
∫ r

0

u′(s)v′(s)
s

ds ,

for r ∈ [0, a], which implies that

G(v(r)) ≤ F (α) +G(−β) 0 ≤ r ≤ a ,

and the lemma follows. �

Lemma 2.3. For each α > 0, β > 0 there exists T > 0 such that problem (2.1) on
[0, T ] has a unique solution (u, v) ∈ (C2[0, T ])2 such that u > 0 (resp. v < 0) in
[0, T ] and u′ < 0 (resp. v′ > 0) in (0, T ].

Proof. Let α, β > 0 be given. Choose T = T (α, β) > 0 such that

T = min
(( nα

−g(−β)
)1/2

,
( nβ

f(α)
)1/2

)
,

and consider the set of functions

Z = {(u, v) ∈ (C[0, T ])2; α/2 ≤ u(r) ≤ α and

− β ≤ v(r) ≤ −β/2 for 0 ≤ r ≤ T} .

Clearly Z is a bounded closed convex subset of the Banach space (C[0, T ])2 endowed
with the norm ‖(u, v)‖ = max(‖u‖∞, ‖v‖∞). Define

L(u, v)(r) = (α+
∫ r

0

Gn(r, s)g(v(s)) ds,−β +
∫ r

0

Gn(r, s)f(u(s)) ds) ,

for r ∈ [0, T ] and (u, v) ∈ (C[0, T ])2. It is easily verified that L is a compact operator
mapping Z into itself, and so there exists (u, v) ∈ Z such that (u, v) = L(u, v) by the
Schauder fixed point theorem. Clearly (u, v) ∈ (C2[0, T ])2 and (u, v) is a solution
of (2.1) on [0, T ]. Since f and g are C1 the uniqueness follows. Since u > 0 and
v < 0 in [0, T ], direct integration of the system (2.1) implies that u′ < 0 and v′ > 0
in (0, T ].

By Lemma 2.3 for any α, β > 0 problem (2.1) has a unique local solution: Let
[0, Rα,β) denote the maximum interval of existence of that solution (Rα,β = ∞
possibly). Define

Pα,β = {s ∈ (0, Rα,β) ; u(α, β, r)u′(α, β, r) < 0∀ r ∈ (0, s]}
where (u(α, β, .), v(α, β, .)) is the solution of (2.1) in [0, Rα,β). Pα,β 6= ∅ by Lemma
2.3. Set

rα,β = supPα,β .

�

Lemma 2.4. We have u′(α, β, r) < 0 for r ∈ (0, rα,β) and v′(α, β, r) > 0 for
r ∈ (0, rα,β ].

Proof. The first assertion follows from the definition of rα,β . Since u(α, β, r) > 0
for r ∈ [0, rα,β), integrating the second equation in (2.1) from 0 to r ∈ (0, rα,β ] we
obtain v′(α, β, r) > 0 for r ∈ (0, rα,β ]. �

Lemma 2.5. For any α, β > 0 we have rα,β < Rα,β.
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Proof. If not, there exist α, β > 0 such that rα,β = Rα,β . Suppose first that
Rα,β <∞. Noting u = u(α, β, .) and v = v(α, β, .) we have 0 < u ≤ α in [0, Rα,β).
Then we easily deduce that u, u′, v and v′ are bounded on [0, Rα,β) and we obtain
a contradiction with the definition of Rα,β . Now assume that Rα,β = ∞. We have
0 < u ≤ α in [0,∞). By Lemma 2.1 v < 0 in [0,∞). When n = 1 (H2) implies that
u′′ < 0 in [0,∞) and we deduce that u′(r) ≤ u′(1) < 0 for all r ≥ 1, from which we
obtain u(r) ≤ u(1) + u′(1)(r − 1) for all r ≥ 1. Thus we can find r > 1 such that
u(r) < 0 and we have a contradiction. If n = 2, (H2) implies that (ru′(r))′ < 0
on (0,∞). We deduce that ru′(r) ≤ u′(1) < 0 for all r ≥ 1, from which we obtain
u(r) ≤ u(1) + u′(1) ln r for all r ≥ 1. Thus we can find r ≥ 1 such that u(r) < 0
and we obtain a contradiction. Now let n ≥ 3. Suppose first that f satisfies (H5).
From the second equation in (2.1), using (H3), we obtain

v(r) ≥ −β +
f(0)
2n

r2 ∀ r ≥ 0 ,

which implies, with the help of (H5), that v(r) → ∞ as r → ∞ and we have a
contradiction. Now suppose that f verifies (H8). Let z = −v. We have u, z > 0 on
[0,∞) and, by (H8),

−∆u ≥ bzq , −∆z ≥ aup on [0,∞) .

Since pq < 1 we have
1

p+ 1
+

1
q + 1

>
n− 2
n

.

Then we obtain a contradiction with the help of the nonexistence results established
in [3]-[5].

Proposition 2.6. For each α > 0, there exists a unique β > 0 such that

u(α, β, rα,β) = u′(α, β, rα,β) = 0 .

Proof. We first prove the uniqueness. Let α > 0 be fixed. Suppose that there exist
β > γ > 0 such that u(α, β, rα,β) = u′(α, β, rα,β) = u(α, γ, rα,γ) = u′(α, γ, rα,γ) =
0. In order to simplify our notations we denote u(α, β, r), u(α, γ, r), v(α, β, r) and
v(α, γ, r) by u(r), w(r), v(r) and z(r). Define b = min(rα,β , rα,γ). Suppose that
there exists a ∈ (0, b] such that v−z < 0 in [0, a) and (v−z)(a) = 0. Using (H2) we
obtain ∆(u−w) = g(v)− g(z) < 0 in [0, a). Since (u−w)(0) = (u−w)′(0) = 0, we
deduce that u−w < 0 in (0, a]. Using (H3) we obtain ∆(v− z) = f(u)− f(w) < 0
in (0, a]. We have (v − z)(0) < 0, (v − z)′(0) = 0 and (v − z)(a) = 0. Therefore we
reach a contradiction. Thus v − z < 0 in [0, b]. As before we show that u− w < 0
in (0, b]. Since (u− w)′(0) = 0 we deduce that (u− w)′(b) < 0. By Lemma 2.4 we
have

(u− w)′(b) =


u′(rα,γ) < 0 if rα,β > rα,γ ,

0 if rα,β = rα,γ ,

−w′(rα,β) > 0 if rα,β < rα,γ .

Therefore, b = rα,γ < rα,β . Now (u − w)(b) = u(rα,γ) > 0 and we obtain a
contradiction. The case 0 < β < γ can be handled in the same way.

Now we prove the existence. Suppose that there exists α > 0 such that for any
β > 0 u(α, β, rα,β) > 0 or u′(α, β, rα,β) < 0. Define the sets

B = {β > 0; u(α, β, rα,β) = 0 and u′(α, β, rα,β) < 0} ,
C = {β > 0; u(α, β, rα,β) > 0 and u′(α, β, rα,β) = 0} .
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The proof of the proposition is completed by using the next two lemmas which
contradict the fact that (0,∞) = B ∪ C. �

Lemma 2.7. (i) If B 6= ∅, then inf B > 0.
(ii) If C 6= ∅, then supC <∞.

Lemma 2.8. Sets B and C are open.

Proof of Lemma 2.7. We have

u(α, β, r) = α+
∫ r

0

Gn(r, s)g(v(α, β, s)) ds , 0 ≤ r < Rα,β , (2.3)

v(α, β, r) = −β +
∫ r

0

Gn(r, s)f(u(α, β, s)) ds , 0 ≤ r < Rα,β . (2.4)

(i) Let β ∈ B. Assume first that v(α, β, .) < 0 on [0, rα,β). Then Lemma 2.4,
Equation (2.3) and assumption (H2) imply

rα,β ≥
( 2nα
−g(−β)

)1/2
. (2.5)

Now, if there exists sα,β ∈ [0, rα,β) such that v(α, β, sα,β) = 0, Lemma 2.4 implies
that −β ≤ v(α, β, .) < 0 on [0, sα,β) and v(α, β, .) > 0 on (sα,β , rα,β ]. Then from
(2.3) and (H2) we obtain

α = −
∫ rα,β

0

Gn(rα,β , s)g(v(α, β, s)) ds

≤ −
∫ sα,β

0

Gn(rα,β , s)g(v(α, β, s)) ds

≤ −g(−β)
∫ sα,β

0

Gn(rα,β , s) ds

≤ −g(−β)
r2α,β

2n
and (2.5) still holds.

Suppose that inf B = 0 and let (βj) be a sequence in B decreasing to zero. Then
rα,βj → +∞ by (2.5) and (H2). Let r > 0 be fixed. We can assume that rα,βj > r
for all j. If v(α, βj , s) < 0 for s ∈ [0, r], using (H2) we have

u(α, βj , r) = α+
∫ r

0

Gn(r, s)g(v(α, βj , s)) ds ≥ α+
r2g(−βj)

2n
.

If v(α, βj , sα,βj
) = 0 with sα,βj

< r we write

u(α, βj , r) = α+
∫ sα,βj

0

Gn(r, s)g(v(α, βj , s)) ds+
∫ r

sα,βj

Gn(r, s)g(v(α, βj , s)) ds

≥ α+
∫ sα,βj

0

Gn(r, s)g(v(α, βj , s)) ds

≥ α+ g(−βj)
∫ sα,βj

0

Gn(r, s) ds

≥ α+
g(−βj)r2

2n



EJDE-2011/57 EXISTENCE OF SOLUTIONS 7

Therefore, using Lemma 2.4 we obtain

u(α, βj , s) ≥ α+
g(−βj)r2

2n
for s ∈ [0, r] ,

from which we deduce with the help of (H2) that u(α, βj , s) ≥ α/2 for s ∈ [0, r]
and j large. From (2.4), using (H3) we obtain

v(α, βj , r) ≥ −βj +
r2

2n
f(
α

2
)

for j large. Thus if we choose r such that

−βj +
r2

2n
f(
α

2
) ≥ 1 ,

using Lemma 2.4 we obtain v(α, βj , s) ≥ 1 for r ≤ s ≤ rα,βj and j large. There
exists k > 0 such that ∫ rα,βj

r

Gn(rα,βj
, s) ds ≥ kr2α,βj

for j large. Now we write

α = −
∫ rα,βj

0

Gn(rα,βj
, s)g(v(α, βj , s)) ds

= −
∫ r

0

Gn(rα,βj , s)g(v(α, βj , s)) ds−
∫ rα,βj

r

Gn(rα,βj , s)g(v(α, βj , s)) ds

≤ −g(−βj)
∫ r

0

Gn(rα,βj , s) ds− g(1)
∫ rα,βj

r

Gn(rα,βj , s) ds

≤ −g(−βj)rrα,βj − g(1)kr2α,βj

for j large, where we have used the fact that Gn(rα,βj , s) ≤ rα,βj for 0 ≤ s ≤ rα,βj .
Since the last term above tends to −∞ as j →∞ we obtain a contradiction.

(ii) Let β ∈ C. We claim that v(α, β, rα,β) > 0. If not, by Lemma 2.4 and (H2)
we have ∆u(α, β, .) < 0 on [0, rα,β) for some β ∈ C. Since u′(α, β, 0) = 0, we obtain
u′(α, β, rα,β) < 0, a contradiction. Therefore (2.4) implies

β <

∫ rα,β

0

Gn(rα,β , s)f(u(α, β, s)) ds (2.6)

for β ∈ C. Suppose that supC = ∞ and let (βj) be a sequence in C increasing to
∞. Since 0 < u(α, βj , r) ≤ α for r ∈ [0, rα,βj ] , (2.6) implies that rα,βj → ∞ as
j → ∞. Then we can assume that rα,βj ≥ 1 and that f(α) ≤ βj for all j. From
(2.4) we obtain

−βj ≤ v(α, βj , r) ≤ −2n− 1
2n

βj ≤ −βj

2
, for r ∈ [0, 1] ,

and using (2.3) we deduce that u(α, βj , 1) ≤ α + g(−βj/2)/2n. However by (H2),
u(α, βj , 1) < 0 for j large; thus we reach a contradiction. �

Remark 2.9. The proof above shows that, when β ∈ C, there exists sα,β ∈ (0, rα,β)
such that v(α, β, .) < 0 on [0, sα,β) and v(α, β, .) > 0 on (sα,β , rα,β ]. When β ∈ B,
sα,β may not exist.
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Proof of Lemma 2.8. Let β ∈ B. We have u(α, β, rα,β) = 0 and u′(α, β, rα,β) < 0.
Therefore, we can find ε > 0 such that

u(α, β, rα,β + ε) < 0 and u′(α, β, rα,β + ε) < 0 .

But then by continuous dependence on initial data there exists η > 0 such that

u(α, γ, rα,β + ε) < 0 and u′(α, γ, rα,β + ε) < 0 , (2.7)

for |γ−β| < η. The first inequality in (2.7) implies that there exists x ∈ (0, rα,β +ε)
such that u(α, γ, x) = 0 and u(α, γ, r) > 0 for r ∈ [0, x). We claim that x = rα,γ .
Then (β − η, β + η) ⊂ B. Thus B is open. (H3) implies that ∆v(α, β, r) > 0 for
r ∈ [0, x). Then v′(α, γ, r) > 0 for r ∈ (0, x]. Suppose first that v′(α, γ, r) > 0
for r ∈ (0, rα,β + ε). Then v(α, γ, .) is increasing on [0, rα,β + ε]. We deduce that
∆u(α, γ, .) is increasing on [0, rα,β +ε]. If ∆u(α, γ, rα,β +ε) ≤ 0, then u′(α, γ, r) < 0
for r ∈ (0, rα,β + ε]. If ∆u(α, γ, rα,β + ε) > 0, then there exists y ∈ (0, rα,β + ε)
such that ∆u(α, γ, .) < 0 in [0, y) and ∆u(α, γ, .) > 0 in (y, rα,β + ε]. We deduce
that r → rn−1u′(α, γ, r) is decreasing (resp. increasing) in [0, y] (resp. [y, rα,β +ε]).
Then the second inequality in (2.7) implies that u′(α, γ, r) < 0 for r ∈ (0, rα,β + ε].
Therefore x = rα,γ for |γ − β| < η. Suppose now that there exists r ∈ (x, rα,β + ε)
such that v′(α, γ, r) ≤ 0. Let t ∈ (x, rα,β + ε) be the first zero of v′(α, γ, .). Then
v(α, γ, .) is increasing on [0, t]. We deduce that ∆u(α, γ, .) is increasing on [0, t]. If
∆u(α, γ, t) ≤ 0, then u′(α, γ, r) < 0 for r ∈ (0, t] and we conclude that x = rα,γ . If
∆u(α, γ, t) > 0, then there exists y ∈ (0, t) such that ∆u(α, γ, .) < 0 in [0, y) and
∆u(α, γ, .) > 0 in (y, t]. We deduce that r → rn−1u′(α, γ, r) is decreasing (resp.
increasing) in [0, y] (resp. [y, t]). If u′(α, γ, t) ≤ 0, then u′(α, γ, x) < 0 and x = rα,γ .
If u′(α, γ, t) > 0, let s ∈ (y, t) be such that u′(α, γ, s) = 0. If s > x then x = rα,γ .
If s < x, then u(α, γ, r) > 0 for r ∈ [0, x] and we reach a contradiction. Finally if
t = x, then u(α, γ, r) > 0 for r ∈ [0, x) ∪ (x, t]. We deduce that ∆v(α, γ, r) > 0 for
r ∈ [0, x) ∪ (x, t] which implies that v′(α, γ, r) > 0 for r ∈ (0, t] and we reach again
a contradiction.

Now let β ∈ C. We have u(α, β, rα,β) > 0 and u′(α, β, rα,β) = 0. By Remark
2.9 we have v(α, β, rα,β) > 0, hence ∆u(α, β, rα,β) = u′′(α, β, rα,β) > 0. Therefore
we can find ε > 0 such that

u(α, β, r) > 0 , r ∈ [0, rα,β + ε], u′(α, β, rα,β + ε) > 0 .

Then by continuous dependence on initial data there exists η > 0 such that

u(α, γ, r) > 0 , r ∈ [0, rα,β + ε], u′(α, γ, rα,β + ε) > 0 , (2.8)

for |γ − β| < η. The second inequality in (2.8) implies that there exists x ∈
(0, rα,β + ε) such that u′(α, γ, x) = 0 and u′(α, γ, r) < 0 for r ∈ (0, x). Therefore,
x = rα,γ for |γ − β| < η and (β − η, β + η) ⊂ C. Thus C is open. �

3. Proof of Theorems 1.1 and 1.2

We use the notation introduced in Section 2. The following result clearly implies
Theorems 1.1 and 1.2.

Proposition 3.1. Let f and g satisfy (H1)–(H3), and (H4) or (H5), (H6). Then
for any α > 0 there exists a unique (β(α), r(α)) ∈ (0,∞) × (0,∞) such that
u(α, β(α), r(α)) = u′(α, β(α), r(α)) = 0, u(α, β(α), r) > 0 for r ∈ [0, r(α)) and
u′(α, β(α), r) < 0 for r ∈ (0, r(α)). Moreover, β, r ∈ C1(0,∞), β′(α) > 0 for
α > 0, limα→0 r(α) = 0 and limα→∞ r(α) = ∞.
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Proof. Let α > 0 be fixed. The existence and uniqueness of (β(α), r(α)) satisfying
the first part of the proposition are given by Proposition 2.6. In order to simplify
our notations we denote u(α, β(α), r) and v(α, β(α), r) by uα(r) and vα(r). We
begin with the following lemma. �

Lemma 3.2. For any α > 0 there exists s(α) ∈ (0, r(α)) such that vα(r) < 0 for
r ∈ [0, s(α)) and vα(r) > 0 for r ∈ (s(α), r(α)]

The proof of the above lemma follows the same arguments as in the proof of
Lemma 2.7 (ii).

Now for α, β > 0 define

ϕ(α, β, r) =
∂u

∂α
(α, β, r) , ψ(α, β, r) =

∂v

∂α
(α, β, r),

ρ(α, β, r) =
∂u

∂β
(α, β, r) , χ(α, β, r) =

∂v

∂β
(α, β, r)

for r ∈ [0, Rα,β). Then ϕ, ψ, ρ and χ satisfy the linearized equations

∆ϕ(α, β, r) = g′(v(α, β, r))ψ(α, β, r) , 0 ≤ r < Rα,β ,

∆ψ(α, β, r) = f ′(u(α, β, r))ϕ(α, β, r) , 0 ≤ r < Rα,β ,

ϕ(α, β, 0) = 1 , ψ(α, β, 0) = ϕ′(α, β, 0) = ψ′(α, β, 0) = 0 ,

and

∆ρ(α, β, r) = g′(v(α, β, r))χ(α, β, r) , 0 ≤ r < Rα,β ,

∆χ(α, β, r) = f ′(u(α, β, r))ρ(α, β, r) , 0 ≤ r < Rα,β ,

χ(α, β, 0) = −1 , ρ(α, β, 0) = ρ′(α, β, 0) = χ′(α, β, 0) = 0 .

Lemma 3.3. We have ϕ, ψ, ϕ′, ψ′ > 0 on (0, rα,β ] and χ, ρ, χ′, ρ′ < 0 on (0, rα,β ].

Proof. By (H2) and (H3) we have ∆ψ(α, β, 0) = f ′(α) > 0 and ∆ρ(α, β, 0) =
−g′(−β) < 0. Then ψ′ > 0 and ρ′ < 0 on (0, η] for some η > 0 and we can define

r0 = sup{r ∈ (0, rα,β ]; ψ′ρ′ < 0 on (0, r]} .

We have ψ > 0 and ρ < 0 on (0, r0]. Since

rn−1ϕ′(α, β, r) =
∫ r

0

sn−1g′(v(α, β, s))ψ(α, β, s) ds,

rn−1χ′(α, β, r) =
∫ r

0

sn−1f ′(u(α, β, s))ρ(α, β, s) ds ,

using (H2) and (H3) we deduce that ϕ′ > 0 and χ′ < 0 on (0, r0]. Therefore, ϕ > 0
and χ < 0 on (0, r0]. Since

rn−1ψ′(α, β, r) =
∫ r

0

sn−1f ′(u(α, β, s))ϕ(α, β, s) ds,

rn−1ρ′(α, β, r) =
∫ r

0

sn−1g′(v(α, β, s))χ(α, β, s) ds

using (H2) and (H3) we deduce that ψ′ > 0 and ρ′ < 0 on (0, r0]. Therefore,
r0 = rα,β and the lemma follows. �
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Now let D = {(α, β, r); α , β > 0 and r ∈ [0, Rα,β)}. D is open in (0,∞) ×
(0,∞)× [0,∞). Consider the map H : D → R2 defined by

H(α, β, r) = (u(α, β, r), u′(α, β, r)) .

Then H ∈ C1(D,R2) and

H(α, β(α), r(α)) = 0 for α > 0 . (3.1)

Using Lemmas 3.2, 3.3 and (H2) we obtain

|D(β,t)H(α, β(α), r(α))| = ρ(α, β(α), r(α))u′′α(r(α)) < 0 .

Therefore, by the implicit function theorem α→ (β(α), r(α)) is a C1 map for α > 0.
Differentiating (3.1) with respect to α we obtain

ϕ(α, β(α), r(α)) + ρ(α, β(α), r(α))β′(α) = 0 for α > 0 . (3.2)

From (3.2) and Lemma 3.3 we deduce that β′(α) > 0 for α > 0. Now we have two
cases to consider.

Case 1: f satisfies (H1), (H3) and (H4). Assume that β(α) → ∞ as α → ∞.
Using (H4) we have

vα(r(α)) = −β(α) +
∫ r(α)

0

Gn(r(α), s)f(uα(s)) ds ≤ −β(α) +M
r(α)2

2n
.

Then Lemma 3.2 implies that r(α) → ∞ as α → ∞. Now suppose that β(α) →
c <∞ as α→∞. Using Lemma 3.2 and (H2) we can write

0 = uα(r(α)) = α+
∫ r(α)

0

Gn(r(α), s)g(vα(s)) ds

= α+
∫ s(α)

0

Gn(r(α), s)g(vα(s)) ds+
∫ r(α)

s(α)

Gn(r(α), s)g(vα(s)) ds

≥ α+ g(−β(α))
r(α)2

2n
,

and again we deduce that r(α) →∞ as α→∞.
Assume that β(α) → 0 as α→ 0. Using (H4) we have

vα(r(α)) = −β(α) +
∫ r(α)

0

Gn(r(α), s)f(uα(s)) ds ≥ −β(α) +m
r(α)2

2n
. (3.3)

Then Lemma 2.2 implies that r(α) → 0 as α→ 0. Now suppose that β(α) → c > 0
as α → 0. We claim that r(α) → 0 as α → 0. If not there exist r0 > 0 and a
sequence (αk)k∈N such that αk → 0 as k → ∞ and r(αk) ≥ r0 for all k ∈ N. Let
r1 ∈ (0, r0) be such that

−c+ f(0)
r21
2n

≤ − c
2
.

For s ∈ [0, r1] we have

lim
k→∞

vαk
(s) = lim

k→∞
(−β(αk) +

∫ s

0

Gn(s, x)f(uαk
(x)) dx)

= −c+ f(0)
s2

2n
≤ − c

2
.

(3.4)
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Clearly (vk)k∈N converges uniformly on [0, r1]. Then, for s ∈ (0, r1], using (3.4) and
(H2) we have

lim
k→∞

uαk
(s) = lim

k→∞
(αk +

∫ s

0

Gn(s, x)g(vαk
(x)) dx)

=
∫ s

0

Gn(s, x)g(−c+ f(0)
x2

2n
) dx < 0 ,

and we reach a contradiction. Therefore our claim is proved and the proof of
Proposition 3.1 is complete in Case 1.

Case 2: f satisfies (H1), (H3), (H5) and (H6). From the proof of Lemma 2.2
we obtain

G(vα(r(α))) = F (α) +G(−β(α)) + 2(n− 1)
∫ r(α)

0

u′α(s)v′α(s)
s

ds . (3.5)

Let α ≥ 1. Using Lemma 3.2, (2.4), (H3) and (H6) we have

0 < vα(r(α)) ≤ a′αp r(α)2

2n
, (3.6)

and

β(α) =
∫ s(α)

0

Gn(s(α), s)f(uα(s)) ds ≤ a′αp s(α)2

2n
≤ a′αp r(α)2

2n
. (3.7)

Then, with the help of (H2), (H3), (H6), (3.6) and (3.7), we can write

|rn−1u′α(r)| = |
∫ r

0

sn−1g(vα(s)) ds|

≤ rn

n
max(|g(−β(α))|, g(vα(r(α))))

≤ rn

2qnq+1
b′a′qαpqr(α)2q ,

and

|rn−1v′α(r)| = |
∫ r

0

sn−1f(uα(s)) ds| ≤ rn

n
f(α) ≤ rn

n
a′αp ,

for r ∈ [0, r(α)]. Therefore,∣∣ ∫ r(α)

0

u′α(s)v′α(s)
s

ds
∣∣ ≤ b′a′q+1

2q+1nq+2
αp(q+1)r(α)2(q+1) . (3.8)

Now using (3.5), (3.6), (3.8) an (H6) we obtain

a′q+1b′

(q + 1)2q+1nq+1
αp(q+1)r(α)2(q+1)

≥ G(vα(r(α)))

≥ a

p+ 1
αp+1 +

b

q + 1
β(α)q+1 − b′a′q+1

2qnq+1
αp(q+1)r(α)2(q+1) .

(3.9)

Since pq < 1, we deduce that r(α) →∞ as α→∞.
Now assume that α ≤ 1. (H3) and (H5) imply that there exist m, M > 0 such

that
m ≤ f(uα(r)) ≤M ∀ r ∈ [0, r(α)] .

Then we show that limα→0 r(α) = 0 as in Case 1. �
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We conclude this section with the following theorems.

Theorem 3.4. Let f , g satisfy (H1)–(H3). Assume moreover that
(H9) There exist a, b, p > 0 and q ≥ 1 such that

f(u) ≥ aup ∀u ≥ 0 , |g(−v)| ≥ bvq ∀ v ≥ 0 ,

and
1

p+ 1
+

1
q + 1

>
n− 2
n

if n ≥ 3 .

Then there exists R > 0 such that (1.1) has at least one non-trivial radial solution
(u, v) ∈ (C2(BR))2.

Since Proposition 2.6 holds, with the help of the first part of Proposition 3.1, we
conclude the statement of the above theorem.

Remark 3.5. Notice that , when f(0) > 0, p may be less than 1. If f(0) = 0,
necessarily p ≥ 1 since f is C1.

Theorem 3.6. Let f , g satisfy (H1)–(H3). Moreover assume that
(H10) There exist a, a′, b, b′ > 0 and p, q ≥ 1 such that pq > 1,

f(u) ≥ aup ∀u ≥ 0 , f(u) ≤ a′up ∀u ∈ [0, 1] ,

b|v|q ≤ |g(v)| ≤ b′|v|q ∀ v ∈ R ,

1
p+ 1

+
1

q + 1
>
n− 2
n

if n ≥ 3 .

Then there exists R0 ≥ 0 such that for all R > R0 problem (1.1) has at least one
non-trivial radial solution (u, v) ∈ (C2(BR))2.

Proof. Since Proposition 2.6 holds we have the first part of Proposition 3.1. We
also have β, r ∈ C1(0,∞) and β′(α) > 0 for α > 0. Now let α ∈ (0, 1]. (3.5)-(3.9)
hold and, since pq > 1, we conclude that limα→0 r(α) = ∞. Then we take

R0 = inf
α>0

r(α) ≥ 0 .

�

4. Proof of Theorem 1.3

We use again the notation introduced in Section 2. The following result implies
Theorem 1.3.

Proposition 4.1. Assume that n = 1. Let f and g satisfy (H1)–(H3), (H7).
Then for any α > 0 there exists a unique (β(α), r(α)) ∈ (0,∞) × (0,∞) such that
u(α, β(α), r(α)) = u′(α, β(α), r(α)) = 0, u(α, β(α), r) > 0 for r ∈ [0, r(α)) and
u′(α, β(α), r) < 0 for r ∈ (0, r(α)). Moreover, β, r ∈ C1(0,∞), β′(α) > 0 for
α > 0, limα→0 r(α) = ∞ and limα→∞ r(α) = 0.

Proof. Let α > 0 be fixed. The existence and uniqueness of (β(α), r(α)) satisfying
the first part of the proposition are given by Proposition 2.6. Clearly Lemmas 3.2
and 3.3 also hold. Then we have β, r ∈ C1(0,∞), β′(α) > 0 for α > 0. We show
that limα→0 r(α) = ∞ as in the proof of Theorem 3.6. As in the preceding section
we denote u(α, β(α), r) and v(α, β(α), r) by uα(r) and vα(r). �

Now we give some lemmas where s(α) is defined in Lemma 3.2.
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Lemma 4.2. There exists a constant C > 0 such that

u′α(s(α))2 ≤ Cuα(s(α))(αp+1 + β(α)q+1)
q

q+1 ,

v′α(s(α))2 ≤ Cαp(αp+1 + β(α)q+1)
1

q+1 ,

for all α > 0.

Proof. Since n = 1 we have

F (uα(r)) +G(vα(r)) = F (α) +G(−β(α)) + u′α(r)v′α(r) (4.1)

for r ∈ [0, r(α)]. Then (4.1) and (H7) imply that there exist two constants C1,
C2 > 0 such that

C1(αp+1 + β(α)q+1)
1

q+1 ≤ vα(r(α)) ≤ C2(αp+1 + β(α)q+1)
1

q+1 . (4.2)

Using (H1), (H2), Lemma 2.4 and Lemma 3.2 we have

u′α(s(α))2

2
= −

∫ r(α)

s(α)

g(vα(s))u′α(s) ds =
∫ r(α)

s(α)

g′(vα(s))v′α(s)uα(s) ds

≤ uα(s(α))
∫ r(α)

s(α)

g′(vα(s))v′α(s) ds = uα(s(α))g(vα(r(α)))

Then with the help of (4.2) and (H7) we obtain

u′α(s(α))2 ≤ Cuα(s(α))(αp+1 + β(α)q+1)
q

q+1 ,

for another positive constant C. Now, using (H1), (H3) and Lemma 3.2, we write

v′α(s(α))2

2
=

∫ s(α)

0

f(uα(s))v′α(s) ds

= f(α)β(α)−
∫ s(α)

0

f ′(uα(s))u′α(s)vα(s) ds

≤ f(α)β(α) ,

from which we obtain, using (H7),

v′α(s(α))2 ≤ Cαp(αp+1 + β(α)q+1)
1

q+1 ,

for some positive constant C. �

Lemma 4.3. There exist two constants c ∈ (0, 1) and M > 0 such that

uα(s(α)) ≥ cmax(α, β(α)
q+1
p+1 ) ∀α ≥M . (4.3)

Moreover,
2
a′
β(α)
αp

≤ s(α)2 ≤ 2
acp

β(α)
αp

∀α ≥M . (4.4)

Proof. We argue by contradiction. Suppose first that there exists a sequence
(αk)k∈N increasing to ∞ such that

uαk
(s(αk)) ≤ 1

k
αk ∀ k ≥ 2 . (4.5)
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Using Lemma 4.2 and (4.5) we have

|u′αk
(s(αk))v′αk

s(αk))| ≤ C
1√
k
α

p+1
2

k (αp+1
k + β(αk)q+1)1/2

≤ C
1√
k

(αp+1
k + β(αk)q+1) .

From the above inequality, (H7), Lemma 3.2 and (4.1), we obtain

uαk
(s(αk))p+1 ≥ d(αp+1

k + β(αk)q+1)

for some positive constant d when k is large and we obtain a contradiction with
(4.5).

Now suppose that there exists a sequence (αk)k∈N increasing to ∞ such that

uαk
(s(αk)) ≤ 1

k
β(αk)

q+1
p+1 ∀ k ≥ 2 . (4.6)

Using Lemma 4.2 and (4.6) we have

|u′αk
(s(αk))v′αk

s(αk))| ≤ C
1√
k
β(αk)

q+1
2(p+1)α

p/2
k (αp+1

k + β(αk)q+1)1/2

≤ C

2
√
k

(αp
kβ(αk)

q+1
p+1 + αp+1

k + β(αk)q+1)

≤ C ′
1√
k

(αp+1
k + β(αk)q+1) ,

for another constant C ′ > 0, where we have used Young’s inequality. Then we
obtain a contradiction as before.

Now we prove (4.4). Using (H7), we have

β(α) =
∫ s(α)

0

(s(α)− r)f(uα(r)) dr ≤ a′

2
αps(α)2 ,

and, with the help of (4.3),

β(α) =
∫ s(α)

0

(s(α)− r)f(uα(r)) dr ≥ acp

2
αps(α)2 .

The proof of the lemma is complete. �

Lemma 4.4. We have s(α) → 0 as α→∞.

Proof. Since β′(α) > 0 for α > 0 we have limα→∞ β(α) = d ≤ ∞. If d < ∞ (4.4)
implies that s(α) → 0 as α→∞. If d = ∞, using (H7) and (4.3), we can write

β(α) =
∫ s(α)

0

(s(α)− r)f(uα(r)) dr

≥ a

2
uα(s(α))ps(α)2 ≥ acp

2
β(α)p q+1

p+1 s(α)2 ,

from which we obtain

s(α)2 ≤ 2
acp

β(α)
1−pq
p+1 ,

and the result follows since pq > 1. �
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Now we show that r(α) → 0 as α→∞. If not, there exist r0 > 0 and a sequence
(αk)k∈N increasing to ∞ such that

r(αk) ≥ 3r0
2

∀ k ∈ N . (4.7)

By Lemma 4.4, we can assume that

s(αk) ≤ r0
2

∀ k ∈ N . (4.8)

Lemma 4.5. There exists a constant C > 0 such that

u′αk
(r0)2 ≤ Cuαk

(r0)(α
p+1
k + β(αk)q+1)

q
q+1 ,

v′αk
(r0)2 ≤ Cαp

k(αp+1
k + β(αk)q+1)

1
q+1

for all k ∈ N.

Proof. Using (H1), (H2), Lemma 2.4, (4.7) and (4.8) we have

u′αk
(r0)2

2
= −

∫ r(αk)

r0

g(vαk
(s))u′αk

(s) ds

= g(vαk
(r0))uαk

(r0) +
∫ r(αk)

r0

g′(vαk
(s))v′αk

(s)uαk
(s) ds

≤ g(vαk
(r0))uαk

(r0) + uαk
(r0)

∫ r(αk)

r0

g′(vαk
(s))v′αk

(s) ds

= uαk
(r0)g(vαk

(r(αk))) .

Then with the help of (4.2) with α = αk and (H7) we obtain

u′αk
(r0)2 ≤ Cuαk

(r0)(α
p+1
k + β(αk)q+1)

q
q+1 ,

for some positive constant C. Now we write

v′αk
(r0)2

2
=

∫ r0

0

f(uαk
(s))v′αk

(s) ds

= f(uαk
(r0))vαk

(r0) + f(αk)β(αk)−
∫ r0

0

f ′(uαk
(s))u′αk

(s)vαk
(s) ds

from which, using Lemma 2.4, Lemma 3.2, (H3), and (4.8), we obtain

v′αk
(r0)2

2

≤ f(uαk
(r0))vαk

(r0) + f(αk)β(αk)−
∫ r0

s(αk)

f ′(uαk
(s))u′αk

(s)vαk
(s) ds

≤ f(uαk
(r0))vαk

(r0) + f(αk)β(αk)− vαk
(r0)

∫ r0

s(αk)

f ′(uαk
(s))u′αk

(s) ds

= f(αk)β(αk) + vαk
(r0)f(uαk

(s(αk)))

≤ f(αk)β(αk) + vαk
(r(αk))f(αk) .

Then, with the help of (4.2) with α = αk and (H7), we obtain

v′αk
(r0)2 ≤ Cαp

k(αp+1
k + β(αk)q+1)

1
q+1 ,

for some positive constant C. �
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Lemma 4.6. There exists a constant C > 0 such that

0 < vαk
(r0) ≤ C(αp+1

k + β(αk)q+1)
1

q(p+1) ∀ k ∈ N .

Proof. The left hand side inequality follows from (4.8). Now, using (4.7), (4.8),
Lemma 2.4, Lemma 3.2, (H2) and (H7), we have

uαk
(r0) =

∫ r(αk)

r0

(s− r0)g(vαk
(s)) ds

≥ (r(αk)− r0)2

2
g(vαk

(r0))

≥ Cvαk
(r0)q ,

(4.9)

for some positive constant C. With the help of (H7), (4.1) with r = r0, α = αk,
lemma 2.4 and (4.9) we deduce that

vαk
(r0) ≤ C(αp+1

k + β(αk)q+1)
1

q(p+1) ∀ k ∈ N ,

for another positive constant C. �

Lemma 4.7. There exist a constant c ∈ (0, 1) and an integer k0 such that

uαk
(r0) ≥ cmax(αk, β(αk)

q+1
p+1 ) ∀ k ≥ k0 .

Proof. Lemma 4.6 and (H7) imply that

lim
k→∞

G(vαk
(r0))(α

p+1
k + β(αk)q+1)−1 = 0 ,

since pq > 1. Now the arguments are the same as in the proof of Lemma 4.3 with
r0 in place of s(α), using Lemma 4.5 instead of Lemma 4.2. �

Proof of Proposition 4.1 completed. Using Lemma 4.7 and (H7) we have

vαk
(r0) + β(αk) =

∫ r0

0

(r0 − s)f(uαk
(s)) ds

≥ acp

2
r20 max(αp

k, β(αk)p q+1
p+1 )

for all k ∈ N. Then Lemma 4.6 implies that r0 = 0 since pq > 1 and we reach a
contradiction. �

5. The uniqueness question

Define
A = {α ∈ (0,∞); r′(α) 6= 0} .

Assume that A 6= ∅. Since A is open there exists J ⊂ N such that A = ∪n∈JIn,
where In = (an, bn).

In the setting of Theorem 1.1 or Theorem 1.2, Proposition 3.1 implies that A 6= ∅
and that inf{an; n ∈ J} = 0 and sup{bn; n ∈ J} = ∞.

Case 1: |J | = 1. Then A = (0,∞) and for all R > 0, problem (1.2) has a unique
solution (u, v) ∈ (C2([0, R])2.

Case 2: |J | ≥ 2. Suppose first that there exist j, k ∈ J such that aj = 0 and
bk = ∞. Let γ = min{r(α); α ∈ [bj , ak]} and δ = max{r(α); α ∈ [bj , ak]}. Then
for all R ∈ (0, γ)∪ (δ,∞) problem (1.2) has a unique solution (u, v) ∈ (C2([0, R])2.
Suppose that there exists j ∈ J such that aj = 0 and that bk 6= ∞ for all k ∈ J . Let
γ = inf{r(α); α ≥ bj}. Proposition 3.1 implies that γ > 0. Then for all R ∈ (0, γ)



EJDE-2011/57 EXISTENCE OF SOLUTIONS 17

problem (1.2) has a unique solution (u, v) ∈ (C2([0, R])2. Now, if there exists k ∈ J
such that bk = ∞ and that aj 6= 0 for all j ∈ J , we define δ = sup{r(α); α ≤ ak}.
Proposition 3.1 implies that δ < ∞. Then for all R ∈ (δ,∞) problem (1.2) has
a unique solution (u, v) ∈ (C2([0, R])2. Otherwise we cannot give any uniqueness
result.

In the setting of Theorem 1.3, Proposition 4.1 implies that A 6= ∅ and that
inf{an; n ∈ J} = 0 and sup{bn; n ∈ J} = ∞.

Case 1: |J | = 1. Then A = (0,∞) and for all R > 0 problem (1.2) has a unique
solution (u, v) ∈ (C2([0, R])2.

Case 2: |J | ≥ 2. Suppose first that there exist j, k ∈ J such that aj = 0 and
bk = ∞. Let γ = min{r(α); α ∈ [bj , ak]} and δ = max{r(α); α ∈ [bj , ak]}. Then
for all R ∈ (0, γ)∪ (δ,∞) problem (1.2) has a unique solution (u, v) ∈ (C2([0, R])2.
Suppose that there exists j ∈ J such that aj = 0 and that bk 6= ∞ for all k ∈ J . Let
δ = sup{r(α); α ≥ bj}. Proposition 4.1 implies that δ <∞. Then for all R ∈ (δ,∞)
problem (1.2) has a unique solution (u, v) ∈ (C2([0, R])2. Now, if there exists k ∈ J
such that bk = ∞ and that aj 6= 0 for all j ∈ J , we define γ = inf{r(α); α ≤ ak}.
Proposition 4.1 implies that γ > 0. Then for all R ∈ (0, γ) problem (1.2) has a
unique solution (u, v) ∈ (C2([0, R])2. Otherwise we cannot give any uniqueness
result.

In the setting of Theorem 3.6, the proof shows that A 6= ∅ and that inf{an; n ∈
J} = 0

Case 1: |J | = 1. Then A = (0, c) where c ≤ ∞. If c = ∞, then for all R > 0
problem (1.2) has a unique solution (u, v) ∈ (C2([0, R])2. If c < ∞, then for all
R > r(c) problem (1.2) has a unique solution (u, v) ∈ (C2([0, R])2.

Case 2: |J | ≥ 2. Suppose that there exists j ∈ J such that aj = 0. Let
δ = sup{r(α); α ≥ bj}. If δ < ∞, then for all R ∈ (δ,∞) problem (1.2) has a
unique solution (u, v) ∈ (C2([0, R])2. If δ = ∞ we cannot give any uniqueness
result. If aj 6= 0 for all j ∈ J we cannot give any uniqueness result.

6. Examples

In this section we give some examples that illustrate our results.

Example 6.1. Theorem 1.1 applies when f and g are defined in the following six
cases:

(1) Let c > π/2, m ∈ N\{0} and f(u) = c+ arctanum, u ∈ R.
(2) Let f(u) = 2− 1

1+u2 , u ∈ R.
(3) Let q ≥ 1 and g(v) = |v|q−1v, v ∈ R.
(4) Let r, q > 1 and

g(v) =

{
vr v ≥ 0 ,
|v|q−1v v ≤ 0 .

(5) Let p, q > 1 and

g(v) =

{
ln(1 + vp) v ≥ 0 ,
1− exp |v|q v ≤ 0 .

(6) Let

g(v) =

{
arctan v2 v ≥ 0 ,
v2 arctan v v ≤ 0 .
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Example 6.2. Let p > 0 and q ≥ 1. For m ∈ N\{0} define

f(u) = (1 + u2m)p/(2m) , u ∈ R .

Let h ∈ C1(R) be such that h′ < 0 on (−∞, 0), h′ > 0 on (0,∞) and b ≤ h ≤ b′ for
some constants b, b′ > 0. Define

g(v) = h(v)|v|q−1v , v ∈ R .

Then Theorem 1.2 applies. If p, q satisfy the condition in (H9), then we can use
Theorem 3.4.

Example 6.3. Let k ∈ C1(R) be such that k′ > 0 on (0,∞) and a ≤ k ≤ a′ for
some constants a, a′ > 0. Define

f(u) = k(u)|u|p−1u, ∀u ∈ R ,

where p ≥ 1. If g is as in Example 6.2 and if p, q satisfy the condition in (H9)
(resp. (H10), then Theorem 3.4 (resp. Theorem 3.6) applies. We can also use
Theorem 1.3.

References

[1] R. Dalmasso; Existence and uniqueness of solutions for a semilinear elliptic system, Int. J.
Math. Math. Sci. 10 (2005), 1507-1523.

[2] R. Dalmasso; Uniqueness of positive solutions for some nonlinear fourth-order equations, J.
Math. Anal. Appl. 201 (1996), 152-168.

[3] E. Mitidieri; A Rellich type identity and applications, Commun. in Partial Differential Equa-
tions, (18) (1&2),125-151 (1993).

[4] J. Serrin, H. Zou; Non-existence of positive solutions of semilinear elliptic systems, Discourses
in Mathematics and its Applications, no. 3, Department of Mathematics, Texas A&M Univer-
sity, College Station, Texas, (1994), 55-68.

[5] J. Serrin, H. Zou; Non-existence of positive solutions of the Lane-Emden system, Differential
Integral Eqs 9 (1996), 635-653.

Robert Dalmasso
Laboratoire Jean Kuntzmann, Equipe EDP, 51 rue des Mathématiques, Domaine univer-
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