Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 60, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

# OPTIMIZATION PROBLEMS INVOLVING POISSON'S EQUATION IN $\mathbb{R}^{3}$ 

FARIBA BAHRAMI, HOSSAIN FAZLI


#### Abstract

In this article, we prove the existence of minimizers for integrals associated with a second-order elliptic problem. For this three-dimensional optimization problem, the admissible set is a rearrangement class of a given function.


## 1. Introduction

We consider the Poisson's equation

$$
\begin{gather*}
-\Delta u=f-2 h \quad \text { in } \mathbb{R}^{3} \\
\lim _{|x| \rightarrow+\infty} u(x)=0, \quad f \in L_{b}^{p}\left(\mathbb{R}^{3}\right) \tag{1.1}
\end{gather*}
$$

where $L_{b}^{p}\left(\mathbb{R}^{3}\right)=\left\{f \in L^{p}\left(\mathbb{R}^{3}\right): f\right.$ has bounded support $\}$ and $p>3$. Here $h$ is a given non-negative function in $h \in L^{\infty}\left(\mathbb{R}^{3}\right)$ with bounded support. For the sake of convenience in the discussions, we have $2 h$ instead of $h$, but it can be replaced by $h$. By standard results on elliptic equations, problem 1.1) has a unique solution $u \in W_{\text {loc }}^{2, p}\left(\mathbb{R}^{3}\right)$; see [8]. Let $u_{f}$ be the solution of 1.1 , we define energy functional corresponding to (1.1) as

$$
\begin{equation*}
\Psi_{\lambda}(f)=\frac{1}{2} \int_{\mathbb{R}^{3}} f u_{f}+\lambda \int_{\mathbb{R}^{3}} g f \tag{1.2}
\end{equation*}
$$

for $f \in L_{b}^{p}\left(\mathbb{R}^{3}\right)$ where $g \in C^{2}\left(\mathbb{R}^{3}\right), \lim _{|x| \rightarrow+\infty} g=+\infty$ and $\Delta g>c$ for some $c>0$ and $\lambda \geq 0$. In this paper we minimize the functional $\Psi_{\lambda}$ on rearrangement class of a fixed function. We separate the investigation of the particular case $\lambda=0$, since the discussion in the case $\lambda>0$ does not carry over the case $\lambda=0$. The same optimization problems have been investigated in bounded domains for the Laplacian operator in [1, 4, 6, for the p-Laplacian operator in [3, 10, for semilinear operators in [7. For the current problem we face two mathematical difficulties: firstly the awkward nature of rearrangements class, and secondly a loss of compactness which is caused by the unboundness of the domain $\mathbb{R}^{3}$. To overcome these difficulties we first investigate the problem in a bounded domain. Then using Burton's theory on

[^0]rearrangements class, we show that a solution valid in a sufficiently large bounded domain is in fact valid in the whole space.

## 2. Notation, Definitions and statement of the main result

Henceforth we assume $p \in(3, \infty)$ and $p^{\prime}$ is the conjugate exponent of $p$; that is, $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Points in $\mathbb{R}^{3}$ are denoted by $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right)$, and so on. By $B_{r}(x)$ we denote the ball centered at $x \in \mathbb{R}^{3}$ with radius $r$; if the center is the origin, we write $B_{r}$. Measure will refer to Lebesgue measure on $\mathbb{R}^{3}$, and if $A \subseteq \mathbb{R}^{3}$ is measurable then $|A|$ will denote the measure of $A$. If $A \subset \mathbb{R}^{3}$ is a measurable set, then we say $x \in A$ is a density point of $A$ whenever

$$
\left|B_{\varepsilon}(x) \cap A\right|>0
$$

for all positive $\varepsilon$.
For a measurable function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{+}$, the strong support or simply the support of $f$ is denoted $\operatorname{supp}(f)$ and is defined by

$$
\operatorname{supp}(f)=\{x: f(x)>0\} .
$$

For a measurable function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{+}$we define

$$
\|f\|_{-\infty}=\operatorname{essinf}(f)=\sup \{M \geq 0: f(x) \geq M, \text { for almost all } x\}
$$

When $f$ and $g$ are non-negative measurable functions that vanish outside sets of finite measure in $\mathbb{R}^{3}$, we say $f$ is a rearrangement of $g$ whenever

$$
\left|\left\{x \in \mathbb{R}^{3}: f(x) \geq \alpha\right\}\right|=\left|\left\{x \in \mathbb{R}^{3}: g(x) \geq \alpha\right\}\right|,
$$

for every positive $\alpha$.
For any real integrable and non-negative function $f$ vanishing outside a bounded set $\Omega \subset \mathbb{R}^{3}$ of measure $m$, we can define a decreasing rearrangement $f^{\Delta}$ which is a decreasing function on the interval $(0, m)$ satisfying

$$
\left|\left\{s \in(0, m): f^{\Delta}(s) \geq \alpha\right\}\right|=|\{x \in \Omega: f(x) \geq \alpha\}|
$$

for every positive $\alpha$. Also there exists a Schwarz rearrangement $f^{*}$ for $f$, that is a rearrangemet of $f$ as a radial decreasing function on a ball.

Let us fix $f_{0} \in L^{p}\left(\mathbb{R}^{3}\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right)$ to be a measurable and non-negative function vanishing outside a set of measure $4 \pi a^{3} / 3$, for some positive $a \in \mathbb{R}$. The set of all rearrangements on $\mathbb{R}^{3}$ of $f_{0}$ with bounded support is denoted by $\mathcal{R}$. The subset of $\mathcal{R}$ containing functions vanishing outside the ball $B_{r}$, where $r \geq a$, is denoted by $\mathcal{R}(r)$; henceforth we assume $r \geq a$ in order that $\mathcal{R}(r)$ is non-empty. The weak closure in $L^{p}\left(B_{r}\right)$ of $\mathcal{R}(r)$ is denoted by $\overline{\mathcal{R}(r)^{w}}$.

Now we are ready to introduce our minimizing problems $P_{\lambda}$ as follows:

$$
\begin{equation*}
\min _{f \in \mathcal{R}} \Psi_{\lambda}(f) \tag{2.1}
\end{equation*}
$$

The set of solutions of $P_{\lambda}$ is denoted by $S_{\lambda}$. Similarly, for $r \geq a$ we define $P_{\lambda}(r)$ as follows:

$$
\begin{equation*}
\min _{f \in \mathcal{R}(r)} \Psi_{\lambda}(f) \tag{2.2}
\end{equation*}
$$

and the set of solutions is denoted by $S_{\lambda}(r)$. Our main results are the following:

Theorem 2.1. There exists $\lambda_{0}>0$ such that for every $\lambda>\lambda_{0}$, the optimization problem $P_{\lambda}$ has a solution. Moreover, if $f_{\lambda} \in S_{\lambda}$ and $u_{f_{\lambda}}$ be the solution of 1.1) corresponding with energy minimizer, then there exists a decreasing function $\varphi_{\lambda}$ such that

$$
\begin{equation*}
f_{\lambda}=\varphi_{\lambda} \circ\left(u_{f_{\lambda}}+\eta+\lambda g\right) \tag{2.3}
\end{equation*}
$$

almost everywhere in $\mathbb{R}^{3}$ where $\eta$ will be presented later.
Theorem 2.2. Let $f_{0}$ and $h$ be as introduced above. Let $\left|\operatorname{supp}\left(f_{0}\right)\right|=4 \pi a^{3} / 3$ and $|\operatorname{supp}(h)|=4 \pi b^{3} / 3$ for some $a, b$ positive real numbers. We assume

$$
\begin{equation*}
b>\sqrt{3} a, \quad\left\|f_{0}\right\|_{\infty}<\|h\|_{-\infty} \tag{2.4}
\end{equation*}
$$

Then the optimization problem $P_{0}$ has a solution.

## 3. Preliminary Results

In this section we state and/or prove some lemmas which are essential in our analysis. We begin with a result proved by Burton in 2].

Lemma 3.1. For $r \geq a$ and $q \geq 1$, we have
(i) $\|f\|_{q}=\left\|f_{0}\right\|_{q}$, for $f \in \mathcal{R}(r)$;
(ii) $\overline{\mathcal{R}(r)^{w}}$ is weakly sequentially compact in $L^{q}\left(B_{r}\right)$;
(iii) $\overline{\mathcal{R}(r)^{w}}=\left\{f \in L^{1}\left(B_{r}\right): \int_{0}^{s} f^{\Delta}(t) d t \leq \int_{0}^{s} f_{0}^{\Delta}(t) d t, 0<s \leq 4 \pi r^{3} / 3, \int_{B_{r}} f=\right.$ $\left.\int_{B_{r}} f_{0}\right\}$.

Lemma 3.2. Let $\lambda \geq 0$ and $f \in L_{b}^{p}\left(\mathbb{R}^{3}\right)$. Then
(i) for the energy functional $\Psi_{\lambda}$ we have

$$
\begin{equation*}
\Psi_{\lambda}(f)=\frac{1}{2} \int_{\mathbb{R}^{3}} f K f-\int_{\mathbb{R}^{3}} \eta f+\lambda \int_{\mathbb{R}^{3}} g f \tag{3.1}
\end{equation*}
$$

where

$$
K f(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} f(y) d y
$$

and $\eta=K h$.
(ii) for $f \in L_{b}^{p}\left(\mathbb{R}^{3}\right)$

$$
\begin{equation*}
|K f(x)| \leq C\|f\|_{p}, \quad \forall x \in \mathbb{R}^{3} \tag{3.2}
\end{equation*}
$$

where $C$ depends only on $p$ and $|\operatorname{supp}(f)|$.
Proof. Using the fundamental solution of $-\Delta$ on $\mathbb{R}^{3}$ and asymptotic behavior of the solutions in 1.1, we derive the unique solution of the problem 1.1), $u_{f}=$ $K f-2 K h$, this yields (3.1). We note that $u_{f}(x)=O\left(\frac{1}{|x|}\right)$ as $|x| \rightarrow+\infty$. Indeed, for large $|x|$, we have $|x-y|>|x| / 2$ for $y \in \operatorname{supp}(f) \cup \operatorname{supp}(h)$. Thus, $K(f-2 h)$ is dominated by $2\|f-2 h\|_{1} /|x|$.

To prove (ii), let $f$ be as in the lemma, we have

$$
|K f(x)| \leq \frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{|f(y)|}{|x-y|} d y \leq \frac{1}{4 \pi} \int_{B_{r^{*}}(x)} \frac{f^{*}(y)}{|x-y|} d y
$$

where $f^{*}$ is the Schwarz rearrangement of $f$ with respect to $x$ and

$$
r^{*}=\left(\frac{3|\operatorname{supp}(f)|}{4 \pi}\right)^{1 / 3}
$$

The inequality is a consequence of Hardy-Littlewood inequality [9. Now by Hölder's inequality, we obtain the assertion where

$$
\begin{equation*}
C=\frac{1}{4 \pi}\left(\int_{B_{r^{*}(x)}} \frac{1}{|x-y|^{p^{\prime}}} d y\right)^{1 / p^{\prime}}=\frac{(3|\operatorname{supp}(f)|)^{\frac{1}{p^{\prime}}-\frac{1}{3}}}{(4 \pi)^{2 / 3}\left(3-p^{\prime}\right)^{1 / p^{\prime}}} \tag{3.3}
\end{equation*}
$$

and $p^{\prime}$ is the conjugate exponent of $p$.
Lemma 3.3. Let $K$ be as the above lemma.
(i) If $U$ is a bounded open subset in $\mathbb{R}^{3}, K: L^{p}(U) \rightarrow L^{p^{\prime}}(U)$ is a linear compact operator.
(ii) For $f \in L^{p}(U), K f \in W^{2, p}(U)$ and $-\Delta K f=f$, almost everywhere in $U$.

Proof. Since $W^{1,2}(U)$ is compactly embedded into $L^{p^{\prime}}(U)$ for $p>3$, in order to show the compactness of $K$ it is sufficient to prove the bondedness of $K$ as a map from $L^{p}(U)$ into $W^{1,2}(U)$. To do this, let $f \in L^{p}(U)$ we have

$$
\begin{equation*}
|\nabla K f(x)| \leq \frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{|f(y)|}{|x-y|^{2}} d y, \quad x \in U \tag{3.4}
\end{equation*}
$$

Similar to the proof of the lemma above and the fact that $p^{\prime}<\frac{3}{2}$, we deduce

$$
\|\nabla K f\|_{2} \leq C\|f\|_{p}
$$

where $C$ depends on $|U|$ and $p$. This completes the proof. For a proof of part (ii) see [5].

The following lemma is a simple variation of [2, Lemma 2.15].
Lemma 3.4. Let $r \geq a$ and $v \in L^{p^{\prime}}\left(B_{r}\right)$. Denote by $L_{\alpha}(v)$ the level set of $v$ at height $\alpha$; that is,

$$
L_{\alpha}(v)=\left\{x \in B_{r}: v(x)=\alpha\right\}
$$

Let $T: L^{p}\left(B_{r}\right) \rightarrow \mathbb{R}$ be the linear functional defined by

$$
T(f)=\int_{B_{r}} f v
$$

If $\hat{f}$ is a minimizer of $T$ relative to $\overline{\mathcal{R}(r)^{w}}$ and if

$$
\left|L_{\alpha}(v) \cap \operatorname{supp}(\hat{f})\right|=0
$$

for every $\alpha \in \mathbb{R}$, then $\hat{f} \in \mathcal{R}(r)$ and

$$
\hat{f}=\varphi o v
$$

almost everywhere in $B_{r}$, for some decreasing function $\varphi$.

## 4. Investigation in the case: $\lambda>0$

In this section we consider the case in which $\lambda>0$. First we are concerned with the existence of minimizers for the energy functional in a bounded domain, then we will demonstrate the problem in the unbounded domain.
4.1. Bounded domains. We begin with the following lemma.

Lemma 4.1. (i) The energy functional $\Psi_{\lambda}$ attains its minimum relative to $\overline{\mathcal{R}(r)^{w}}$ for $r \geq a$.
(ii) If $f_{r, \lambda}$ is any minimizer for $\Psi_{\lambda}$ relative to $\overline{\mathcal{R}(r)^{w}}$, then $f_{r, \lambda}$ is a solution of the following variational problem

$$
\begin{equation*}
\inf _{f \in \mathcal{\mathcal { R }}(r)^{w}} \int_{\mathbb{R}^{3}} f\left(u_{f_{r, \lambda}}+\eta+\lambda g\right) \tag{4.1}
\end{equation*}
$$

where $u_{f_{r, \lambda}}$ is the solution of (1.1) corresponding to $f_{r, \lambda}$ and $\eta=K h$.
Proof. From Lemma 3.2, the optimization problem 2.2 is equivalent to

$$
\inf _{f \in \mathcal{R}(r)}\left\{\frac{1}{2} \int_{\mathbb{R}^{3}} f K f-\int_{\mathbb{R}^{3}} \eta f+\lambda \int_{\mathbb{R}^{3}} g f\right\}
$$

By Lemma 3.3, $K$ is compact and symmetric, then $\Psi_{\lambda}$ is a weakly sequentially continuous and Gâteaux differentiable functional. From Lemma $3.1, \overline{\mathcal{R}(r)^{w}}$ is weakly sequentially compact, hence $\Psi_{\lambda}$ attains its minimum on it. If $f_{r, \lambda}$ is a minimizer of $\Psi_{\lambda}$ on $\overline{\mathcal{R}(r)^{w}}$, since the Gâteaux differential of $\Psi_{\lambda}$ at $f_{r, \lambda}$ is $K f_{r, \lambda}-\eta+\lambda g$, then by [2, Theorem 3.3], $f_{r, \lambda}$ is a solution of the variational problem 4.1).

Lemma 4.2. Let $r \geq a$ and $f_{r, \lambda}$ be a minimizer of $\Psi_{\lambda}$ relative to $\overline{\mathcal{R}(r)^{w}}$. Let $\psi_{r, \lambda}=K f_{r, \lambda}-\eta+\lambda g$ and denote by $L_{\alpha}\left(\psi_{r, \lambda}\right)$ the level set of $\psi_{r, \lambda}$ at height $\alpha$. Then there exists $\lambda_{0}>0$ such that for every $\lambda>\lambda_{0}$,

$$
\left|L_{\alpha}\left(\psi_{r, \lambda}\right) \cap \operatorname{supp}\left(f_{r, \lambda}\right)\right|=0, \quad \forall \alpha \in \mathbb{R}
$$

Proof. Let $r \geq a$. From Lemma 4.1, for every $\lambda>0$, the minimizer $f_{r, \lambda}$ of $\Psi_{\lambda}$ on $\overline{\mathcal{R}(r)^{w}}$ exists. Suppose there exists $\hat{\alpha} \in \mathbb{R}$ such that $\left|L_{\hat{\alpha}}\left(\psi_{r, \lambda}\right) \cap \operatorname{supp}\left(f_{r, \lambda}\right)\right|>0$. Let $S_{\hat{\alpha}}=L_{\hat{\alpha}}\left(\psi_{r, \lambda}\right) \cap \operatorname{supp}\left(f_{r, \lambda}\right)$. Since $\psi_{r, \lambda}=u_{f_{r, \lambda}}+\eta+\lambda g$, using [8] Theorem 7.7], lemma 3.3 and equation (1.1), we have

$$
\begin{equation*}
-\Delta \psi_{r, \lambda}=f_{r, \lambda}-h-\lambda \Delta g=0, \quad \text { a.e. in } \quad S_{\hat{\alpha}} . \tag{4.2}
\end{equation*}
$$

On the other hand, by Lemma 3.1,

$$
\begin{equation*}
\int_{0}^{s} f_{r, \lambda}^{\Delta}(t) d t \leq \int_{0}^{s} f_{0}^{\Delta}(t) d t, \quad s>0 \tag{4.3}
\end{equation*}
$$

Then we deduce

$$
\begin{equation*}
\left\|f_{r, \lambda}^{\Delta}\right\|_{\infty} \leq\left\|f_{0}^{\Delta}\right\|_{\infty} \tag{4.4}
\end{equation*}
$$

Since $f_{r, \lambda}^{\Delta}$ is a rearrangement of $f_{r, \lambda} \in \overline{\mathcal{R}(r)^{w}}$ and $f_{0}^{\Delta}$ is a rearrangement of $f_{0}$, from equation 4.4, we conclude

$$
\begin{equation*}
\left\|f_{r, \lambda}\right\|_{\infty} \leq\left\|f_{0}\right\|_{\infty} \tag{4.5}
\end{equation*}
$$

If we assume that $\lambda_{0}=\left\|f_{0}\right\|_{\infty} /\|\Delta g\|_{-\infty}$, then for every $\lambda>\lambda_{0}$, we have

$$
\begin{equation*}
\left\|f_{0}\right\|_{\infty}<\|h+\lambda \Delta g\|_{-\infty} \tag{4.6}
\end{equation*}
$$

Finally, from 4.5 and 4.6 for every $\lambda>\lambda_{0}$, we deduce

$$
\begin{equation*}
\left\|f_{r, \lambda}\right\|_{\infty}<\|h+\lambda \Delta g\|_{-\infty} \tag{4.7}
\end{equation*}
$$

which is a contradiction to 4.2 . This completes the proof.

Lemma 4.3. Let $\lambda_{0}$ be as in the lemma above. Then for every $\lambda>\lambda_{0}$, the variational problem $P_{\lambda}(r)$ has a solution for $r \geq a$. If $f_{r, \lambda}$ is any solution of $P_{\lambda}(r)$, then

$$
\begin{equation*}
f_{r, \lambda}=\varphi_{\lambda} \circ\left(u_{f_{r, \lambda}}+\eta+\lambda g\right), \tag{4.8}
\end{equation*}
$$

almost everywhere in $B_{r}$, for a decreasing unknown function $\varphi_{\lambda}$.
Proof. Let $r \geq a$. From Lemma 4.1. there exists $f_{r, \lambda} \in \overline{\mathcal{R}(r)^{w}}$ such that $f_{r, \lambda}$ is a minimizer of $\Psi_{\lambda}$ relative to $\overline{\mathcal{R}(r)^{w}}$ and a solution of 4.1). By Lemma 4.2 for every $\lambda>\lambda_{0}$, the level sets of $\psi_{r, \lambda}=K f_{r, \lambda}-\eta+\lambda g$ on $\operatorname{supp}\left(f_{r, \lambda}\right)$ have zero measure. We can use Lemma 3.4 to deduce equation 4.8.
4.2. Unbounded domain. We proved that the variational problem $P_{\lambda}(r)$ has a solution for $\lambda>\lambda_{0}$ and $r \geq a$. Now we will show that if $r$ is chosen large enough, it ceases to have any influence whatever on the variational problem, $P_{\lambda}(r)$. To do this, we now perform some calculations to deduce the following result.

Lemma 4.4. Let $\lambda>\lambda_{0}$. Then, there exists $r_{0}>a$ such that for $r \geq r_{0}$ and $f_{r, \lambda} \in S_{\lambda}(r)$ we have

$$
\operatorname{supp}\left(f_{r, \lambda}\right) \subset B_{r_{0}}
$$

Proof. To prove this lemma, it is sufficient to show that the support of $f_{r, \lambda}$ does not have any dense point on the boundary of $B_{r}$ when $r$ is chosen large enough. Let $r_{h}>a$ be the smallest positive number for which $\operatorname{supp}(h) \subset B_{r_{h}}$. We consider $r>r_{h}+1$ and $f_{r, \lambda} \in S_{\lambda}(r)$. From Lemma 4.3 we have

$$
\begin{equation*}
f_{r, \lambda}=\varphi_{\lambda} \circ\left(u_{f_{r, \lambda}}+\eta+\lambda g\right), \tag{4.9}
\end{equation*}
$$

almost everywhere in $B_{r}$, for a decreasing unknown function $\varphi_{\lambda}$ where $u_{f_{r, \lambda}}$ is the solution of 1.1 corresponding with $f_{r, \lambda}$. To seek a contradiction suppose the assertion is false. Then there exists $x_{0} \in \operatorname{den}\left(\operatorname{supp}\left(f_{r, \lambda}\right)\right)$ (set of dense points of support) such that $\left|x_{0}\right|=r$. Let $A=\operatorname{supp}\left(f_{r, \lambda}\right) \cap B_{1}\left(x_{0}\right)$, then $|A|>0$. For $x \in A$

$$
\begin{equation*}
K f_{r, \lambda}(x)=\frac{1}{4 \pi} \int_{B_{r}} \frac{1}{|x-y|} f_{r, \lambda}(y) d y \geq \frac{1}{4 \pi} \frac{\left\|f_{0}\right\|_{1}}{2 r} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta(x)=\frac{1}{4 \pi} \int_{B_{r_{h}}} \frac{1}{|x-y|} h(y) d y \leq \frac{1}{4 \pi} \frac{\|h\|_{1}}{r-r_{h}-1} \tag{4.11}
\end{equation*}
$$

From 4.10, 4.11) and relation $u_{f_{r, \lambda}}=K f_{r, \lambda}-2 \eta$, we obtain

$$
\begin{equation*}
u_{f_{r, \lambda}}(x)+\eta(x)+\lambda g(x) \geq \frac{1}{4 \pi}\left(\frac{1}{2 r}\left\|f_{0}\right\|_{1}-\frac{1}{r-r_{h}-1}\|h\|_{1}\right)+\lambda g(x) \tag{4.12}
\end{equation*}
$$

Since $\left|\operatorname{supp}\left(f_{r, \lambda}\right)\right|=4 \pi a^{3} / 3$ and $r_{h}>a$, there exists $D \subset B_{r_{h}}$ such that $D \cap$ $\operatorname{supp}\left(f_{r, \lambda}\right)$ is empty and $|D|>0$. For $z \in D$ from Lemma 3.2 we have

$$
\begin{equation*}
K f_{r, \lambda}(z)=\frac{1}{4 \pi} \int_{B_{r}} \frac{1}{|z-y|} f_{r, \lambda}(y) d y \leq C\left\|f_{0}\right\|_{p} \tag{4.13}
\end{equation*}
$$

where $C$ depends on $p$ and $\left|\operatorname{supp}\left(f_{r, \lambda}\right)\right|$. Also

$$
\begin{equation*}
\eta(z)=\frac{1}{4 \pi} \int_{B_{r_{h}}} \frac{1}{|z-y|} h(y) d y \geq \frac{1}{4 \pi} \frac{1}{2 r_{h}}\|h\|_{1} \tag{4.14}
\end{equation*}
$$

Then, from 4.13 and 4.14 we derive

$$
\begin{equation*}
u_{f_{r, \lambda}}(z)+\eta(z)+\lambda g(z) \leq \lambda g(z)-C_{1} \tag{4.15}
\end{equation*}
$$

Now, since $|z| \leq r_{h}$ for $z \in D$ and 4.15, we deduce

$$
\begin{equation*}
u_{f_{r, \lambda}}(z)+\eta(z)+\lambda g(z) \leq C_{2}, \quad z \in D \tag{4.16}
\end{equation*}
$$

where $C_{2}$ is a constant independent of $r$. If we make $r$ large we derive from 4.12 and 4.16

$$
\left(u_{f_{r, \lambda}}(x)+\eta(x)+\lambda g(x)\right)-\left(u_{f_{r, \lambda}}(z)+\eta(z)+\lambda g(z)\right)>0
$$

for $x \in A$ and $z \in D$. Since $|A|>0,|D|>0$, this is a contradiction to 4.9).
4.3. Proof of Theorem 2.1. Let $r_{0}$ be as in Lemma 4.4. Assume $f_{r, \lambda}$ to be a solution of $P_{\lambda}(r)$ for $r \geq r_{0}$ and $\lambda>\lambda_{0}$. From Lemma $4.4 \operatorname{supp}\left(f_{r, \lambda}\right) \subset B_{r_{0}}$ for $r>r_{0}$, therefore we obtain the inclusion $S_{\lambda}\left(r_{0}\right) \subset S_{\lambda}$ that it means $P_{\lambda}$ has a solution. Let $f_{\lambda} \in S_{\lambda}$ for $\lambda>\lambda_{0}$. To prove the last part of theorem, if $f_{\lambda} \in S_{\lambda}$ we have by applying Lemma 4.3

$$
\begin{equation*}
f_{\lambda}=\varphi_{\lambda} \circ\left(u_{f_{\lambda}}+\eta+\lambda g\right) \tag{4.17}
\end{equation*}
$$

almost everywhere in $B_{r}$ for $r>r_{0}$ and a decreasing unknown function $\varphi_{\lambda}$. Notice that we can suppose $\varphi_{\lambda} \geq 0$. Since $u_{f_{\lambda}}+\eta+\lambda g$ is a continuous function on the compact set $B_{r_{0}}$, and $\operatorname{supp}\left(f_{\lambda}\right) \subset B_{r_{0}}$, there exists $k \in \mathbb{R}$ such that

$$
\begin{equation*}
u_{f_{\lambda}}+\eta+\lambda g<k \quad \text { a.e } \operatorname{supp}\left(f_{\lambda}\right) \tag{4.18}
\end{equation*}
$$

On the other hand, by applying condition 4.12 we have $u_{f_{\lambda}}+\eta+\lambda g \rightarrow+\infty$, as $|x| \rightarrow \infty$. Then we can find $r>r_{0}$ such that

$$
\begin{equation*}
u_{f_{\lambda}}+\eta+\lambda g \geq k \quad \text { a.e outside } B_{r} \tag{4.19}
\end{equation*}
$$

Now define

$$
\hat{\varphi}_{\lambda}(t)= \begin{cases}\varphi_{\lambda}(t) & t<k \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\hat{\varphi}_{\lambda}$ is a decreasing function and $f_{\lambda}=\hat{\varphi}_{\lambda} \circ\left(u_{f_{\lambda}}+\eta+\lambda g\right)$ almost everywhere on $\mathbb{R}^{3}$.

## 5. The case $\lambda=0$

To derive the existence result in this case we assume some conditions. Here we suppose $f_{0}$ and $h$ satisfy all conditions mentioned in the Theorem 2.2. Now we deduce the following result in bounded domain.

Lemma 5.1. Let $r \geq a$ and $f_{r}$ be a minimizer of $\Psi_{0}$ relative to $\overline{\mathcal{R}(r)^{w}}$. Let $\psi_{r}=u_{f_{r}}+\eta$ where $u_{r}$ is a solution of (1.1) corresponding to $f_{r}$. Denote by $L_{\alpha}\left(\psi_{r}\right)$ the level set of $\psi_{r}$ at height $\alpha$. Then

$$
\left|L_{\alpha}\left(\psi_{r}\right) \cap \operatorname{supp}\left(f_{r}\right)\right|=0, \quad \forall \alpha \in \mathbb{R}
$$

Proof. Let $r \geq a$. Suppose there exists $\hat{\alpha} \in \mathbb{R}$ such that $\left|L_{\hat{\alpha}}\left(\psi_{r}\right) \cap \operatorname{supp}\left(f_{r}\right)\right|>0$. Let $A_{\hat{\alpha}}=L_{\hat{\alpha}}\left(\psi_{r}\right) \cap \operatorname{supp}\left(f_{r}\right)$. Then from equation (1.1), we have

$$
\begin{equation*}
-\Delta \psi_{r}=f_{r}-h=0, \quad \text { a.e. in } A_{\hat{\alpha}} . \tag{5.1}
\end{equation*}
$$

So $A_{\hat{\alpha}} \subset \operatorname{supp}(h)$. On the other hand, by Lemma 3.1, we have

$$
\int_{0}^{s} f_{r}^{\Delta}(t) d t \leq \int_{0}^{s} f_{0}^{\Delta}(t) d t, \quad s>0
$$

Then

$$
\begin{equation*}
\left\|f_{r}^{\Delta}\right\|_{\infty} \leq\left\|f_{0}^{\Delta}\right\|_{\infty} \tag{5.2}
\end{equation*}
$$

Since $f_{r}^{\Delta}$ is a rearrangement of $f_{r}$ and $f_{0}^{\Delta}$ is a rearrangement of $f_{0}$, from 5.2 we obtain

$$
\begin{equation*}
\left\|f_{r}\right\|_{\infty} \leq\left\|f_{0}\right\|_{\infty} \tag{5.3}
\end{equation*}
$$

Finally, from (5.3) and condition 2.4 , we deduce

$$
\begin{equation*}
\left\|f_{r}\right\|_{\infty}<\|h\|_{-\infty} \tag{5.4}
\end{equation*}
$$

which is a contradiction to 5.1 .
5.1. Proof of Theorem 2.2. Since the level sets of $\psi_{r}$ have zero measure, similar to the proof of Lemma 4.3 we can claim that there exists minimizer $f_{r}$ for $P_{r}$ such that

$$
\begin{equation*}
f_{r}=\varphi o\left(u_{f_{r}}+\eta\right) \tag{5.5}
\end{equation*}
$$

almost everywhere in $B_{r}$, for a decreasing unknown function $\varphi$. To prove the existence in unbounded domain, it is enough to show that the support of $f_{r}$ does not have any dense point at the boundary of $B_{r}$ when $r$ is chosen large enough. Let $r_{h}>a$ be the smallest positive number for which $\operatorname{supp}(h) \subset B_{r_{h}}$. Since $b>\sqrt{3} a$, then similar to presented trend in the proof of Lemma 4.4 there exits $A \subset \operatorname{supp}\left(f_{r}\right)$ with positive measure and $D \subset \operatorname{supp}(h) \cap\left(\operatorname{supp}\left(f_{r}\right)\right)^{c}$ such that $|D|>0$ and $|z-y|<b$ for almost every $z, y \in D$. Then, for $r>r_{h}+1$ we have

$$
\begin{align*}
& u_{f_{r}}(x)+\eta(x) \geq \frac{1}{4 \pi}\left(\frac{1}{2 r}\left\|f_{0}\right\|_{1}-\frac{1}{r-r_{h}-1}\|h\|_{1}\right), \quad \text { a.e. in } A  \tag{5.6}\\
& u_{f_{r}}(z)+\eta(z) \leq \frac{a^{2}}{2}\left\|f_{0}\right\|_{\infty}-\frac{1}{8 \pi b}\|h\|_{-\infty}|\operatorname{supp}(h)|, \quad \text { a.e. in } D . \tag{5.7}
\end{align*}
$$

Utilizing conditions mentioned in 2.4 , there exists $C<0$ such that

$$
\begin{equation*}
u_{f_{r}}(z)+\eta(z) \leq C \quad \text { a.e. in } D \tag{5.8}
\end{equation*}
$$

If we make $r$ large enough we derive from 5.6) and 5.8,

$$
\left(u_{f_{r}}(x)+\eta(x)\right)-\left(u_{f_{r}}(z)+\eta(z)\right)>0
$$

for $x \in A$ and $z \in D$. Since $|A|>0$ and $|D|>0$, this is a contradiction to (5.5). Let $r_{0}$ be such that $r>r_{0}$, support of $f_{r}$ does not touch the boundary of $B_{r}$ where $f_{r}$ is a solution of $P(r)$ for $r \geq r_{0}$. Then, $\operatorname{supp}\left(f_{r}\right)$ does not have any density point on the boundary of $B_{r}$ for $r>r_{0}$. This means that $\operatorname{supp}\left(f_{r}\right)$ has a positive distance from the boundary of $B_{r}$. Hence $\operatorname{supp}\left(f_{r}\right) \subset B\left(r_{0}\right)$. Therefore we obtain the inclusion $S\left(r_{0}\right) \subset S$. It yields that $P$ has a solution.

Acknowledgement. The first author wants to thank Dr. Behrouz Emamizadeh for his useful suggestions.

## References

[1] G. R. Burton; Rearrangements of functions, maximization of convex functionals and vortex rings, Math. Ann. 276, 225-253(1987).
[2] G. R. Burton; Variational problems on classes of rearrangements and multiple configurations for steady vorticies. Ann. Inst. H. Poincaré - Anal. Non Linéaire, 6, 295-319(1989).
[3] F. Cuccu, B. Emamizadeh and G. Porru; Nonlinear elastic membrance involving P-Lapllacian operator, Electronic Journal of Differential Equations, Vol. 2009, no. 49, 110 (2006).
[4] F. Cuccu, G. Porru and A. Vitolo; Optimization of the energy integral in two classes of rearrangements, Nonlinear Studies, Vol. 17, No. I, 23-35(2010).
[5] B. Emamizadeh; Steady vortex in a uniform shear flow of an ideal fluid, Proc. Roy. Soc. Edinburgh, 130A(2000), 801-812.
[6] B. Emamizadeh and J. V. Prajapat; Symmetry in rearrangemet optimization problems, Electronic Journal of Differential Equations, Vol. 2009, no. 149, 110(2009).
[7] B. Emamizadeh and M. Zivari-Rezapor; Rearrangement Optimization for Some Elleptic Equations, J. Optim. Theory Appl. 135: 367-379(2007).
[8] D. Gilbarg and N. S. Trudinger; Elliptic partial differential equations of second order. Springer-Verlag, second edt, New York, 1998.
[9] G. H. Hardy, J. E. Littlewood, G. Pólya; Inequalities, Cambridge: Cambridge University Press, 1934.
[10] M. Marras; Optimization in problems involving the P-Laplacian, Electronic Journal of Differential Equations, Vol. 2010, No. 02, 1-10 (2010).

Fariba Bahrami
Department of Applied Mathematics, University of Tabriz, Tabriz, Iran
E-mail address: fbahram@tabrizu.ac.ir
Hossain Fazli
Department of Applied Mathematics, University of Tabriz, Tabriz, Iran
E-mail address: fazli64@gmail.com


[^0]:    2000 Mathematics Subject Classification. 49J20, 49K20.
    Key words and phrases. Rearrangements class; variational problem; Poisson's equation; energy functional; minimization.
    © 2011 Texas State University - San Marcos.
    Submitted February 16, 2011. Published May 10, 2011.

