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OPTIMIZATION PROBLEMS INVOLVING POISSON’S
EQUATION IN R3

FARIBA BAHRAMI, HOSSAIN FAZLI

Abstract. In this article, we prove the existence of minimizers for integrals
associated with a second-order elliptic problem. For this three-dimensional
optimization problem, the admissible set is a rearrangement class of a given
function.

1. Introduction

We consider the Poisson’s equation

−∆u = f − 2h in R3

lim
|x|→+∞

u(x) = 0, f ∈ Lp
b(R

3), (1.1)

where Lp
b(R3) = {f ∈ Lp(R3) : f has bounded support} and p > 3. Here h is a

given non-negative function in h ∈ L∞(R3) with bounded support. For the sake of
convenience in the discussions, we have 2h instead of h, but it can be replaced by
h. By standard results on elliptic equations, problem (1.1) has a unique solution
u ∈ W 2,p

loc (R3); see [8]. Let uf be the solution of (1.1), we define energy functional
corresponding to (1.1) as

Ψλ(f) =
1
2

∫
R3
fuf + λ

∫
R3
gf, (1.2)

for f ∈ Lp
b(R3) where g ∈ C2(R3), lim|x|→+∞ g = +∞ and ∆g > c for some c > 0

and λ ≥ 0. In this paper we minimize the functional Ψλ on rearrangement class of
a fixed function. We separate the investigation of the particular case λ = 0, since
the discussion in the case λ > 0 does not carry over the case λ = 0. The same
optimization problems have been investigated in bounded domains for the Laplacian
operator in [1, 4, 6], for the p-Laplacian operator in [3, 10], for semilinear operators
in [7]. For the current problem we face two mathematical difficulties: firstly the
awkward nature of rearrangements class, and secondly a loss of compactness which
is caused by the unboundness of the domain R3. To overcome these difficulties we
first investigate the problem in a bounded domain. Then using Burton’s theory on
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rearrangements class, we show that a solution valid in a sufficiently large bounded
domain is in fact valid in the whole space.

2. Notation, definitions and statement of the main result

Henceforth we assume p ∈ (3,∞) and p′ is the conjugate exponent of p; that is,
1
p + 1

p′ = 1. Points in R3 are denoted by x = (x1, x2, x3), y = (y1, y2, y3), and so on.
By Br(x) we denote the ball centered at x ∈ R3 with radius r; if the center is the
origin, we write Br. Measure will refer to Lebesgue measure on R3, and if A ⊆ R3

is measurable then |A| will denote the measure of A. If A ⊂ R3 is a measurable
set, then we say x ∈ A is a density point of A whenever

|Bε(x) ∩A| > 0,

for all positive ε.
For a measurable function f : R3 → R+, the strong support or simply the

support of f is denoted supp(f) and is defined by

supp(f) = {x : f(x) > 0}.

For a measurable function f : R3 → R+ we define

‖f‖−∞ = ess inf(f) = sup{M ≥ 0 : f(x) ≥M, for almost all x}.

When f and g are non-negative measurable functions that vanish outside sets of
finite measure in R3, we say f is a rearrangement of g whenever

|{x ∈ R3 : f(x) ≥ α}| = |{x ∈ R3 : g(x) ≥ α}|,

for every positive α.
For any real integrable and non-negative function f vanishing outside a bounded

set Ω ⊂ R3 of measure m, we can define a decreasing rearrangement f∆ which is a
decreasing function on the interval (0,m) satisfying

|{s ∈ (0,m) : f∆(s) ≥ α}| = |{x ∈ Ω : f(x) ≥ α}|,

for every positive α. Also there exists a Schwarz rearrangement f∗ for f , that is a
rearrangemet of f as a radial decreasing function on a ball.

Let us fix f0 ∈ Lp(R3) ∩ L∞(R3) to be a measurable and non-negative function
vanishing outside a set of measure 4πa3/3, for some positive a ∈ R. The set of all
rearrangements on R3 of f0 with bounded support is denoted by R. The subset
of R containing functions vanishing outside the ball Br, where r ≥ a, is denoted
by R(r); henceforth we assume r ≥ a in order that R(r) is non-empty. The weak
closure in Lp(Br) of R(r) is denoted by R(r)w.

Now we are ready to introduce our minimizing problems Pλ as follows:

min
f∈R

Ψλ(f). (2.1)

The set of solutions of Pλ is denoted by Sλ. Similarly, for r ≥ a we define Pλ(r)
as follows:

min
f∈R(r)

Ψλ(f), (2.2)

and the set of solutions is denoted by Sλ(r). Our main results are the following:
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Theorem 2.1. There exists λ0 > 0 such that for every λ > λ0, the optimization
problem Pλ has a solution. Moreover, if fλ ∈ Sλ and ufλ

be the solution of (1.1)
corresponding with energy minimizer, then there exists a decreasing function ϕλ

such that
fλ = ϕλ ◦ (ufλ

+ η + λg), (2.3)
almost everywhere in R3 where η will be presented later.

Theorem 2.2. Let f0 and h be as introduced above. Let | supp(f0)| = 4πa3/3 and
| supp(h)| = 4πb3/3 for some a, b positive real numbers. We assume

b >
√

3a, ‖f0‖∞ < ‖h‖−∞. (2.4)

Then the optimization problem P0 has a solution.

3. Preliminary results

In this section we state and/or prove some lemmas which are essential in our
analysis. We begin with a result proved by Burton in [2].

Lemma 3.1. For r ≥ a and q ≥ 1, we have
(i) ‖f‖q = ‖f0‖q, for f ∈ R(r);
(ii) R(r)w is weakly sequentially compact in Lq(Br);
(iii) R(r)w = {f ∈ L1(Br) :

∫ s

0
f∆(t)dt ≤

∫ s

0
f∆
0 (t)dt, 0 < s ≤ 4πr3/3,

∫
Br
f =∫

Br
f0}.

Lemma 3.2. Let λ ≥ 0 and f ∈ Lp
b(R3). Then

(i) for the energy functional Ψλ we have

Ψλ(f) =
1
2

∫
R3
fKf −

∫
R3
ηf + λ

∫
R3
gf, (3.1)

where

Kf(x) =
1
4π

∫
R3

1
|x− y|

f(y)dy,

and η = Kh.
(ii) for f ∈ Lp

b(R3)

|Kf(x)| ≤ C‖f‖p, ∀x ∈ R3, (3.2)

where C depends only on p and | supp(f)|.

Proof. Using the fundamental solution of −∆ on R3 and asymptotic behavior of
the solutions in (1.1), we derive the unique solution of the problem (1.1), uf =
Kf − 2Kh, this yields (3.1). We note that uf (x) = O( 1

|x| ) as |x| → +∞. Indeed,
for large |x|, we have |x − y| > |x|/2 for y ∈ supp(f) ∪ supp(h). Thus, K(f − 2h)
is dominated by 2‖f − 2h‖1/|x|.

To prove (ii), let f be as in the lemma, we have

|Kf(x)| ≤ 1
4π

∫
R3

|f(y)|
|x− y|

dy ≤ 1
4π

∫
Br∗ (x)

f∗(y)
|x− y|

dy,

where f∗ is the Schwarz rearrangement of f with respect to x and

r∗ =
(3| supp(f)|

4π
)1/3

.
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The inequality is a consequence of Hardy-Littlewood inequality [9]. Now by Hölder’s
inequality, we obtain the assertion where

C =
1
4π

( ∫
Br∗ (x)

1
|x− y|p′

dy
)1/p′

=
(3| supp(f)|)

1
p′−

1
3

(4π)2/3(3− p′)1/p′
, (3.3)

and p′ is the conjugate exponent of p. �

Lemma 3.3. Let K be as the above lemma.

(i) If U is a bounded open subset in R3, K : Lp(U) → Lp′(U) is a linear
compact operator.

(ii) For f ∈ Lp(U), Kf ∈W 2,p(U) and −∆Kf = f , almost everywhere in U .

Proof. Since W 1,2(U) is compactly embedded into Lp′(U) for p > 3, in order to
show the compactness of K it is sufficient to prove the bondedness of K as a map
from Lp(U) into W 1,2(U). To do this, let f ∈ Lp(U) we have

|∇Kf(x)| ≤ 1
4π

∫
R3

|f(y)|
|x− y|2

dy, x ∈ U. (3.4)

Similar to the proof of the lemma above and the fact that p′ < 3
2 , we deduce

‖∇Kf‖2 ≤ C‖f‖p,

where C depends on |U | and p. This completes the proof. For a proof of part (ii)
see [5]. �

The following lemma is a simple variation of [2, Lemma 2.15].

Lemma 3.4. Let r ≥ a and υ ∈ Lp′(Br). Denote by Lα(υ) the level set of υ at
height α; that is,

Lα(υ) = {x ∈ Br : υ(x) = α}.

Let T : Lp(Br) → R be the linear functional defined by

T (f) =
∫

Br

fυ.

If f̂ is a minimizer of T relative to R(r)w and if∣∣∣Lα(υ) ∩ supp(f̂)
∣∣∣ = 0,

for every α ∈ R, then f̂ ∈ R(r) and

f̂ = ϕoυ,

almost everywhere in Br, for some decreasing function ϕ.

4. Investigation in the case: λ > 0

In this section we consider the case in which λ > 0. First we are concerned with
the existence of minimizers for the energy functional in a bounded domain, then
we will demonstrate the problem in the unbounded domain.
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4.1. Bounded domains. We begin with the following lemma.

Lemma 4.1. (i) The energy functional Ψλ attains its minimum relative to
R(r)w for r ≥ a.

(ii) If fr,λ is any minimizer for Ψλ relative to R(r)w, then fr,λ is a solution of
the following variational problem

inf
f∈R(r)w

∫
R3
f(ufr,λ

+ η + λg), (4.1)

where ufr,λ
is the solution of (1.1) corresponding to fr,λ and η = Kh.

Proof. From Lemma 3.2, the optimization problem (2.2) is equivalent to

inf
f∈R(r)

{1
2

∫
R3
fKf −

∫
R3
ηf + λ

∫
R3
gf

}
.

By Lemma 3.3, K is compact and symmetric, then Ψλ is a weakly sequentially con-
tinuous and Gâteaux differentiable functional. From Lemma 3.1, R(r)w is weakly
sequentially compact, hence Ψλ attains its minimum on it. If fr,λ is a minimizer of
Ψλ on R(r)w, since the Gâteaux differential of Ψλ at fr,λ is Kfr,λ − η + λg, then
by [2, Theorem 3.3], fr,λ is a solution of the variational problem (4.1). �

Lemma 4.2. Let r ≥ a and fr,λ be a minimizer of Ψλ relative to R(r)w. Let
ψr,λ = Kfr,λ − η + λg and denote by Lα(ψr,λ) the level set of ψr,λ at height α.
Then there exists λ0 > 0 such that for every λ > λ0,

|Lα(ψr,λ) ∩ supp(fr,λ)| = 0, ∀α ∈ R.

Proof. Let r ≥ a. From Lemma 4.1, for every λ > 0, the minimizer fr,λ of Ψλ on
R(r)w exists. Suppose there exists α̂ ∈ R such that |Lα̂(ψr,λ) ∩ supp(fr,λ)| > 0.
Let Sα̂ = Lα̂(ψr,λ) ∩ supp(fr,λ). Since ψr,λ = ufr,λ

+ η + λg, using [8, Theorem
7.7], lemma 3.3 and equation (1.1), we have

−∆ψr,λ = fr,λ − h− λ∆g = 0, a.e. in Sα̂. (4.2)

On the other hand, by Lemma 3.1,∫ s

0

f∆
r,λ(t)dt ≤

∫ s

0

f∆
0 (t)dt, s > 0. (4.3)

Then we deduce
‖f∆

r,λ‖∞ ≤ ‖f∆
0 ‖∞. (4.4)

Since f∆
r,λ is a rearrangement of fr,λ ∈ R(r)w and f∆

0 is a rearrangement of f0,
from equation (4.4), we conclude

‖fr,λ‖∞ ≤ ‖f0‖∞ . (4.5)

If we assume that λ0 = ‖f0‖∞/‖∆g‖−∞, then for every λ > λ0, we have

‖f0‖∞ < ‖h+ λ∆g‖−∞ (4.6)

Finally, from (4.5) and (4.6) for every λ > λ0, we deduce

‖fr,λ‖∞ < ‖h+ λ∆g‖−∞ (4.7)

which is a contradiction to (4.2). This completes the proof. �
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Lemma 4.3. Let λ0 be as in the lemma above. Then for every λ > λ0, the
variational problem Pλ(r) has a solution for r ≥ a. If fr,λ is any solution of Pλ(r),
then

fr,λ = ϕλ ◦ (ufr,λ
+ η + λg), (4.8)

almost everywhere in Br, for a decreasing unknown function ϕλ.

Proof. Let r ≥ a. From Lemma 4.1, there exists fr,λ ∈ R(r)w such that fr,λ is a
minimizer of Ψλ relative to R(r)w and a solution of (4.1). By Lemma 4.2, for every
λ > λ0, the level sets of ψr,λ = Kfr,λ − η + λg on supp(fr,λ) have zero measure.
We can use Lemma 3.4 to deduce equation (4.8). �

4.2. Unbounded domain. We proved that the variational problem Pλ(r) has a
solution for λ > λ0 and r ≥ a. Now we will show that if r is chosen large enough,
it ceases to have any influence whatever on the variational problem, Pλ(r). To do
this, we now perform some calculations to deduce the following result.

Lemma 4.4. Let λ > λ0. Then, there exists r0 > a such that for r ≥ r0 and
fr,λ ∈ Sλ(r) we have

supp(fr,λ) ⊂ Br0 .

Proof. To prove this lemma, it is sufficient to show that the support of fr,λ does
not have any dense point on the boundary of Br when r is chosen large enough.
Let rh > a be the smallest positive number for which supp(h) ⊂ Brh

. We consider
r > rh + 1 and fr,λ ∈ Sλ(r). From Lemma 4.3 we have

fr,λ = ϕλ ◦ (ufr,λ
+ η + λg), (4.9)

almost everywhere in Br, for a decreasing unknown function ϕλ where ufr,λ
is

the solution of (1.1) corresponding with fr,λ. To seek a contradiction suppose the
assertion is false. Then there exists x0 ∈ den(supp(fr,λ))(set of dense points of
support) such that |x0| = r. Let A = supp(fr,λ)∩B1(x0), then |A| > 0. For x ∈ A

Kfr,λ(x) =
1
4π

∫
Br

1
|x− y|

fr,λ(y)dy ≥ 1
4π
‖f0‖1

2r
(4.10)

and

η(x) =
1
4π

∫
Brh

1
|x− y|

h(y)dy ≤ 1
4π

‖h‖1
r − rh − 1

(4.11)

From (4.10), (4.11) and relation ufr,λ
= Kfr,λ − 2η, we obtain

ufr,λ
(x) + η(x) + λg(x) ≥ 1

4π

( 1
2r
‖f0‖1 −

1
r − rh − 1

‖h‖1
)

+ λg(x). (4.12)

Since | supp(fr,λ)| = 4πa3/3 and rh > a, there exists D ⊂ Brh
such that D ∩

supp(fr,λ) is empty and |D| > 0. For z ∈ D from Lemma 3.2 we have

Kfr,λ(z) =
1
4π

∫
Br

1
|z − y|

fr,λ(y)dy ≤ C‖f0‖p, (4.13)

where C depends on p and | supp(fr,λ)|. Also

η(z) =
1
4π

∫
Brh

1
|z − y|

h(y)dy ≥ 1
4π

1
2rh

‖h‖1. (4.14)

Then, from (4.13) and (4.14) we derive

ufr,λ
(z) + η(z) + λg(z) ≤ λg(z)− C1. (4.15)
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Now, since |z| ≤ rh for z ∈ D and (4.15), we deduce

ufr,λ
(z) + η(z) + λg(z) ≤ C2, z ∈ D, (4.16)

where C2 is a constant independent of r. If we make r large we derive from (4.12)
and (4.16)

(ufr,λ
(x) + η(x) + λg(x))− (ufr,λ

(z) + η(z) + λg(z)) > 0,

for x ∈ A and z ∈ D. Since |A| > 0, |D| > 0, this is a contradiction to (4.9). �

4.3. Proof of Theorem 2.1. Let r0 be as in Lemma 4.4. Assume fr,λ to be a
solution of Pλ(r) for r ≥ r0 and λ > λ0. From Lemma 4.4, supp(fr,λ) ⊂ Br0

for r > r0, therefore we obtain the inclusion Sλ(r0) ⊂ Sλ that it means Pλ has a
solution. Let fλ ∈ Sλ for λ > λ0. To prove the last part of theorem, if fλ ∈ Sλ we
have by applying Lemma 4.3

fλ = ϕλ ◦ (ufλ
+ η + λg), (4.17)

almost everywhere in Br for r > r0 and a decreasing unknown function ϕλ. Notice
that we can suppose ϕλ ≥ 0. Since ufλ

+ η + λg is a continuous function on the
compact set Br0 , and supp(fλ) ⊂ Br0 , there exists k ∈ R such that

ufλ
+ η + λg < k a.e supp(fλ). (4.18)

On the other hand, by applying condition (4.12) we have ufλ
+ η + λg → +∞, as

|x| → ∞. Then we can find r > r0 such that

ufλ
+ η + λg ≥ k a.e outside Br. (4.19)

Now define

ϕ̂λ(t) =

{
ϕλ(t) t < k

0 otherwise.

Clearly ϕ̂λ is a decreasing function and fλ = ϕ̂λ ◦ (ufλ
+ η+λg) almost everywhere

on R3.

5. The case λ = 0

To derive the existence result in this case we assume some conditions. Here we
suppose f0 and h satisfy all conditions mentioned in the Theorem 2.2. Now we
deduce the following result in bounded domain.

Lemma 5.1. Let r ≥ a and fr be a minimizer of Ψ0 relative to R(r)w. Let
ψr = ufr +η where ur is a solution of (1.1) corresponding to fr. Denote by Lα(ψr)
the level set of ψr at height α. Then

|Lα(ψr) ∩ supp(fr)| = 0, ∀α ∈ R.

Proof. Let r ≥ a. Suppose there exists α̂ ∈ R such that |Lα̂(ψr) ∩ supp(fr)| > 0.
Let Aα̂ = Lα̂(ψr) ∩ supp(fr). Then from equation (1.1), we have

−∆ψr = fr − h = 0, a.e. in Aα̂. (5.1)

So Aα̂ ⊂ supp(h). On the other hand, by Lemma 3.1, we have∫ s

0

f∆
r (t)dt ≤

∫ s

0

f∆
0 (t)dt, s > 0.

Then
‖f∆

r ‖∞ ≤ ‖f∆
0 ‖∞. (5.2)
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Since f∆
r is a rearrangement of fr and f∆

0 is a rearrangement of f0, from (5.2) we
obtain

‖fr‖∞ ≤ ‖f0‖∞. (5.3)
Finally, from (5.3) and condition (2.4), we deduce

‖fr‖∞ < ‖h‖−∞. (5.4)

which is a contradiction to (5.1). �

5.1. Proof of Theorem 2.2. Since the level sets of ψr have zero measure, similar
to the proof of Lemma 4.3 we can claim that there exists minimizer fr for Pr such
that

fr = ϕo(ufr
+ η), (5.5)

almost everywhere in Br, for a decreasing unknown function ϕ. To prove the
existence in unbounded domain, it is enough to show that the support of fr does
not have any dense point at the boundary of Br when r is chosen large enough. Let
rh > a be the smallest positive number for which supp(h) ⊂ Brh

. Since b >
√

3a,
then similar to presented trend in the proof of Lemma 4.4 there exits A ⊂ supp(fr)
with positive measure and D ⊂ supp(h) ∩ (supp(fr))c such that |D| > 0 and
|z − y| < b for almost every z, y ∈ D. Then, for r > rh + 1 we have

ufr (x) + η(x) ≥ 1
4π

( 1
2r
‖f0‖1 −

1
r − rh − 1

‖h‖1
)
, a.e. in A, (5.6)

ufr (z) + η(z) ≤ a2

2
‖f0‖∞ − 1

8πb
‖h‖−∞| supp(h)|, a.e. in D. (5.7)

Utilizing conditions mentioned in (2.4), there exists C < 0 such that

ufr
(z) + η(z) ≤ C a.e. in D. (5.8)

If we make r large enough we derive from (5.6) and (5.8),(
ufr (x) + η(x)

)
−

(
ufr (z) + η(z)

)
> 0,

for x ∈ A and z ∈ D. Since |A| > 0 and |D| > 0, this is a contradiction to (5.5).
Let r0 be such that r > r0, support of fr does not touch the boundary of Br where
fr is a solution of P (r) for r ≥ r0. Then, supp(fr) does not have any density
point on the boundary of Br for r > r0. This means that supp(fr) has a positive
distance from the boundary of Br. Hence supp(fr) ⊂ B(r0). Therefore we obtain
the inclusion S(r0) ⊂ S. It yields that P has a solution.

Acknowledgement. The first author wants to thank Dr. Behrouz Emamizadeh
for his useful suggestions.

References

[1] G. R. Burton; Rearrangements of functions, maximization of convex functionals and vortex
rings, Math. Ann. 276, 225-253(1987).

[2] G. R. Burton; Variational problems on classes of rearrangements and multiple configurations
for steady vorticies. Ann. Inst. H. Poincaré – Anal. Non Linéaire, 6, 295-319(1989).
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