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POSITIVE PERIODIC SOLUTIONS FOR THIRD-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

JINGLI REN, STEFAN SIEGMUND, YUELI CHEN

Abstract. For several classes of third-order constant coefficient linear differ-
ential equations we obtain existence and uniqueness of periodic solutions uti-
lizing explicit Green’s functions. We discuss an iteration method for constant
coefficient nonlinear differential equations and provide new conditions for the
existence of periodic positive solutions for third-order time-varying nonlinear
and neutral differential equations.

1. Introduction

Let X = C[0, ω] with norm ‖x‖ = maxt∈[0,ω] |x(t)|. We denote C+
ω = {u(t) ∈

X, u(t) > 0, u(t + ω) = u(t)}, and C−ω = {u(t) ∈ X, u(t) < 0, u(t + ω) = u(t)}.
We study the existence of positive periodic solutions for certain classes of third-
order differential equations. Third-order differential equations arise in a variety of
areas in agriculture, biology, economics and physics [9, 6, 14, 15, 21] and attract
a lot of attention of many researchers [5, 16, 4, 7, 8, 17, 27, 11, 23, 25, 22, 3, 13]
and the reference therein. In the study of higher-order (in particular third-order)
differential equations, the naive idea to translate the equation into a first order
system of differential equations by defining x1 = x, x2 = x′, x3 = x′′, . . . (see
[20, 18, 24, 19]), works well for showing existence of periodic solutions, however, it
does not obviously lead to existence proofs for positive periodic solutions, since the
condition x = x1 ≥ 0 of positivity for the higher order equation is different from the
natural positivity condition (x1, x2, . . . ) ≥ 0 for the corresponding system. Another
approach which is frequently used is to transform the third-order equation into a
corresponding integral equation and to establish the existence of positive periodic
solutions based on a fixed point theorem in cones. Following this path one needs an
explicit representation of the Green’s function for corresponding ordinary equation,
see [1, 2]. In [1], R. Agarwal gave the explicit Green’s function for the nth-order
and 2mth-order differential equations. In addition, Anderson studied the Green’s
function for the third-order boundary value problem in [2],

u′′′(t) = 0, t1 ≤ t ≤ t3
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u(t1) = u′(t2) = 0, γu(t3) + δu′′(t3) = 0

The singular nonlinear third-order periodic boundary value problem

u′′′(t) + ρ3u(t) = f(t, u(t)), t ∈ [0, 2π],

u(i)(0) = u(i)(2π), i = 0, 1, 2,
(1.1)

has been investigated in [16, 25, 4], where ρ ∈ (0, 1/
√

3) is a constant, f : (0, 2π)×
(0,+∞) → R+. By employing the Green’s function for the equation

u′′ − ρu′ + ρ2u = 0,

u(0) = u(2π), u′(0) = u′(2π),

the existence and multiplicity of positive solutions of (1.1) were established. How-
ever, the direct Green’s function of (1.1) was not constructed.

Motivated by these excellent works, we give the explicit forms of the Green’s
functions for several differential third-order equations with the ω-periodic boundary
value conditions and then provide sufficient conditions for the existence of positive
periodic solutions.

This article is divided into six parts. In order to get the main result, we first
consider the above four types of third-order constant coefficient linear differential
equations and present their Green’s functions and properties for those equations
in Section 2. In Section 3, by applying the Banach fixed-point theorem and the
results of Section 2, we obtain existence and uniqueness of solutions and an iteration
method for the following constant coefficient nonlinear differential equations

u′′′ − ρ3u = f(t, u), (1.2)

where f ∈ C([0, ω]×R, R). In Section 4, we study third-order time-varying nonlin-
ear differential equations,

u′′′ − a(t)u = f(t, u), (1.3)

u′′′ + a(t)u = f(t, u), (1.4)

a > 0, f ∈ C([0, ω] × [0,∞), [0,∞)). We provide sufficient conditions for the
existence of positive solutions for linear versions of equations (1.3) and (1.4). In
Section 5, we go one step further and discuss a more general third-order nonlinear
differential equation

y′′′ + p(t)y′′ + q(t)y′ + c(t)y = g(t, y). (1.5)

Here p, q, c ∈ C(R, R), g ∈ (R × [0,∞), [0,∞)), and g(t, y) > 0 for y > 0; p, q, c, g
are ω-periodic functions in t for some period ω > 0. In Section 6 we study a neutral
functional differential equation

(x(t)− cx(t− τ(t)))′′′ + a(t)x(t) = f(t, x(t− τ(t))), (1.6)

and present an existence result for positive periodic solutions for this equation
with an ω-periodic function τ ∈ C(R, R), constants ω, c with |c| < 1, a ∈ C+

ω ,
f ∈ C(R× [0,∞), [0,∞)) and f(t, x) is ω-periodic in t.
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2. Green’s Functions

Theorem 2.1. For ρ > 0 and h ∈ X, the equation

u′′′ − ρ3u = h(t),

u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω)
(2.1)

has a unique ω-periodic solution which is of the form

u(t) =
∫ ω

0

G1(t, s)(−h(s))ds, (2.2)

where

G1(t, s) =



2 exp( 1
2 ρ(s−t))[sin(

√
3

2 ρ(t−s)+ π
6 )−exp(− 1

2 ρω) sin(
√

3
2 ρ(t−s−ω)+ π

6 )]

3ρ2(1+exp(−ρω)−2 exp(− ρω
2 ) cos(

√
3

2 ρω))

+ exp(ρ(t−s))
3ρ2(exp(ρω)−1) , if 0 ≤ s ≤ t ≤ ω

2 exp( 1
2 ρ(s−t−ω))[sin(

√
3

2 ρ(t−s+ω)+ π
6 )−exp(− 1

2 ρω) sin(
√

3
2 ρ(t−s)+ π

6 )]

3ρ2(1+exp(−ρω)−2 exp(− ρω
2 ) cos(

√
3

2 ρω))

+ exp(ρ(t+ω−s))
3ρ2(exp(ρω)−1) , if 0 ≤ t ≤ s ≤ ω

(2.3)

Proof. It is easy to check that the associated homogeneous equation of (2.1) has the
solution v(t) = c1 exp(ρt) + exp(−ρt

2 )(c2 cos
√

3ρ
2 t + c3 sin

√
3ρ
2 t). The only periodic

solution of the associated homogeneous equation of (2.1) is the trivial solution;
i.e., c1, c2, c3 = 0. This follows by assuming that v(t) is periodic; we immediately
get that c1 = 0 and by assuming that c2

2 + c2
3 > 0 and choosing ϕ such that

sinϕ = c2√
c2
2+c2

3

, cos ϕ = c3√
c2
2+c2

3

, we obtain

v(t)√
c2
2 + c2

3

= exp
(
− ρt

2
)(

sinϕ cos
√

3ρ

2
t + cos ϕ sin

√
3ρ

2
t
)

= exp
(
− ρt

2
)
sin

(
ϕ +

√
3ρ

2
t
)

which for t →∞ contradicts periodicity of v, proving that c2 = c3 = 0.
Applying the method of variation of parameters, we obtain

c′1(t) =
exp(−ρt)

3ρ2
h(t), c′2(t) =

√
3

3 sin
√

3ρt
2 − 1

3 cos
√

3ρt
2

ρ2
exp(

ρt

2
)h(t),

c′3(t) =
− 1

3 sin
√

3ρt
2 −

√
3

3 cos
√

3ρt
2

ρ2
exp(

ρt

2
)h(t),

and then

c1(t) = c1(0) +
∫ t

0

exp(−ρs)
3ρ2

h(s) ds,

c2(t) = c2(0) +
∫ t

0

√
3

3 sin
√

3ρs
2 − 1

3 cos
√

3ρs
2

ρ2
exp(

ρs

2
)h(s) ds,

c3(t) = c3(0) +
∫ t

0

− 1
3 sin

√
3ρs
2 −

√
3

3 cos
√

3ρs
2

ρ2
exp(

ρs

2
)h(s) ds.
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u(t) = c1(t) exp(ρt) + exp(−ρt

2
)(c2(t) cos

√
3ρ

2
t + c3(t) sin

√
3ρ

2
t)

= c1(0) exp(ρt) + c2 exp(−ρt

2
) cos(

√
3

2
ρt) + c3(0) exp(−ρt

2
) sin(

√
3

2
ρt)

+
∫ t

0

exp(ρ(t− s))
3ρ2

h(s) ds +
∫ t

0

sin(
√

3
2 ρ(s− t)− π

6 )
6ρ2

exp(
ρ

2
(s− t))h(s) ds

Noting that u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω), we obtain

c1(0) =
∫ ω

0

exp(ρ(ω − s))
3ρ2(1− exp(ρω))

h(s) ds,

c2(0) =
∫ ω

0

2 exp(ρ(s−ω)
2 )[exp(−ρω

2 ) sin(π
6 −

√
3ρs
2 )− sin(π

6 −
√

3ρ(s−ω)
2 )]

3ρ2(exp(−ρω)− 2 exp(−ρω
2 ) cos

√
3ρω
2 + 1)

h(s) ds,

c3(0) =
∫ ω

0

2 exp(ρ(s−ω)
2 )[exp(−ρω

2 ) cos(π
6 −

√
3ρs
2 )− cos(π

6 −
√

3ρ(s−ω)
2 )]

3ρ2(exp(−ρω)− 2 exp(−ρω
2 ) cos

√
3ρω
2 + 1)

h(s) ds,

Therefore,

u(t) = c1(t) exp(ρt) + exp(−ρt

2
)(c2(t) cos

√
3ρ

2
t + c3(t) sin

√
3ρ

2
t)

=
∫ t

0

{
2 exp(

1
2
ρ(s− t))

[
sin(

√
3

2
ρ(t− s) +

π

6
)− exp(−1

2
ρω) sin(

√
3

2
ρ(t− s

− ω) +
π

6
)
]/[

3ρ2(1 + exp(−ρω)− 2 exp(−ρω

2
) cos(

√
3

2
ρω))

]
+

exp(ρ(t− s))
3ρ2(1− exp(ρω))

}
h(s) ds

+
∫ ω

t

{
2 exp(

1
2
ρ(s− t− ω))[sin(

√
3

2
ρ(t− s + ω) +

π

6
)− exp(−1

2
ρω)

× sin(
√

3
2

ρ(t− s) +
π

6
)
]/[

3ρ2(1 + exp(−ρω)− 2 exp(−ρω

2
) cos(

√
3

2
ρω))

]
+

exp(ρ(t + ω − s))
3ρ2(1− exp(ρω))

}
h(s) ds

=
∫ ω

0

G1(t, s)h(s) ds

where G1(t, s) is defined as in (2.3).
By direct calculation, we obtain the solution u satisfies the periodic boundary

value condition of the problem (2.1). �

Similarly, we have the following result.

Theorem 2.2. For ρ > 0 and h ∈ X the equation

u′′′ + ρ3u = h(t),

u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω)
(2.4)

has a unique ω-periodic solution

u(t) =
∫ ω

0

G2(t, s)h(s)ds, (2.5)
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where

G2(t, s) =



2 exp( 1
2 ρ(t−s))[sin(

√
3

2 ρ(t−s)−π
6 )−exp( 1

2 ρω) sin(
√

3
2 ρ(t−s−ω)−π

6 )]

3ρ2(1+exp(ρω)−2 exp( 1
2 ρω) cos(

√
3

2 ρω))

+ exp(ρ(s−t))
3ρ2(1−exp(−ρω)) , if 0 ≤ s ≤ t ≤ ω

2 exp( 1
2 ρ(t+ω−s))[sin(

√
3

2 ρ(t+ω−s)−π
6 )−exp( 1

2 ρω) sin(
√

3
2 ρ(t−s)−π

6 )]

3ρ2(1+exp(ρω)−2 exp( 1
2 ρω) cos(

√
3

2 ρω))

+ exp(ρ(s−t−ω))
3ρ2(1−exp(−ρω)) , if 0 ≤ t ≤ s ≤ ω

(2.6)

Theorem 2.3. For ρ > 0 and h ∈ X the equation

u′′′ − 3ρu′′ + 3ρ2u′ − ρ3u = h(t),

u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω)
(2.7)

has a unique ω-periodic solution

u(t) =
∫ ω

0

G3(t, s)(−h(s))ds, (2.8)

where

G3(t, s) =

{
[(s−t) exp(ρω)+ω−s+t]2+ω2 exp(ρω)

2(exp(ρω)−1)3 exp(ρ(t + ω − s)), 0 ≤ t ≤ s ≤ ω
[(s−t+ω) exp(ρω)−s+t]2+ω2 exp(ρω)

2(exp(ρω)−1)3 exp(ρ(t− s)), 0 ≤ s ≤ t ≤ ω

(2.9)

Proof. In this case, the associated homogeneous equation of (2.7) has solutions

u(t) = c1 exp(ρt) + c2t exp(ρt) + c3t
2 exp(ρt).

Analogously, by applying the method of variation of parameters we obtain

c′1(t) =
h(t)t2

2 exp(ρt)
, c′2(t) =

−h(t)t
exp(ρt)

, c′3(t) =
h(t)

2 exp(ρt)
,

c1(t) = c1(0) +
∫ t

0

h(s)s2

2 exp(ρs)
ds, c2(t) = c2(0) +

∫ t

0

−h(s)s
exp(ρs)

ds,

c3(t) = c3(0) +
∫ t

0

h(s)
2 exp(ρs)

ds.

Noting that u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω), we obtain

c1(0) =
∫ ω

0

h(s) exp(ρ(ω − s))[(s exp(ρω) + ω − s)2 + ω2 exp(ρω)]
2(1− exp(ρω))3

ds,

c2(0) =
∫ ω

0

h(s) exp(ρ(ω − s))(ω − s + s exp(ρω))
(1− exp(ρω))2

ds,

c3(0) =
∫ ω

0

h(s) exp(ρ(ω − s))
2(1− exp(ρω))

ds.

Therefore,

u(t) = c1 exp(ρt) + c2t exp(ρt) + c3t
2 exp(ρt)

=
∫ t

0

[(s− t + ω) exp(ρω)− s + t]2 + ω2 exp(ρω)
2(exp(ρω)− 1)3

exp(ρ(t− s))(−h(s)) ds

+
∫ ω

t

[(s− t) exp(ρω) + ω − s + t]2 + ω2 exp(ρω)
2(exp(ρω)− 1)3

× exp(ρ(t + ω − s))(−h(s)) ds
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=
∫ ω

0

G3(t, s)(−h(s)) ds

Where G3(t, s) is as defined in (2.9). �

A dual version of Theorem 2.3 which can be proved similarly.

Theorem 2.4. For ρ > 0 and h ∈ X the equation

u′′′ + 3ρu′′ + 3ρ2u′ + ρ3u = h(t),

u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω)
(2.10)

has a unique ω-periodic solution

u(t) =
∫ ω

0

G4(t, s)h(s)ds, (2.11)

where

G4(t, s) =



[(s−t) exp(−ρω)+ω−s+t]2+ω2 exp(−ρω)
2(1−exp(−ρω))3 exp(−ρ(t + ω − s)),

if 0 ≤ t ≤ s ≤ ω

[(s−t+ω) exp(−ρω)−s+t]2+ω2 exp(−ρω)
2(1−exp(−ρω))3 exp(−ρ(t− s)),

if 0 ≤ s ≤ t ≤ ω

(2.12)

Now we present the properties of the Green’s functions for (2.1), (2.4), (2.7),
(2.10). For convenience we use the abbreviations

A1 =
1

3ρ2(exp(ρω)− 1)
, B1 =

3 + 2 exp(−ρω
2 )

3ρ2(1− exp(−ρω
2 ))2

,

A2 =
ω2(1 + exp(ρω))
2(exp(ρω)− 1)3

, B2 =
ω2 exp(2ρω)(1 + exp(ρω))

2(exp(ρω)− 1)3
.

Theorem 2.5.
∫ ω

0
G1(t, s)ds = 1/ρ3 and if

√
3ρω < 4π/3 holds, then 0 < A1 <

G1(t, s) ≤ B1 for all t ∈ [0, ω] and s ∈ [0, ω].

Proof. Let

H1(t, s) =
exp(ρ(t− s))

3ρ2[exp(ρω)− 1]
, ∗

1(t, s) =
exp(ρ(t + ω − s))
3ρ2[exp(ρω)− 1]

,

H2(t, s) =
(
2 exp(

1
2
ρ(s− t))

[
sin(

√
3

2
ρ(t− s) +

π

6
)− exp(−1

2
ρω) sin(

√
3

2
ρ(t− s

− ω) +
π

6
)
])/(

3ρ2(1 + exp(−ρω)− 2 exp(−ρω

2
) cos(

√
3

2
ρω))

)
,

H∗
2 (t, s)

=
(
2 exp(

1
2
ρ(s− t− ω))

[
sin(

√
3

2
ρ(t− s + ω) +

π

6
)− exp(−1

2
ρω)

× sin(
√

3
2

ρ(t− s) +
π

6
)]

)/(
3ρ2(1 + exp(−ρω)− 2 exp(−ρω

2
) cos(

√
3

2
ρω))

)
.

A direct computation shows that
∫ ω

0
G1(t, s)ds = 1/ρ3. It is easy to see that

H1(t, s) > 0 for s ∈ [0, t] and H∗
1 (t, s) > 0 for s ∈ [t, ω] and exp(−ρω) + 1 −
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2 exp(−ρω
2 ) cos

√
3ρω
2 > [1 − exp(−ρω

2 )]2 > 0. For convenience, we denote θ =
√

3
2 ρ(t− s) + π

6 ,

g1(t, s) = sin
(√3

2
ρ(t− s) +

π

6
)
− exp

(
− ρω

2
)
sin

(√3
2

ρ(t− s− ω) +
π

6
)

= sin(θ)− exp(−ρω

2
) sin(θ −

√
3

2
ρω),

g∗1(t, s) = sin
(√3

2
ρ(t− s + ω) +

π

6
)
− exp(−ρω

2
) sin

(√3
2

ρ(t− s) +
π

6
)

= sin(θ +
√

3
2

ρω)− exp(−ρω

2
) sin θ.

If g1(t, s) > 0 and g∗1(t, s) > 0, then obviously H2(t, s) > 0, H∗
2 (t, s) > 0 and

G1(t, s) > 0.
For 0 ≤ s ≤ t ≤ ω, since

√
3ρω < 4π/3, we have

π

6
≤ θ ≤

√
3

2
ρω +

π

6
<

5π

6
,

−π

2
<

π

6
−
√

3
2

ρω ≤ θ −
√

3
2

ρω ≤ π

6
.

(i) For −π
2 < θ −

√
3

2 ρω ≤ 0, then sin θ > 0, sin(θ −
√

3
2 ρω) < 0, we obtain

g1(t, s) > 0
(ii) For 0 < θ −

√
3

2 ρω ≤ π
6 , we have sin θ > 0, sin(θ −

√
3

2 ρω) > 0, and

0 <

√
3

4
ρω ≤ θ −

√
3

4
ρω ≤ π

6
+
√

3
4

ρω <
π

2
.

g1(t, s) = sin(θ)− exp(−ρω

2
) sin(θ −

√
3

2
ρω)

≥ sin θ − sin(θ −
√

3
2

ρω)

= sin(θ −
√

3
4

ρω +
√

3
4

ρω)− sin(θ −
√

3
4

ρω −
√

3
4

ρω)

= 2 cos(θ −
√

3
4

ρω) sin(
√

3
4

ρω) > 0

For 0 ≤ t ≤ s ≤ ω,

−π

2
< −

√
3

2
ρω +

π

6
≤ θ ≤ π

6
,

π

6
≤ θ +

√
3

2
ρω ≤ π

6
+
√

3
2

ρω <
5
6
π.

(i) For −π
2 < θ ≤ 0, we have sin θ < 0, sin(θ +

√
3

2 ρω) > 0, then g∗1(t, s) > 0.
(ii)For 0 < θ ≤ π

6 , we have sin θ > 0, sin(θ +
√

3
2 ρω) > 0, and

0 < θ +
√

3
4

ρω <
π

2

g∗1(t, s) = sin(θ +
√

3
2

ρω)− exp(−ρω

2
) sin θ
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≥ sin(θ +
√

3
2

ρω)− sin θ

= sin(θ +
√

3
4

ρω +
√

3
4

ρω)− sin(θ +
√

3
4

ρω −
√

3
4

ρω)

= 2 cos(θ +
√

3
4

ρω) sin(
√

3
4

ρω) > 0

If
√

3ρω < 4π/, we obtain g1(t, s) > 0 and g∗1(t, s) > 0, proving that G(t, s) > 0
for all t ∈ [0, ω] and s ∈ [0, ω].

Next we compute a lower and an upper bound for G1(t, s) for s ∈ [0, ω]. We
have

A1 =
1

3ρ2(exp(ρω)− 1)
≤ exp(ρ(t + ω − s)

3ρ2(exp(ρω)− 1)
< G1(t, s)

≤ exp(ρ(t + ω − s))
3ρ2[exp(ρω)− 1]

+
exp(ρ(s−t−ω)

2 )[2 + 2 exp(−ρω
2 )]

3ρ2[exp(−ρω) + 1− 2 exp(−ρω
2 ) cos

√
3ρω
2 ]

≤ exp(ρω)
3ρ2[exp(ρω)− 1]

+
2 + 2 exp(−ρω

2 )

3ρ2[exp(−ρω) + 1− 2 exp(−ρω
2 ) cos

√
3ρω
2 ]

≤ 1
3ρ2[1− exp(−ρω)]

+
2 + 2 exp(−ρω

2 )
3ρ2[1− exp(−ρω

2 )]2

≤
3 + 2 exp(−ρω

2 )
3ρ2[1− exp(−ρω

2 )]2
= B1

and the proof is complete. �

Similarly, the following dual theorem can be proved.

Theorem 2.6.
∫ ω

0
G2(t, s)ds = 1/ρ3 and if

√
3ρω < 4π/3 holds, then 0 < A1 <

G2(t, s) ≤ B1 for all t ∈ [0, ω] and s ∈ [0, ω].

The next theorem provides bounds for G3.

Theorem 2.7.
∫ ω

0
G3(t, s)ds = 1/ρ3 and 0 < A2 ≤ G3(t, s) ≤ B2 for all t ∈ [0, ω]

and s ∈ [0, ω].

Proof. A direct computation shows that
∫ ω

0
G3(t, s)ds = 1/ρ3. Next we compute

bounds for G3(t, s). For convenience rewrite

G3(t, s) =

{
exp(ρ(ω−s+t))
2(exp(ρω)−1)3 H3(t, s), 0 ≤ t ≤ s ≤ ω
exp(ρ(t−s))

2(exp(ρω)−1)3 H∗
3 (t, s), 0 ≤ s ≤ t ≤ ω

with

H3(t, s) = [(s− t)(exp(ρω)− 1) + ω]2 + ω2 exp(ρω), 0 ≤ t ≤ s ≤ ω

H∗
3 (t, s) = [(s− t + ω) exp(ρω)− s + t]2 + ω2 exp(ρω), 0 ≤ s ≤ t ≤ ω

Since
∂H3(t, s)

∂s
= 2[(s− t)(exp(ρω)− 1) + ω](exp(ρω)− 1) > 0, 0 ≤ t ≤ s ≤ ω,

∂H∗
3 (t, s)
∂s

= 2[(s− t + ω) exp(ρω)− s + t](exp(ρω)− 1) > 0, 0 ≤ s ≤ t ≤ ω,
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the functions s 7→ H3(t, s) and s 7→ H∗
3 (t, s) are increasing. Recalling that

H3(t, t) = ω2 + ω2 exp(ρω) = ω2(1 + exp(ρω)),

H3(t, ω) = [(ω − t) exp(ρω) + t]2 + ω2 exp(ρω) ≤ ω2 exp(2ρω) + ω2 exp(ρω),

ω2 + ω2 exp(ρω) ≤ H∗
3 (t, 0) = [(ω − t) exp(ρω) + t]2 + ω2 exp(ρω),

H∗(t, t) = ω2 exp(2ρω) + ω2 exp(ρω).

and

0 < H3(t, t) ≤ H3(t, s) < H3(t, ω) ≤ ω2 exp(2ρω) + ω2 exp(ρω),

0 < ω2 + ω2 exp(ρω) ≤ H∗
3 (t, 0) ≤ H∗

3 (t, s) ≤ H∗(t, t),

Using these inequalities we obtain 0 < A2 ≤ G3(t, s) ≤ B2 and the proof is com-
plete. �

Similarly, we obtain the following analog theorem.

Theorem 2.8.
∫ ω

0
G4(t, s)ds = 1/ρ3 and 0 < A2 ≤ G4(t, s) ≤ B2 for all t ∈ [0, ω]

and s ∈ [0, ω].

3. Periodic Solution of (1.2)

For reference we briefly recall Banach’s fixed point theorem and related error
estimates.

Lemma 3.1 ([28]). Let M be a closed nonempty set in the Banach space X and
A : M → M a k-contractive operator; i.e., there exists k, 0 ≤ k < 1, with

‖Au−Av‖ ≤ k‖u− v‖ for all u, v ∈ M. (3.1)

Consider the operator equation

u = Au, u ∈ M, (3.2)

and for any u0 ∈ M the iteration

un+1 = Aun, n = 0, 1, . . . (3.3)

Then the following statements hold:
(i) Existence and uniqueness: there exists a unique u∗ which solves (3.2); i.e.,

Au∗ = u∗.
(ii) Convergence of the iteration method: For all u0 ∈ M one has limn→∞ un =

u∗.
(iii) Error estimates: For all n = 0, 1, . . . , one has the so-called a priori error

estimate
‖un − u‖ ≤ kn(1− k)−1‖u1 − u0‖, (3.4)

and the so-called a posteriori error estimate

‖un+1 − u‖ ≤ k(1− k)−1‖un+1 − un‖. (3.5)

(iv) Rate of convergence: For all n = 0, 1, . . . , one has ‖un+1−u‖ ≤ k‖un−u‖.

Now we consider (1.2). Let X be defined as in Section 1. Define an operator
D : X → X by

Du(t) =
∫ ω

0

G1(t, s)f(s, u(s))ds.
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By Theorem 2.1, we know that the periodic solution problem of (1.2) is equal to
the fixed point problem u = Du. For any u0 ∈ X define the sequence (un) by

un+1(t) =
∫ ω

0

G1(t, s)f(s, un(s))ds, n = 0, 1, . . . . (3.6)

We introduce the abbreviation:

ϑ =
2

3ρ

√
1 + exp(−ρω)− 2 exp(− 1

2ρω) cos(
√

3
2 ρω)

+
exp(ρω)

3ρ(exp(ρω)− 1)
. (3.7)

Theorem 3.2. Assume that the partial derivative fu ∈ C([0, ω]× R, R) and there
is a number l such that |fu(t, u)| ≤ l for all t ∈ [0, ω], u ∈ R. Then if lϑω < ρ, the
following statements hold:

(i) the original problem (1.2) has a unique solution u ∈ X;
(ii) the sequence (un) constructed by (3.6) converges to u in X;
(iii) for all n = 0, 1, 2, . . . , we obtain for k := lϑω

ρ the following error estimates

‖un − u‖ ≤ kn(1− k)−1‖u1 − u0‖, ‖un+1 − u‖ ≤ kn(1− k)−1‖un+1 − un‖.

Proof. By calculation, we obtain: For 0 ≤ t ≤ s ≤ ω,

|G1(t, s)|

≤
∣∣exp(ρ(t + ω − s))
3ρ2[exp(ρω)− 1]

∣∣
+

∣∣∣exp(ρ(s−t−ω)
2 )[2 sin(π

6 −
√

3ρ
2 (s− t− ω))− 2 exp(−ρω

2 ) sin(π
6 −

√
3ρ
2 (s− t))]

3ρ2[exp(−ρω) + 1− 2 exp(−ρω
2 ) cos(

√
3ρω
2 )]

∣∣∣
≤

∣∣ exp(ρω)
3ρ2[exp(ρω)− 1]

∣∣ +
∣∣∣ 2 exp(ρ(s−t−ω)

2 ) sin(π
6 −

√
3

2 ρ(s− t) + ϕ1)

3ρ2

√
exp(−ρω) + 1− 2 exp(−ρω

2 ) cos(
√

3ρω
2 )

∣∣∣
≤ exp(ρω)

3ρ2[exp(ρω)− 1]
+

2

3ρ2

√
exp(−ρω) + 1− 2 exp(−ρω

2 ) cos(
√

3ρω
2 )

=
ϑ

ρ
.

Similarly, we can obtain: For 0 ≤ s ≤ t ≤ ω,

|G1(t, s)| ≤
ϑ

ρ
.

So for all t ∈ [0, ω] and s ∈ [0, ω], we have |G1(t, s)| ≤ ϑ
ρ .

On the other hand, for any t ∈ [0, ω], and u, v ∈ R, by the mean value theorem,
there exists a w ∈ R such that

|f(s, u)− f(s, v)| ≤ |fu(s, w)||u− v| ≤ l|u− v|.

Therefore,

|Du−Dv| =
∣∣∣ ∫ ω

0

G1(t, s)[f(s, u(s))− f(s, v(s))]ds
∣∣∣

≤
∫ ω

0

|G1(t, s)||f(s, u(s))− f(s, v(s))|ds

≤ l|u− v|
∫ ω

0

|G1(t, s)|ds ≤ lϑω

ρ
|u− v|;
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i.e., ‖Du − Dv‖ ≤ k‖u − v‖ for all u, x ∈ X. Let M := X, the assertions follow
directly from Lemma 3.1. �

Similarly, we can obtain the corresponding results for the equations

u′′′ + ρ3u = f(t, u),

u′′′ − 3ρu′′ + 3ρ2u′ − ρ3u = f(t, u),

u′′′ + 3ρu′′ + 3ρ2u′ + ρ3u = f(t, u),

where f ∈ C([0, ω]× R, (0,+∞)).

4. Positive Solutions of (1.3), (1.4)

In this section, we consider the existence of positive periodic solutions for the
third-order nonlinear differential equations with ω-periodic boundary value condi-
tion

u′′′ − a(t)u = f(t, u), (4.1)
and

u′′′ + a(t)u = f(t, u), (4.2)
where a ∈ C([0, ω], (0,∞)), and f ∈ C([0, ω] × [0,∞), [0,∞)), and f(t, u) > 0 for
u > 0. We introduce the following abbreviations

a∗ = max{a(t) : t ∈ [0, ω]}, a∗ = min{a(t) : t ∈ [0, ω]}, rho = 3
√

a∗,

f0 = lim
x→0+

sup
t∈[0,ω]

f(t, x)
x

, f∞ = lim
x→∞

inf
t∈[0,ω]

f(t, x)
x

.

Let X be defined as in the beginning of Section 1. Moreover, define a cone K0 in
X by K0 = {x ∈ X : x(t) > θ‖x‖}, where 0 < θ = a∗A1

a∗B1
< 1 and for r > 0 define

K0r = {x ∈ K0 : ‖x‖ < r} and ∂K0r = {x ∈ K0 : ‖x‖ = r}.
First, we study the following equation corresponding to (4.1)

u′′′ − a(t)u = h(t), h ∈ C−ω (4.3)

Define operators T1, B1 : X → X by

(T1h)(t) =
∫ ω

0

G1(t, s)(−h(s))ds, (B1u)(t) = (a(t)− a∗)u(t). (4.4)

Clearly, if
√

3ρω < 4π/3 holds, then T1, B1 are completely continuous, (T1h)(t) > 0
for −h(t) > 0 and ‖B1‖ ≤ a∗ − a∗. By Theorem 2.1, the solution of (4.3) can be
written in the form

u(t) = (T1h)(t) + (T1B1u)(t). (4.5)
And for ‖T1B1‖ ≤ ‖T1‖‖B1‖ ≤ 1

a∗ (a∗ − a∗) < 1, we have

u(t) = (I − T1B1)−1(T1h)(t). (4.6)

Define an operator P1 : X → X by

(P1h)(t) = (I − T1B1)−1(T1h)(t). (4.7)

Obviously, for any h ∈ C−ω , u(t) = (P1h)(t) is the unique positive solution of (4.3).

Lemma 4.1. If
√

3ρω < 4π/3 holds, then P1 is completely continuous and

(T1h)(t) ≤ (P1h)(t) ≤ a∗

a∗
‖(T1h)(t)‖, for all h ∈ C−ω . (4.8)
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Proof. Since ‖T1B1‖ ≤ ‖T1‖‖B1‖ ≤ 1 − a∗
a∗ < 1, by a Neumann expansion of P1,

we have
P1 = (I − T1B1)−1T1

= (I + T1B1 + (T1B1)2 + · · ·+ (T1B1)n + . . . )T1

= T1 + T1B1T1 + (T1B1)2T1 + · · ·+ (T1B1)nT1 + . . .

(4.9)

By (4.9), and recalling that ‖T1B1‖ ≤ 1− a∗
a∗ and (T1h)(t) > 0, we obtain

(T1h)(t) ≤ (P1h)(t) ≤ a∗

a∗
‖(T1h)(t)‖, h ∈ C+

ω . (4.10)

From [10], we obtain that T1 is completely continuous and P1 is also completely
continuous. �

Define an operator Q1 : X → X by

Q1u(t) = P1(−f(t, u)). (4.11)

From the continuity of P1, it is easy to verify that Q1 is completely continuous in
X. Comparing (4.1) with (4.3), we see that the existence of solutions for equation
(4.1) is equivalent to the existence of fixed-points for the equation u = Q1u.

Lemma 4.2. Q1(K0) ⊂ K0.

Proof. It is easy to verify that Q1u(t + ω) = Q1u(t). For u ∈ K0, we have from
Lemma 4.1 that

Q1u(t) = P1(−f(t, u)) ≥ T1(−f(t, u))

=
∫ ω

0

G1(t, s)f(s, u(s))ds > A1

∫ ω

0

f(s, u(s))ds,

on the other hand

Q1u(t) = P1(−f(t, u)) ≤ a∗

a∗
‖T1(−f(t, u))‖

=
a∗

a∗
max

t∈[0,ω]

∫ ω

0

G1(t, s)f(s, u(s))ds ≤ a∗B1

a∗

∫ ω

0

f(s, u(s))ds.

Therefore,

Q1u(t) >
a∗A1

a∗B1
‖Q1u‖ = θ‖Q1u‖;

i.e., Q1(K0) ⊂ K0. �

Next, we study the following equation corresponding to (4.2).

u′′′ + a(t)u = h(t), h ∈ C+
ω (4.12)

Define operators T2, B2 : X → X by

(T2h)(t) =
∫ ω

0

G2(t, s)h(s)ds, (B2u)(t) = (a∗ − a(t))u(t). (4.13)

If
√

3ρω < 4π/3 holds, T2, B2 are completely continuous, (T2h)(t) > 0 for h(t) > 0
and ‖B2‖ ≤ a∗ − a∗. By Theorem 2.2, the solution of (4.12) can be written in the
form

u(t) = (T2h)(t) + (T2B2u)(t). (4.14)
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And for ‖T2B2‖ ≤ ‖T2‖‖B2‖ ≤ 1
a∗ (a∗ − a∗) < 1, we have

u(t) = (I − T2B2)−1(T2h)(t). (4.15)

Define an operator P2 : X → X by

(P2h)(t) = (I − T2B2)−1(T2h)(t). (4.16)

Obviously, for any h ∈ C+
ω , u(t) = (P2h)(t) is the unique positive solution of (4.12).

Similar to Lemma 4.1, we can prove the following result.

Lemma 4.3. If
√

3ρω < 4π/3 holds, then P2 is completely continuous and

(T2h)(t) ≤ (P2h)(t) ≤ a∗

a∗
(T2h)(t), for all h ∈ C+

ω . (4.17)

Define an operator Q2 : X → X by

Q2u(t) = P2(f(t, u)). (4.18)

Clearly, Q2 is completely continuous in X. Comparing (4.2) with (4.12), it is clear
that the existence of solutions for equation (4.2) is equivalent to the existence of
fixed-points for the equation u = Q2u.

Lemma 4.4. Q2(K0) ⊂ K0.

Proof. From the definition of Q2, it is easy to verify that Q2u(t+ω) = Q2u(t). For
u ∈ K0, we have from Lemma 4.3 that

Q2u(t) = P2(f(t, u)) ≥ T2(f(t, u)) =
∫ ω

0

G2(t, s)f(s, u(s))ds > A1

∫ ω

0

f(s, u(s))ds,

on the other hand

Q2u(t) = P2(f(t, u)) ≤ a∗

a∗
‖T2f(t, u)‖

=
a∗

a∗
max

t∈[0,ω]

∫ ω

0

G2(t, s)f(s, u(s))ds ≤ a∗B1

a∗

∫ ω

0

f(s, u(s))ds.

Therefore,

Q2u(t) >
a∗A1

a∗B1
‖Q2u‖ = θ‖Q2u‖;

i.e., Q2(K0) ⊂ K0. �

Lemma 4.5 ([12]). Let E be a Banach space and K a cone in E. For r > 0,
define Kr = {u ∈ K : ‖u‖ < r}. Assume that T : K̄r → K is completely continuous
operator such that Tx 6= x for x ∈ ∂Kr = {u ∈ K : ‖u‖ = r}, so

(i) if ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then i(T,Kr,K) = 0;
(ii) if ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then i(T,Kr,K) = 1.

Theorem 4.6. If
√

3ρω < 4π/3 holds, and f0 = 0, f∞ = ∞, then (4.1) has at
least one positive solution.

Proof. If f0 = 0, we can choose 0 < r1 < 1, such that f(t, u) ≤ εu for 0 ≤ u ≤
r1, t ∈ [0, ω], where the constant ε > 0 satisfies

a∗B1

a∗
εω < 1.
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By recalling the proof of Lemma 4.1, we obtain that

‖Q1u‖ ≤
a∗B1

a∗

∫ ω

0

f(s, u(s))ds ≤ a∗B1

a∗
ε

∫ ω

0

u(s)ds ≤ a∗B1

a∗
εω‖u‖ < ‖u‖

for u ∈ ∂K0r1 , t ∈ [0, ω]. On the other hand, if f∞ = ∞, there exists a constant
H̃ > r1 such that f(t, u) ≥ ηu for u ≥ H̃, t ∈ [0, ω], where the constant η > 0
satisfies A1ηωθ > 1, and again from the proof of Lemma 4.1, one can easily see
that

Q1u > A1

∫ ω

0

f(s, u(s))ds > A1η

∫ ω

0

u(s)ds > A1ηωθ‖u‖ > ‖u‖

for u ∈ ∂K0H̃ , t ∈ [0, ω]. By Lemma 4.5, we know that i(Q1,K0r1 ,K0) =
1, i(Q1,K0H̃ ,K0) = 0, i.e. i(Q1,K0H̃\K̄0r1 ,K0) = −1, and Q1 has a fixed point
in K0H̃\K̄0r1 . Consequently, (4.1) has a positive ω-periodic solution for r1 < u <

H̃. �

By Lemmas 4.3 and 4.4, we obtain the following result.

Theorem 4.7. If
√

3ρω < 4π/3 holds, and f0 = 0, f∞ = ∞, then (4.2) has at
least one positive solution.

5. Positive Solutions for (1.5)

Theorem 5.1. If 1
3p2(t) + p′(t) = q(t), then (1.5) can be transformed into

u′′′(t) + b(t)u(t) = f(t, u), (5.1)

where
b(t) = −1

3
p′′(t) +

2
27

p3(t)− 1
3
p(t)q(t) + c(t),

f(t, u) =
g(t, u exp(−

∫ p(t)
3 dt))

exp(−
∫ p(t)

3 dt)
,

(5.2)

b ∈ C([0, ω], R); f ∈ C([0, ω]× [0,∞), [0,∞)).

Proof. Let y = ux, then

y′ = u′x+ux′, y′′ = u′′x+2u′x′+ux′′, y′′′ = u′′′x+3u′′x′+3u′x′′+ux′′′. (5.3)

Substituting (5.3) into (1.5) yields

u′′′x + [3x′ + p(t)x]u′′ + [3x′′ + 2p(t)x′ + q(t)x]u′ + [x′′′ + p(t)x′′ + q(t)x′ + c(t)x]u

= g(t, ux),

or equivalently for x 6= 0,

u′′′ +
3x′ + p(t)x

x
u′′ +

3x′′ + 2p(t)x′ + q(t)x
x

u′ +
x′′′ + p(t)x′′ + q(t)x′ + c(t)x

x
u

=
g(t, ux)

x
.

It is easy to verify that 3x′ + p(t)x = 0 and 3x′′ + 2p(t)x′ + q(t)x = 0 if x =
exp(−

∫ p(t)
3 dt) and 1

3p2(t) + p′(t) = q(t). Hence (1.5) can be transformed to

u′′′(t) + b(t)u(t) = f(t, u),

where b(t), f(t, u) are given in (5.2). It is easy to see that b ∈ C([0, ω], R); f ∈
C([0, ω]× [0,∞), [0,∞)), f(t, u) > 0 for u > 0. �
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By Theorem 5.1, under the assumption that 1
3p2(t) + p′(t) = q(t), we know that

if u is a positive solution for (5.1), then y = u exp(−
∫ p(t)

3 dt) is also a positive
solution for (1.5). Next we discuss Eq (5.1) in two cases (i) b ∈ C([0, ω], (0,∞))
and (ii) b ∈ C([0, ω], (−∞, 0)).

Case (i): b ∈ C([0, ω], (−∞, 0)). In this case, (5.1) is equivalent to

u′′′ − a(t)u = f(t, u), (5.4)

with a(t) = −b(t), clearly a ∈ C([0, ω], (0,∞)), and a∗ = max{−b(t) : t ∈ [0, ω]},
a∗ = min{−b(t) : t ∈ [0, ω]}.

Case (ii): b ∈ C([0, ω], (0,∞)). In this case, (5.1) is equivalent to

u′′′ + a(t)u = f(t, u) (5.5)

here a(t) = b(t). Finally, by recalling the proofs for the existence of positive solu-
tions of (5.4) and (5.5) in Section 3 and by applying Theorem 5.1 we obtain

Theorem 5.2. If 1
3p2(t) + p′(t) = q(t) and

√
3ρω < 4π/3 hold, f0 = 0, f∞ = ∞,

then (1.5) has at least one positive solution.

We illustrate our results with an example.

Example 5.3. Consider the third-order differential equation

y′′′ + sin ty′′ +
(1

3
sin2 t + cos t

)
y′

+
(
− 1

1000
exp(sin t)− 1

3
sin t +

1
27

sin3 t +
1
3

sin t cos t
)
y

=
1

1000
exp(sin t)y2.

(5.6)

Comparing with (1.5), we are lead to the definitions

p(t) = sin t, q(t) =
1
3

sin2 t + cos t,

c(t) = − 1
1000

exp(sin t)− 1
3

sin t +
1
27

sin3 t− 1
3

sin t cos t,

g(t, y) =
1

1000
exp(sin t)y2.

It is easy to see that 1
3p2(t)+ p′(t) = q(t). Then by Theorem 5.1, we can transform

(5.6) into
u′′′ + b(t)u = f(t, u), (5.7)

where b(t) = − 1
1000 exp(sin t) and f(t, u) = 1

1000u2 exp
(
sin t + cos t

3

)
.

Since
√

3ρω = 1.5188 < 4π/3, and noticing that f0 = 0, f∞ = ∞, we know
from Theorem 5.2 that (5.7) has a positive solution u, and then (5.6) has a positive
solution y = u exp( cos s

3 ).

6. Positive Periodic Solution for (1.6)

Equation (1.6) can be rewritten as

(x(t)−cx(t−τ(t)))′′′+a(t)(x(t)−cx(t−τ(t))) = f(t, x(t−τ(t)))−ca(t)x(t−τ(t)).
(6.1)

With y(t) = x(t)− cx(t− τ(t)) Equation (6.1) can be transformed into

y′′′ + a(t)y(t) = f(t, x(t− τ(t)))− ca(t)x(t− τ(t)) (6.2)
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Define P : X → X by

(Ph)(t) = (I − TB)−1(Th)(t), (6.3)

where T,B are defined as T2, B2 in Section 3. Define operators Q,S : X → X by

(Qx)(t) = P (f(t, x(t− τ(t)))− ca(t)x(t− τ(t))), (Sx)(t) = cx(t− τ(t)). (6.4)

From (6.2) and (6.4) and the results of Section 3, we know that the existence of
periodic solutions for (1.6) is equivalent to the existence of solutions for the operator
equation

Qx + Sx = x in X. (6.5)

Lemma 6.1 ([26]). Let X be a Banach space, assume K is a bounded closed convex
subset of X and Q,S : K → X satisfy the following assumptions:

(i) Qx + Sy ∈ K,∀x, y ∈ K,
(ii) S is a contractive operator,
(iii) Q is a completely continuous operator in K.

Then Q + S has a fixed point in K.

Theorem 6.2. If
√

3ρω < 4π/3 holds, c ∈ (0, 1), and ca∗ ≤ f(t, x) − ca(t)x ≤ a∗

for all t ∈ [0, ω] and for all x ∈ [ ca∗
(1−c)a∗ , a∗

(1−c)a∗
], then (1.6) has at least one positive

ω-periodic solution x(t) with 0 < ca∗
(1−c)a∗ ≤ x(t) ≤ a∗

(1−c)a∗
.

Proof. Define K1 = {x ∈ X : x ∈ [ ca∗
(1−c)a∗ , a∗

(1−c)a∗
]}. Obviously, K1 is a bounded

closed convex set in X. Since P is completely continuous, so is Q. Besides, it is
easy to see that S is contractive if |c| < 1. Now we prove that Qx + Sy ∈ K1 for
all x, y ∈ K1. By Lemma 4.3, we obtain

Qx(t) + Sy(t)

= P (f(t, x(t− τ(t)))− ca(t)x(t− τ(t))) + cy(t− τ(t))

≤ a∗

a∗
‖T (f(t, x(t− τ(t)))− ca(t)x(t− τ(t)))‖+ cy(t− τ(t))

≤ a∗

a∗
max

t∈[0,ω]

∫ t+ω

t

G2(t, s)(f(s, x(s− τ(s)))− ca(s)x(s− τ(s)))ds + cy(t− τ(t))

≤ a∗

a∗
max

t∈[0,ω]

∫ t+ω

t

G2(t, s)a∗ds + c
a∗

(1− c)a∗

=
a∗

a∗
a∗

1
a∗

+
ca∗

(1− c)a∗
=

a∗

(1− c)a∗
(6.6)

On the other hand,

Qx(t) + Sy(t)

= P (f(t, x(t− τ(t)))− ca(t)x(t− τ(t))) + cy(t− τ(t))

≥ T (f(t, x(t− τ(t)))− ca(t)x(t− τ(t)) + cy(t− τ(t))

≥
∫ t+ω

t

G2(t, s)(f(s, x(s− τ(s)))− ca(s)x(s− τ(s)))ds + cy(t− τ(t))

≥ 1
a∗

ca∗ +
c2a∗

(1− c)a∗
=

ca∗
(1− c)a∗

(6.7)
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Combining (6.6) and (6.7), we obtain Qx + Sy ∈ K1, for all x, y ∈ K1. By Lemma
6.1 we obtain that Q+S has a fixed point x ∈ K1; i.e., (1.6) has a positive ω-periodic
solution x(t) with 0 < ca∗

(1−c)a∗ ≤ x(t) ≤ a∗

(1−c)a∗
. �

Example 6.3. Consider the equation(
x(t)− 1

2
x(t− cos2 t)

)′′′ + 1
1000

(1− 1
2

sin2 t)x(t)

=
1

1000
(1− 3

4
sin2 t) +

1
2000

(1− 1
2

sin2 t)x(t− cos2 t),

here c = 1
2 , a(t) = 1

1000 (1− 1
2 sin2 t) and τ(t) = cos2 t. Obviously a ∈ C(R, (0,∞))

is a π-periodic function with a∗ = 1
1000 , a∗ = 1

2000 , and then ρ = 1
10 . Noticing

that
√

3π
10 < 4π/3 holds. Moreover, it is easy to see that 1

4000 ≤ f(t, x) − ca(t)x =
1

1000 (1− 3
4 sin2 t) ≤ 1

1000 . Then by Theorem 6.2, we know the equation has at least
one positive solution x with 1

2 ≤ x(t) ≤ 4.

Theorem 6.4. If
√

3ρω < 4π/3 holds, c = 0, and 0 < f(t, x(t− τ(t))) ≤ a∗ for all
t ∈ [0, ω] and for all x ∈ [0, a∗/a∗], then (1.6) has at least one positive ω-periodic
solution x with 0 < x(t) ≤ a∗/a∗.

Proof. By (6.4), S = 0. We define K2 = {x ∈ X : x ∈ [0, a∗

a∗
]}. Similarly as in the

proof of Theorem 6.2 we obtain that (1.6) has at least one nonnegative ω-periodic
solution x(t) with 0 ≤ x(t) ≤ a∗

a∗
. Since F (x) > 0, it is easy to see from (6.5) and

(6.7), that x(t) > 0; i.e., (1.6) has at least one positive ω-periodic solution x(t) with
0 < x(t) ≤ a∗

a∗
. �

Example 6.5. Consider the equation

x′′′(t) +
1

1000
(
1− 1

2
sin2 t

)
x(t) =

1
1000

(
1− 1

3
sin2 t

)
− x(t− cos2 t)

4000
.

as in Example 6.3, we obtain
√

3π
10 < 4π/3 holds. Moreover, 0 < 1

6000 ≤ f(t, x(t −
τ(t))) = 1

1000 (1 − 1
3 sin2 t) − x(t−cos2 t)

4000 ≤ 1
1000 for all t ∈ [0, π] and x ∈ [0, 2]. All

assumptions of Theorem 6.4 are satisfied and hence the equation has at least one
positive solution x(t) with 0 < x(t) ≤ 2.

Theorem 6.6. If
√

3ρω < 4π/3 holds, c ∈ (−a∗
a∗ , 0), and −ca∗ < f(t, x)−ca(t)x ≤

a∗ for all t ∈ [0, ω] and x ∈ [0, 1], then (1.6) has at least one positive ω-periodic
solution x with 0 < x(t) ≤ 1.

Proof. As in the proof of Theorem 6.2, define K3 = {x ∈ X : x ∈ [0, 1]} and then
K3 is a bounded closed convex set in X. Q is a completely continuous, and S is
contractive since |c| < 1. Now we prove Qx+Sy ∈ K3 for all x, y ∈ K3. By Lemma
4.3, we obtain

(Qx)(t) + (Sy)(t)

= P (f(t, x(t− τ(t)))− ca(t)x(t− τ(t))) + cy(t− τ(t))

≤ a∗

a∗
‖T (f(t, x(t− τ(t)))− ca(t)x(t− τ(t)))‖+ cy(t− τ(t))

≤ a∗

a∗
max

t∈[0,ω]

∫ t+ω

t

G2(t, s)(f(s, x(s− τ(s)))− ca(s)x(s− τ(s)))ds + cy(t− τ(t))
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≤ a∗

a∗

∫ t+ω

t

G2(t, s)a∗ds = 1. (6.8)

On the other hand, by Theorem 2.6 and Lemma 4.1

(Qx)(t) + (Sy)(t)

= P (f(t, x(t− τ(t)))− ca(t)x(t− τ(t))) + cy(t− τ(t))

≥
∫ t+ω

t

G2(t, s)(f(s, x(s− τ(s)))− ca(s)x(s− τ(s)))ds + cy(t− τ(t))

> −ca∗
1
a∗

+ c = 0.

(6.9)

Combining (6.8) and (6.9), we obtain Qx + Sy ∈ K3 for any x, y ∈ K3. By Lemma
6.1, we obtain that (1.6) has at least one nonnegative ω-periodic solution x(t) with
0 ≤ x(t) ≤ 1. Since F (x) > −ca∗, by (6.9), we obtain x(t) > 0. So (1.6) has at
least one positive ω-periodic solution x with 0 < x(t) ≤ 1. �

Example 6.7. Consider the equation(
x(t) +

1
4
x(t− cos2 t)

)′′′ + 1
1000

(
1− 1

3
sin2 t

)
x(t)

=
(
1− 1

3
sin2 t

)[ 1
1500

− 1
4000

x(t− cos2 t)
]
.

As in Example 6.2, we can verify that all the assumptions of Theorem 6.6 hold,
then the equation has at least one positive solution x with 0 < x(t) ≤ 1.

Remark 6.8. In a similar way, we can discuss the third order neutral differential
equation

(x(t)− cx(t− τ(t)))′′′ − a(t)x(t) = f(t, x(t− τ(t))),

with a ∈ C(R, (0,∞)), τ ∈ C(R, R), f ∈ C(R × [0,∞), [0,∞)), a(t), τ(t) are ω-
periodic functions, f(t, x) is ω-periodic in t, and ω, c are constants with |c| < 1.
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