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VANISHING p-CAPACITY OF SINGULAR SETS FOR
p-HARMONIC FUNCTIONS

TOMOHIKO SATO, TAKASHI SUZUKI, FUTOSHI TAKAHASHI

Abstract. In this article, we study a counterpart of the removable singularity
property of p-harmonic functions. It is shown that p-capacity of the singular
set of any p-harmonic function vanishes, and such function is always weakly
N(p− 1)/(N − p)-integrable. Several related results are also shown.

1. Introduction

This article estimates the size of the singular sets and the local behavior of
solutions to some (quasilinear) elliptic equations of second order. The equations
to be treated here are general enough to include those studied by Serrin in his
milestone paper [11]. The size of singular sets is measured by the capacity, and the
local behavior of the solution is described by the weak Lq norm, for appropriate q.

First, given 1 ≤ p < N , we put

Kp = {f ∈ Lp∗(RN , R) : ∇f ∈ Lp(RN , RN )},

where 1
p∗ = 1

p −
1
N . Also define

Capp(A) = inf
{ ∫

RN

|∇f |pdx : f ≥ 0, f ∈ Kp, A ⊂ {f(x) ≥ 1}◦
}
,

where A ⊂ RN is a given subset, and B◦ indicates the interior of the set B ⊂ RN .
The operator Capp(A) is called p-capacity of A in short, and provides an outer
measure to RN ; see [3] for more information.

Next, given an open set Ω in RN with N ≥ 3 and 1 < q < ∞, the weak Lq space
on Ω, denoted by Lq

w(Ω), is defined by

Lq
w(Ω) = {u ∈ L1

loc(Ω) : ‖u‖Lq
w(Ω) < +∞}

and

‖u‖Lq
w(Ω) = sup{|K|−1+1/q

∫
K

|u|dx : K ⊂ Ω compact},

where |K| indicates the N -dimensional Lebesgue measure of K. Thus, we obtain
|x|−α ∈ L

N/α
w (B) and |x|−α /∈ LN/α(B) for 0 < α < N and B = B1(0). This
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Lq
w-space is sometimes called the Marcinkiewicz space or Lorentz Lq,∞ space; see

[18, 19].
The singular set is indicated by a closed set Σ ⊂ Ω in this paper. In the linear

case, we study the second order elliptic operator of divergence form defined on Ω\Σ;
i.e.,

Lu =
N∑

i,j=1

Di(aij(x)Dju) + c(x)u

satisfying the strict ellipticity condition
N∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 (1.1)

for any x ∈ Ω \ Σ and ξ = (ξ1, . . . , ξN ) ∈ RN , where δ > 0 is a constant and
aij(x) = aji(x), c(x) are bounded measurable functions.

The function u = u(x) discussed in the following theorem is defined on Ω \ Σ,
and is locally Hölder continuous there by the result of DeGiorgi, Nash, and Moser
[6]. The crucial assumption is as follows:

(A) There is s0 > 0 such that Ωs0 ⊂⊂ Ω, Ωs0 has a Lipschitz boundary, and Ωs

is open for any s ≥ s0, where Ωs = {x ∈ Ω \ Σ : |u(x)| > s} ∪ Σ.
This means that Σ is an actual singular set of u = u(x), and henceforth u = u(x)
is identified with a function defined on Ω, taking |u| = +∞ on Σ unless otherwise
stated.

Theorem 1.1. Let c(x) ≥ 0 a.e. x ∈ Ω \ Σ, and u = u(x) ∈ H1
loc(Ω \ Σ) be a

solution to
Lu = 0 in Ω \ Σ

satisfying (A). Then, it holds that Cap2(Σ) = 0 and u ∈ L
N/(N−2)
w (Ω).

There is an analogous result for the parabolic equation [10], i.e., the blow-up set
D(t) = {x ∈ Ω | u(x, t) = +∞} ⊂⊂ Ω of the solution u = u(x, t) to the differential
inequality ut − ∆u ≥ 0 is negligible with respect to the N -dimensional Lebesgue
measure for a.e. t. See also [14] for further developments on this subject.

The next theorem is the simplest form of our result on the quasilinear case.
Here, we obtain u ∈ C1,α

loc (Ω \ Σ) by a theorem of Tolksdorf, DiBenedetto, and
Lewis [17, 2, 9], and therefore, ∂Ωs0 is smooth if s0 is a regular value of u.

Theorem 1.2. Let 1 < p < N and u = u(x) ∈ W 1,p
loc (Ω \ Σ) be a solution to

div(|∇u|p−2∇u) = 0 in Ω \ Σ (1.2)

satisfying (A). Then Capp(Σ) = 0 and u ∈ L
N(p−1)/(N−p)
w (Ω).

Remark 1.3. Henceforth, Bm
r (z) denotes the m-dimensional ball centered at z

with radius r. We have two typical examples related to Theorem 1.2. First, if
Ω = BN

1 (0) and 1 < p < N , then u(x) = |x|(p−N)/(p−1) is a solution to (1.2) for
Σ = {0}, and actually, it holds that Capp(Σ) = 0 and u ∈ L

N(p−1)/(N−p)
w (Ω) if

2N
N+1 < p < N .

Next, if p < m < N is an integer, Ω = Bm
1 (0)× RN−m, and

x̃ = (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
N−m

)
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for x = (x1, . . . , xm, xm+1, . . . , xN ), then u(x) = |x̃|(p−m)/(p−1) is a solution to (1.2)
for Σ = {0} × RN−m. In this example, the assumption (A) does not hold in the
strict sense, because Ωs is not bounded for any s ≥ 0. But, if HN−m(A) denotes
the (N − m)-dimensional Hausdorff measure of A, then it holds that HN−m(Σ ∩
BN

R (0)) < +∞ for any R > 0. This implies Capm(Σ∩BN
R (0)) = 0 from the general

theory and hence Capm(Σ) = 0. More precisely, we have

Capp(A) ≤ CHN−p(A)

and HN−p(A) < +∞ implies Capp(A) = 0 for any 1 < p < N . It holds also that

u ∈ Lm(p−1)/(m−p)
w (Ω) ⊂ LN(p−1)/(N−p)

w (Ω)

because m(p− 1)/(m− p) ≥ N(p− 1)/(N − p) by p < m ≤ N .

Remark 1.4. The above theorems may be compared to the removable singularity
property studied by many authors. First, from the classical theorem by Carleson
[1, p.88] if u = u(x) ∈ L∞

loc(Ω) is a solution to

∆u = 0 in Ω \ Σ,

then the set Σ is removable (that is, there exists a harmonic function ũ defined in
Ω such that ũ = u on Ω \ Σ) if and only if Cap2(Σ) = 0.

This fact is extended to p-harmonic functions. Indeed, in [8, Theorem 7.36],
Heinonen, Kilpeläinen, and Martio considered a more general equation

div A(x,∇u) = 0 (1.3)

with the vector function A satisfying the growth condition A(x, ξ) ' |ξ|p−1. They
proved that if u ∈ L∞

loc(Ω) is a solution of (1.3) in Ω \Σ, then Σ is removable if and
only if Capp(Σ) = 0.

These results are concerned with bounded solutions, while Serrin [11] proved the
following theorem concerning θ-integrable solutions (and [12] for the linear case):
Let u be a continuous solution to the quasilinear elliptic equation of divergence
form

div A(x, u,∇u) = B(x, u,∇u) (1.4)

in Ω \ Σ, where A and B satisfy certain structural conditions admitting the p-
Laplace equation as a typical example. First, if u ∈ W 1,p

loc (Ω \Σ) is a weak solution
to (1.4) then u is locally Hölder continuous in Ω \ Σ. One of the main theorem
of [11], now says that if Capq(Σ) = 0 for 1 < p ≤ q ≤ N and u ∈ Lθ(Ω \ Σ) for
θ > q(p− 1)/(q − p), then Σ is removable; that is, there is continuous ũ defined on
all of Ω such that ũ = u on Ω \ Σ.

In the other result of [11], if u = u(x) is a solution to (1.4) in Ω\{0} with B ≡ 0
and 1 < p < N , and satisfies u ≥ L for some L > 0, then either Σ = {0} is removable
or u(x) ' |x|(p−N)/(p−1) → +∞ as |x| → 0. We see that u ∈ L

N(p−1)/(N−p)
w (Ω)

holds in the latter case.
The singular set Σ of our theorems are not removable. However, this set must

be small measured by the capacity, just because it is an actual singular set of the
solution. The solution, on the other hand, is neither locally bounded in Ω nor
θ-integrable in Ω \ Σ for some θ from the results quoted above, but still obeys a
profile of weak integrability in Ω.
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This weak integrability is slightly worse than the condition for which Serrin’s
removability theorem holds, and is just the same as the one of the fundamental
solution to the p-harmonic equation.

Remark 1.5. The solution in our theorems is assumed to be only in W 1,p
loc (Ω \Σ).

In contrast with this, if there is u = u(x) ∈ W 1,p(Ω0 \ Σ) satisfying (A), then it
follows that Capp(Σ) = 0, where Ω0 = Ωs0 . In other words, under the cost of
global p-integrability on Ω0 \ Σ with its first derivatives, this u does not need to
be a solution to any equation to infer Capp(Σ) = 0. Here, Γ0 = ∂Ω0 may not be
Lipschitz continuous.

In fact, since |u| = +∞ on Σ, we obtain min{|u|, s} = s on Σ for s > s0. Now,
we define fs = fs(x) ∈ Kp by

fs(x) =

{
1

s−s0

(
min{|u(x)|, s} − s0

)
x ∈ Ω0

0 x ∈ Ωc
0.

Then Σ ⊂ {x ∈ RN : fs(x) = 1}◦ and

∇fs =

{
1

s−s0
∇|u| on Ω0 \ Ωs

0 on Ωs ∪ Ωc
0,

which implies

Capp(Σ) ≤
∫

RN

|∇fs|pdx =
1

(s− s0)p

∫
Ω0\Ωs

|∇u|pdx

≤ 1
(s− s0)p

∫
Ω0\Σ

|∇u|pdx = o(1)

as s → +∞ by u ∈ W 1,p(Ω0 \ Σ).
Here, we note two properties related to the above consideration. First, any

function in W 1,p(Ω0 \ Σ) is identified with the one in W 1,p(Ω0) if Capp(Σ) = 0,
and therefore, each u ∈ W 1,p(Ω0 \Σ) satisfying (A) (with Γ0 = ∂Ω0 not necessarily
Lipschitz continuous) belongs to W 1,p(Ω0). Next, Capp(Σ) = 0 follows from∫

Ω0\Ωs

|∇u|pdx = o(sp) as s → +∞ (1.5)

if u ∈ W 1,p
loc (Ω \ Σ) satisfies (A). This fact is often used in the rest of the present

paper.
If the solution u = u(x) is sufficiently smooth on Ω\Σ, our theorems have a simple

proof using classical co-area formula, Sard’s lemma, and isoperimetric inequality.
This argument is described in §2 for the reader’s convenience. In the general case
without regularity, we follow the argument of Talenti [15] to compensate the lack
of smoothness of the solution. See §3.

2. Regular case

In the regular case, there is a transparent proof of Theorem 1.1. This section
is devoted to the description of the main idea of the proof, restricted to this case.
Thus, we treat the solution u = u(x) to ∆u = 0 in Ω \ Σ satisfying (A).

Since u is smooth in Ω \ Σ in this case, we may assume that s0 > 0 is a regular
value of |u| = |u|(x) by Sard’s lemma. Let Ω0 = Ωs0 . Then Γ0 = ∂Ω0 is smooth
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and the disjoint union of the boundaries of Ω±
0 = {x ∈ Ω0 \ Σ | ±u(x) > s0} ∪ Σ.

We obtain u ∈ H1
loc(Ω0 \ Σ) and

∆u = 0, |u| > s0 in Ω0 \ Σ, |u| = s0 on Γ0. (2.1)

Furthermore, for any s > s0,

ϕs = (sgnu) ·max{s− |u|, 0} (2.2)

satisfies ϕs ∈ H1(Ω0 \ Σ), suppϕs ⊂ Ω0 \ Σ,

ϕs|Γ0 = (sgnu) · (s− s0), ϕs = 0 on Ωs \ Σ,

and

∇ϕs =

{
−(∇u) on Ω0 \ Ωs

0 on Ωs \ Σ.

Testing this on (2.1), we obtain∫
Ω0\Ωs

|∇u|2dx = (s− s0)K = o(s2) (2.3)

as s → +∞, where

K = −
∫

Γ0

(sgn u)
∂u

∂ν
dHN−1

and ν is the outer unit normal to Γ0. Since Γ0 is smooth, the above K > 0 is defined
in the classical sense. This implies Cap2(Σ) = 0 by (2.3). See (1.5) of Remark 1.5.

Next, differentiating both sides of (2.3), we have

− d

ds

∫
Ωs\Ωs′

|∇u|2dx =
d

ds

∫
Ω0\Ωs

|∇u|2dx = K

for s ∈ (s0, s
′), where s′ > s0 is arbitrary. Since u = u(x) is smooth on Ω \ Σ,

Sard’s lemma guarantees that the set of critical values of u has the one-dimensional
Lebesgue measure 0. Then, from the co-area formula, we obtain

K = − d

ds

∫
Ωs\Ωs′

|∇u|2dx =
∫
{|u|=s}

|∇u|dHN−1 a.e. s ∈ (s0, s
′). (2.4)

We apply the co-area formula also to µ(s) = |Ωs| =
∫
Ωs

dx. Again, Sard’s lemma
assures

− µ′(s) =
∫
{|u|=s}

|∇u|−1dHN−1 a.e. s > s0. (2.5)

By (2.4), (2.5), and the Schwarz inequality( ∫
{|u|=s}

dHN−1
)2

≤
∫
{|u|=s}

|∇u|dHN−1 ·
∫
{|u|=s}

|∇u|−1dHN−1,

now we obtain

HN−1({|u| = s})2 ≤ K · (−µ′(s)) a.e. s ∈ (s0, s
′). (2.6)

The classical isoperimetric inequality in RN , on the other hand, implies

NC
1/N
N HN (Ωs)(N−1)/N ≤ HN−1({|u| = s}),

where CN is the volume of N -dimensional unit ball. Combining this with (2.6), it
follows that

N2C
2/N
N µ(s)2(N−1)/N ≤ K · (−µ′(s));
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that is,
C(N,K) ≤ µ(s)−2(N−1)/N · (−µ′(s)) a.e. s ∈ (s0, s

′) (2.7)

for C(N,K) = N2C
2/N
N K−1.

If we define

φ(µ) =
N

N − 2
µ−(N−2)/N , (2.8)

then
d

ds
φ(µ(s)) = µ(s)−2(N−1)/N · (−µ′(s)),

and therefore, (2.7) is written as

C(N,K) ≤ d

ds
φ(µ(s)) a.e. s ∈ (s0, s

′).

Integrating both sides from s0 to s′ and rewriting s′ to s, we obtain

C(N,K)(s− s0) + φ(µ(s0)) ≤ φ(µ(s)),

φ(µ(s))−1 ≤ {C(N,K)(s− s0) + φ(µ(s0))}−1.
(2.9)

Here, we used ∫ s′

s0

d

ds
φ(µ(s))ds ≤ φ(µ(s′))− φ(µ(s0)),

assured by the fact that s 7→ φ(µ(s)) is non-decreasing. We note that the distribu-
tion function µ = µ(s) is not necessarily absolutely continuous in s even if u = u(x)
is smooth in x. More precisely, it is only right-continuous and even discontinuous
points can arise.

Multiplying both sides by s in (2.9), now we have(N − 2
N

)
sµ(s)(N−2)/N ≤ s

C(N,K)(s− s0) + φ(µ(s0))

sN/(N−2)µ(s) ≤
( N

N − 2
)N/(N−2)

sN/(N−2){C(N,K)(s− s0) + φ(µ(s0))}−N/(N−2)

for s > s0, and therefore,

sN/(N−2)µ(s) = O(1) as s → +∞.

This implies u ∈ L
N/(N−2)
w (Ω). See [5].

3. Irregular case

In the irregular case, we use the co-area formula and the isoperimetric inequal-
ity associated with the perimeter. Such tools were adopted by Talenti [15] in the
proof of his comparison theorem to overcome the lack of smoothness of the solu-
tion. To begin with, we collect several facts concerning the perimeter used in later
arguments.

First, the co-area formula to functions of bounded variation Fleming and Rishel
[4] is applicable to u ∈ W 1,1

loc (Ω \ Σ), and it holds that

− d

ds

∫
Ωs\Ωs′

|∇u|dx = P (Ωs) a.e. s0 < s < s′. (3.1)
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The right-hand side abbreviates P (Ωs, RN ), where for the measurable set E ⊂ RN

and an open set U ⊂ RN , P (E,U) denotes DeGiorgi’s perimeter of E in U ; i.e.,

P (E,U) = sup
{ ∫

E

div~gdx : ~g ∈ C∞
0 (U, RN ),max

x∈U
: ~g(x)| ≤ 1

}
.

A measurable set E ⊂ RN satisfying P (E) < +∞ is called a Caccioppoli set, or
a set of finite perimeter in RN . It is a set whose indicator function has a bounded
total variation on RN . See [7]. DeGiorgi’s isoperimetric inequality is concerned
with these Caccioppoli sets in RN . More precisely, if E is such a set, then

NC
1/N
N |E|(N−1)/N ≤ P (E). (3.2)

Finally, we use the general trace lemma. See [16, Chapter I, Theorem 1.2] or
[13, Lemma 1.2.2] for the proof.

Lemma 3.1. If Ω ⊂ RN (N ≥ 2) is a bounded domain with Lipschitz boundary
∂Ω, 1 < q < ∞, q′ = q

q−1 ,

Eq(Ω) = {~v ∈ Lq(Ω)N : div ~v ∈ Lq(Ω)},

and

‖~v‖Eq
=

(
‖~v‖q

q + ‖div ~v‖q
q

)1/q

,

then there is a bounded linear operator, called the generalized normal component
trace,

Γν : ~v ∈ Eq(Ω) 7→ Γν~v ∈ W−1/q,q(∂Ω) =
(
W 1/q,q′(∂Ω)

)∗
such that g 7→ 〈g,Γν~v〉 is compatible to the functional

g ∈ W 1/q,q′(∂Ω) 7→
∫

∂Ω

g(x)ν(x) · ~v(x)dHN−1

defined for ~v ∈ C∞(Ω)N and the exterior unit normal ν. It holds that

(~v,∇ϕ) + (div~v, ϕ) = 〈Γν~v, γ0ϕ〉

for ~v ∈ Eq(Ω) and ϕ ∈ W 1,q′(Ω), where

γ0 : W 1,q′(Ω) → W 1/q,q′(∂Ω)

is the usual trace operator.

Proof of Theorem 1.1. As in the previous section, we note that u ∈ H1
loc(Ω0 \Σ)

satisfies
Lu = 0, |u| > s0 in Ω0 \ Σ, |u| = s0 on Γ0

for Ω0 = Ωs0 and Γ0 = ∂Ω0. Since s0 > 0, this Γ0 is the disjoint union of the
Lipschitz boundaries of Ω±

0 = {x ∈ Ω0 \ Σ : ±u(x) > s0} ∪ Σ, and testing this by
ϕs = ϕs(x) defined in (2.2) is permitted. We obtain

N∑
i,j=1

∫
Ω0\Ωs

aijDjuDiudx = (s− s0)K −
∫

Ω0\Ωs

c|u|(s− |u|)dx, (3.3)

where

K = −〈 ∂u

∂νL
, sgn u〉H−1/2(Γ0),H1/2(Γ0)
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and

∂u

∂νL
=

N∑
i,j=1

νiaijDju ∈ H−1/2(Γ0) ≡ W−1/2,2(Γ0)

is the general trace of

~v =
( N∑

j=1

aijDju
)

i=1,...,N
∈ E2,loc(Ω0 \ Σ).

We emphasize that sgn u = ±1 exclusively on each component of Γ0, because
u = u(x) is continuous in Ω \ Σ. Using (1.1) and c ≥ 0, we obtain

δ

∫
Ω0\Ωs

|∇u|2dx ≤ (s− s0)K = o(s2)

as s → +∞, and hence Cap2(Σ) = 0.
To show u ∈ L

N/(N−2)
w (Ω), we use the fact that

gs(x) = c(x)|u(x)|(s− |u(x)|)

is non-negative and non-decreasing in s for each x ∈ Ω0 \ Ωs. The set Ω0 \ Ωs is
also non-decreasing in s, and therefore, the function

s 7→ I(s) =
∫

Ω0\Ωs

c|u|(s− |u|)dx

is non-decreasing. Thus, differentiating both sides of (3.3), we obtain

d

ds

∫
Ω0\Ωs

N∑
i,j=1

aijDjuDiudx = − d

ds

∫
Ωs\Ωs′

N∑
i,j=1

aijDjuDiudx

≤ K a.e. s ∈ (s0, s
′),

(3.4)

where s′ > s0 is arbitrary.
The next lemma is a key ingredient of the proof, where µ(s) = |Ωs|.

Lemma 3.2. It holds that

− d

ds

∫
Ωs\Ωs′

|∇u|dx ≤ (−µ′(s))1/2
(
− d

ds

∫
Ωs\Ωs′

δ−1
N∑

i,j=1

aijDjuDiudx
)1/2

(3.5)

a.e. s ∈ (s0, s
′).

Proof. First, the mapping

s ∈ (s0, s
′) 7→

∫
Ωs\Ωs′

|∇u|dx
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is non-increasing. Given 0 < h � 1 in s < s + h < s′, we take its differential
quotient. In fact, by the Schwarz inequality and (1.1), we obtain

1
h

[ ∫
Ωs\Ωs′

|∇u|dx−
∫

Ωs+h\Ωs′

|∇u|dx
]

=
1
h

∫
Ωs\Ωs+h

|∇u|dx

≤
( 1

h

∫
Ωs\Ωs+h

dx
)1/2( 1

h

∫
Ωs\Ωs+h

|∇u|2dx
)1/2

≤
(µ(s)− µ(s + h)

h

)1/2( 1
h

∫
Ωs\Ωs+h

δ−1
N∑

i,j=1

aijDjuDiudx
)1/2

=
(
− µ′(s)

)1/2
(
− d

ds

∫
Ωs\Ωs′

δ−1
N∑

i,j=1

aijDjuDiudx
)1/2

+ o(1)

as h ↓ 0, and hence (3.5) follows. �

Now, we continue the proof of Theorem 1.1. It holds that

NC
1/N
N µ(s)(N−1)/N ≤ P (Ωs) = − d

ds

∫
Ωs\Ωs′

|∇u|dx a.e. s ∈ (s0, s
′) (3.6)

by (3.2)-(3.1). Combining this with (3.5), we obtain

N2C
2/N
N ≤ µ(s)−2(N−1)/N (−µ′(s))

(
− d

ds

∫
Ωs\Ωs′

δ−1
N∑

i,j=1

aijDjuDiudx
)

for a.e. s ∈ (s0, s
′). Then (3.4) guarantees

C(N,K) ≤ d

ds
φ(µ(s)) a.e. s ∈ (s0, s

′)

for φ = φ(µ) defined by (2.8), where C(N,K) = δN2C
2/N
N K−1.

At this stage, we can follow the argument in the previous section, and obtain
u ∈ L

N/(N−2)
w (Ω).

Proof of Theorem 1.2. Testing

div
(
|∇u|p−2∇u

)
= 0, |u| > s0 in Ω0 \ Σ, |u| = s0 on Γ0

by ϕs = ϕs(x) of (2.2) is permitted similarly, and then we obtain∫
Ω0\Ωs

|∇u|pdx = (s− s0)K = o(sp) as s → +∞, (3.7)

where
K = −〈|∇u|p−2 ∂u

∂ν
, sgn u〉W−1/p′,p′ (Γ0),W 1−1/p,p(Γ0)

for 1
p′ + 1

p = 1. Thus, it holds that Capp(Σ) = 0. Differentiating (3.7) with respect
to s, on the other hand, we obtain also

− d

ds

∫
Ωs\Ωs′

|∇u|pdx =
d

ds

∫
Ω0\Ωs

|∇u|pdx = K a.e. s ∈ (s0, s
′), (3.8)

for s′ > s0 arbitrarily fixed. Then, the following lemma takes place of Lemma 3.2,
which is proven by Hölder’s inequality instead of the Schwarz inequality.
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Lemma 3.3. It holds that

− d

ds

∫
Ωs\Ωs′

|∇u|dx ≤ (−µ′(s))1/p′
(
− d

ds

∫
Ωs\Ωs′

|∇u|pdx
)1/p

for a.e. s ∈ (s0, s
′).

Inequality (3.6), on the other hand, is derived from DeGiorgi’s isoperimetric
inequality and Fleming-Rishel’s co-area formula. This inequality, therefore, is ap-
plicable even to this case, and we obtain

NC
1/N
N µ(s)(N−1)/N ≤ (−µ′(s))1/p′

(
− d

ds

∫
Ωs\Ωs′

|∇u|pdx
)1/p

,

and hence

Np′C
p′/N
N ≤ µ(s)−p′(N−1)/N (−µ′(s))

(
− d

ds

∫
Ωs\Ωs′

|∇u|pdx
)p′/p

for a.e. s ∈ (s0, s
′). Combining this with (3.8), we have

Np′C
p′/N
N ≤ µ(s)−

p′(N−1)
N Kp′/p · (−µ′(s));

i.e.,

C(N,K) ≤ d

ds
φ(µ(s)) a.e. s ∈ (s0, s

′), (3.9)

for

φ(µ) =
N(p− 1)
N − p

µ−
N−p

N(p−1) and C(N,K) = Np′C
p′/N
N K−p′/p. (3.10)

Integrating (3.9) from s0 to s′, rewriting s′ to s, and noting the monotonicity of
s 7→ φ(µ(s)), we obtain

C(N,K)(s− s0) + φ(µ(0)) ≤ φ(µ(s)),

φ(µ(s))−1 ≤
(
C(N,K)(s− s0) + φ(µ(0))

)−1
.

Multiplying both sides by s, now we have

N − p

N(p− 1)
· sµ(s)(N−p)/N(p−1) ≤ s

C(N,K)(s− s0) + φ(µ(0))( N − p

N(p− 1)

)N(p−1)
N−p · s

N(p−1)
N−p µ(s) ≤ s

N(p−1)
N−p {C(N,K)(s− s0) + φ(µ(0))}−

N(p−1)
N−p .

This implies

s
N(p−1)

N−p µ(s) = O(1) as s →∞, (3.11)

and hence u ∈ L
N(p−1)/(N−p)
w (Ω).

4. Generalizations

This section is devoted to several generalizations. First, we show the following
result.

Theorem 4.1. Regardless of the sign of c = c(x), it holds that Cap2(Σ) = 0 and
log(1 + |u|) ∈ L

N/(N−2)
w (Ω) in Theorem 1.1.
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Proof. The second term of the right-hand side of (3.3),

−
∫

Ω0\Ωs

c|u|(s− |u|)dx = −I(s)

is estimated from above by

−I(s) ≤ ‖c−‖∞
∫

Ω0\Ωs

|u|(s− |u|)dx ≤ s2‖c−‖∞
∫

Ω0\Ωs

|u|
s

dx

where c(x) = c+(x)− c−(x), c± ≥ 0.
Recall that by assumption (A), Ω0 is a compact subset of Ω. Since∫

Ω0\Ωs

|u|
s

dx =
∫

Ω0

IΩc
s
(x)

|u|
s

dx

and ∣∣IΩc
s
(x)

|u|
s

∣∣ ≤ 1 ∈ L1(Ω0), IΩc
s
(x)

|u(x)|
s

→ 0 a.e. x ∈ Ω0

as s →∞, where IA is the indicator function of a set A, we obtain∫
Ω0\Ωs

|u|
s

dx = o(1)

from the dominated convergence theorem. Going back to (3.3), we have∫
Ω0\Ωs

|∇u|2dx = o(s2).

Hence Cap2(Σ) = 0. Also we have∫
Ω0\Ωs

c|u|(s− |u|)dx = o(s2).

Since c = c(x) ∈ L∞(Ω \ Σ), the above I = I(s) is a function of bounded variation
in s. Given 0 < h � 1 in s < s + h < s′, we obtain

−
(I(s + h)− I(s)

h

)
= − 1

h

( ∫
Ω0\Ωs+h

c|u|(s + h− |u|)dx−
∫

Ω0\Ωs

c|u|(s− |u|)dx
)

= − 1
h

∫
Ωs\Ωs+h

c|u|(s + h− |u|)dx−
∫

Ω0\Ωs

c|u|dx

≤ ‖c−‖∞
( ∫

Ωs\Ωs+h

|u|dx +
∫

Ω0\Ωs

|u|dx
)

= ‖c−‖∞
∫

Ω0\Ωs+h

|u|dx

≤ ‖c−‖∞|Ω0|(s + h).

Therefore,

d

ds

∫
Ω0\Ωs

N∑
i,j=1

aijDjuDiu dx ≤ K + ‖c−‖∞|Ω0|s a.e. s ∈ (s0, s
′).
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Using this instead of (3.4), we obtain

φ(µ(s))−1 ≤ C (log(s + 1))−1
,

(log(s + 1))N/(N−2)
µ(s) = O(1) as s → +∞

for φ = φ(µ) defined by (2.8). The last equality implies that log(1 + |u|) ∈
L

N/(N−2)
w (Ω). �

Similar results are also valid to the problems formulated by Serrin [11]. Treating
a simple case, we take the mappings A : Ω \ Σ × R × RN → RN and B : Ω \ Σ ×
R× RN → R such that x 7→ A(x, z, ξ) and x 7→ B(x, z, ξ) are measurable for each
(z, ξ) ∈ R × RN and (z, ξ) 7→ A(x, z, ξ) and (z, ξ) 7→ B(x, z, ξ) are continuous in
(z, ξ) for a.e. x ∈ Ω \ Σ. We assume the ellipticity

A(x, z, ξ) · ξ ≥ δ|ξ|p

and the growth rates

|A(x, z, ξ)| ≤ Λ|ξ|p−1,

|B(x, z, ξ)| ≤ a(x)|ξ|p−1 + b(x)|z|p−1
(4.1)

for (z, ξ) ∈ R × RN and a.e. x ∈ Ω \ Σ, where δ > 0, 1 < p < N , and Λ > 0 are
constants, and a, b ∈ L∞

loc(Ω \Σ). As Serrin [11] proved among other things, in this
case the solution u = u(x) ∈ W 1,p

loc (Ω \ Σ) to

div A(x, u,∇u) = B(x, u,∇u) in Ω \ Σ (4.2)

is locally Hölder continuous. Then, we obtain the following result.

Theorem 4.2. If u ∈ W 1,p
loc (Ω \ Σ) is a solution to (4.2) satisfying (A), then

Capp(Σ) = 0 and u ∈ L
N(p−1)/(N−p)
w (Ω), provided that

(sgn z) ·B(x, z, ξ) ≤ 0 (4.3)

for any (ξ, z) ∈ RN × R and a.e. x ∈ Ω \ Σ.
In the other case without (4.3), we obtain Capp(Σ) = 0 if the second relation of

(4.1) is slightly strengthened; i.e., any ε > 0 admits Cε > 0 such that

|B(x, z, ξ)| ≤ ε|ξ|p−1 + Cε|z|p−1 (4.4)

for (z, ξ) ∈ R × RN and a.e. x ∈ Ω \ Σ. If ε = 0 is attained in (4.4), then

log(1 + |u|) ∈ L
N(p−1)

N−p
w (Ω) follows furthermore.

Now we check several key points.
(1) Testing

div A(x, u,∇u) = B(x, u,∇u), |u| > s0 in Ω0 \ Σ

|u| = s0 on Γ0

with ϕs = ϕs(x) of (2.2), we obtain∫
Ω0\Ωs

A(x, u,∇u)·∇udx = (s−s0)K+
∫

Ω0\Ωs

B(x, u,∇u)(sgnu)(s−|u|)dx, (4.5)

where K = −〈ΓνA(x, u,∇u), sgn u〉W−1/p′,p′ (Γ0),W 1−1/p,p(Γ0)
. If (4.3) holds, then

the second term of the right-hand side of (4.5) is non-positive, and this implies

δ

∫
Ω0\Ωs

|∇u|pdx ≤ (s− s0)K = o(sp) as s → +∞.
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In the other case of (4.4), we obtain

δ

∫
Ω0\Ωs

|∇u|pdx

≤ (s− s0)K + ε · s
∫

Ω0\Ωs

|∇u|p−1dx + Cε

∫
Ω0\Ωs

|u|p−1(s− |u|)dx

≤ o(sp) + εs|Ω0|1/p
( ∫

Ω0\Ωs

|∇u|pdx
)(p−1)/p

≤ o(sp) +
δ

2

∫
Ω0\Ωs

|∇u|pdx + Cεpsp.

Here, as before, we estimate∫
Ω0\Ωs

|u|p−1(s− |u|)dx ≤ sp

∫
Ω0\Ωs

( |u|
s

)p−1
dx = o(sp)

by the dominated convergence theorem. Then Capp(Σ) = 0 follows.

(2) When (4.3) holds, we differentiate (4.5) in s, using the monotonicity of

s 7→ I(s) =
∫

Ω0\Ωs

B(x, u,∇u)(sgnu)(s− |u|)dx.

Then
d

ds

∫
Ω0\Ωs

A(x, u,∇u) · ∇udx

= − d

ds

∫
Ωs\Ωs′

A(x, u,∇u) · ∇udx

= K +
d

ds

∫
Ω0\Ωs

B(x, u,∇u)(sgnu)(s− |u|)dx

≤ K a.e. s ∈ (s0, s
′).

(4.6)

Even in the other case without (4.3), s 7→ I(s) is a function of bounded variation,
and it holds that

I(s + h)− I(s)
h

≤
∫

Ω0\Ωs+h

|B(x, u,∇u)|dx

for s < s + h < s′. Therefore, if ε = 0 is attained in (4.4), we obtain
d

ds

∫
Ω0\Ωs

A(x, u,∇u) · ∇udx ≤ K + C0

∫
Ω0\Ωs

|u|p−1dx

≤ K + C0|Ω0|sp−1 a.e. s ∈ (s0, s
′).

(4.7)

(3) We establish Talenti’s inequality; i.e.,

− d

ds

∫
Ωs\Ωs′

|∇u|dx ≤ (−µ′(s))1/p′
(
− d

ds

∫
Ωs\Ωs′

δ−1A(x, u,∇u) · ∇udx
)1/p

for a.e. s ∈ (s0, s
′) and then combine this with DeGiorgi’s isoperimetric inequality

and Fleming-Rishel formula (3.6); i.e.,

Np′C
p′/N
N ≤ µ(s)−

p′(N−1)
N (−µ′(s))

(
− d

ds

∫
Ωs\Ωs′

δ−1A(x, u,∇u) · ∇udx
)p′/p

(4.8)

for a.e. s ∈ (s0, s
′), where 1

p′ + 1
p = 1 and µ(s) = |Ωs|.
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(4) If (4.6) is available, then (4.8) implies

δp′/pNp′C
p′/N
N ≤ µ(s)−p′(N−1)/NKp′/p · (−µ′(s)).

In this case, we obtain

d

ds
ϕ(µ(s)) ≥ c a.e. s ∈ (s0, s

′)

for φ = φ(µ) defined by (3.10) with a constant c > 0, and we end up with (3.11).
In the other case of (4.7), we obtain

d

ds
ϕ(µ(s)) ≥ c

1 + s
a.e. s ∈ (s0, s

′).

Then
(1 + log s)

N(p−1)
N−p µ(s) = O(1) as s → +∞.

This implies log(1 + |u|) ∈ L
N(p−1)

N−p
w (Ω).
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