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STRUCTURE OF GROUND STATE SOLUTIONS FOR
SINGULAR ELLIPTIC EQUATIONS WITH A QUADRATIC

GRADIENT TERM

ANTONIO LUIZ MELO, CARLOS ALBERTO SANTOS

Abstract. We establish results on existence, non-existence, and asymptotic
behavior of ground state solutions for the singular nonlinear elliptic problem

−∆u = g(u)|∇u|2 + λψ(x)f(u) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = 0,

where λ ∈ R is a parameter, ψ ≥ 0, not identically zero, is a locally Hölder
continuous function; g : (0,∞) → R and f : (0,∞) → (0,∞) are continuous
functions, (possibly) singular in 0; that is, f(s) →∞ and either g(s) →∞ or
g(s) → −∞ as s → 0. The main purpose of this article is to complement the
main theorem in Porru and Vitolo [15], for the case Ω = RN . No monotonicity
condition is imposed on f or g.

1. Introduction

In this article, we establish results concerning non-existence, existence and as-
ymptotic behavior of positive ground state solutions; that is, entire positive classical
solutions (in C2(RN )) vanishing at infinity, for the singular nonlinear elliptic prob-
lem

−∆u = g(u)|∇u|2 + λψ(x)f(u) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = 0, (1.1)

where g : (0,∞) → R and f : (0,∞) → (0,∞) are continuous functions, possibly,
singular in 0 in the sense, for example, that either g(s) → ∞ or g(s) → −∞ and
f(s) →∞ as s→ 0; ψ : RN → [0,∞), ψ 6= 0 is a locally Hölder continuous function
and λ ∈ R is a real parameter.
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The search for classical solutions to (1.1) with λ = 1 and g = 0; that is, for the
problem

−∆u = ψ(x)f(u) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = 0, (1.2)

where ψ and f are as above with f singular at 0, has received much attention in
recent years; see [3, 6, 7, 8, 11, 12, 19, 21, 22] and references therein. For more
general nonlinearities, we refer the reader to Mohammed [13], and for nonlinearities
including singular terms in the origin and super-linear terms at infinity to Santos
[16].

For further studies on (1.1), the reader is referred to [20] and the references
therein. However, [20] does not include the nonlinearity in the coefficient of the
gradient term. For the version of (1.1) on bounded domains,

−∆u = λg(u)|∇u|2 + ψ(x)f(u) in Ω,

u > 0 in Ω, u(x) = 0 on ∂Ω,
(1.3)

where Ω ⊂ RN is a regular bounded domain, λ is a real parameter, ψ : Ω →
[0,∞) and f, g are appropriate functions, see for example [1, 2, 4, 14, 15] and their
references.

Problems such as (1.3) were studied in [1, 9, 14] with f(s) = 1, s > 0. In [2] and
[14], (1.3) was considered with general terms f but in all cases g is non-singular
in 0, that is, g is continuously extendable to 0. In [15], (1.3) was studied with
ψ(x) = 1, in Ω. Under some conditions on f and g the authors showed existence
and, in particular cases, asymptotic behavior of solutions to (1.3). In most cases,
monotonicity conditions are imposed upon f or g.

To establish our main results regarding problem (1.1), we shall denote by

G(s) =
∫ s

1

g(t)dt, s > 0,

a primitive of g. We define

fgo = lim inf
s→0

eG(s)f(s)∫ s
0
eG(t)dt

, fg∞ = lim sup
s→∞

eG(s)f(s)∫ s
0
eG(t)dt

,

f
go

= lim inf
s→0

eG(s)f(s)

[
∫ 1

s
eG(t)dt]q

, fgo = lim sup
s→0

eG(s)f(s)

[
∫ 1

s
eG(t)dt]p

with 1 < q ≤ p <∞.
We will say that ψ satisfies the condition (ψ∞) if the problem

−∆u = ψ(x) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = 0 (1.4)

has a unique solution wψ ∈ C2,α
loc (RN ), for some α ∈ (0, 1). Also we will say that ψ

satisfies the condition (ψ∞)′ if

0 < lim inf
|x|→∞

ψ(x)
|x|γ

≤ lim sup
|x|→∞

ψ(x)
|x|γ

<∞, (1.5)

where ψ > 0, and γ is a negative constant such that γ < −2p with p given in fgo.
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Remark 1.1. Concerning the hypothesis (ψ∞), we have: (1) If∫ ∞

0

[
s1−N

∫ s

0

tN−1ψ̂(t)dt
]
ds <∞, (1.6)

where ψ̂(r) = max|x|=r ψ(x), r > 0, then (ψ∞) holds. In this case,

wψ(x) ≤
∫ ∞

|x|

[
s1−N

∫ s

0

tN−1ψ̂(t)dt
]
ds := ŵψ(|x|), x ∈ RN , (1.7)

because ŵψ(| · |) is an upper solution of (1.4). (see details in Santos [17]).
(2) If we assume N ≥ 3 and ∫∞

1
rψ̂(r)dr <∞,

then (1.6) will be true (see details in Goncalves and Santos [7]).

To state our next theorem, we consider the problem
−∆u = λψ(x)u in Ω,

u = 0, on ∂Ω,
(1.8)

where Ω ⊂ RN is a bounded and smooth domain and ψ is a non-negative and
suitable function. We know that the first eigenvalue λ1(ψ,Ω) of (1.8) is positive
and non-increasing in the sense that λ1(ψ,Ω2) ≤ λ1(ψ,Ω1) if Ω1 ⊆ Ω2. So there
exists

λ1(ψ) = lim
k→∞

λ1(ψ,Bk(0)) ∈ [0,∞), (1.9)

where Bk(0) is the ball centered in the origin of RN with radius k. For more details
concerning the principal eigenvalue λ1(ψ), we refer to Santos [17].

Our main results read as follows:

Theorem 1.2. Assume that
∫ 1

0
eG(t)dt < ∞, (ψ∞) and fgo ∈ (0,∞] hold. Then

(1.1) admits a solution u = uλ ∈ C2(RN ) if λ1(ψ)/fg0 < λ < λ? for some λ? > 0.

Remark 1.3. The λ? > 0 and the solution u, given by Theorem 1.2 depend on
the behavior of g and f at infinity. More specifically, denoting by

F (s) =
∫ s

0

eG(t)dt, s ≥ 0, F∞ = lim
s→∞

F (s) =
∫ ∞

0

eG(t)dt, (1.10)

we have
(i) If F∞ = ∞ and

(1) 0 ≤ fg∞ <∞, then λ? ≥ 1
‖wψ‖∞fg∞ ,

(2) fg∞ = ∞, then λ? is a positive constant.
(ii) If F∞ <∞, then

(1) λ? = 1
‖wψ‖∞

1
F∞

∫ F∞
0

(
s−1

∫ s
0

[
supr>F−1(t)

eG(r)f(r)
F (r)

]−1

dt
)
ds ∈ (0,∞],

(2) ‖u‖∞ ≤ F∞.
As an example that satisfies all the assumptions of Theorem 1.2, we have

−∆u = −µ
u
|∇u|2 + λψ(x)f(u) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = 0,
(1.11)

if −∞ < µ < 1, lims→0 f(s)/s > 0 and ψ satisfies (ψ∞). Furthermore, if we have
lims→∞ f(s)/s = 0, then λ? = ∞.
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In the next result and Theorem 1.8, we assume that f is a C1-function and
N ≥ 3.

Theorem 1.4. Assume that
∫ 1

0
eG(t)dt = ∞, (ψ∞)′, f

go
∈ (0,∞] and fgo ∈ [0,∞)

hold. Then there exists λ? > 0 such that for all λ ∈ (0, λ?) the problem (1.1) has a
solution.

Remark 1.5. Again here λ? > 0 depends on the behavior of f and g at infinity.
That is, if

lim sup
s→∞

eG(s)f(s)

[
∫ s+1

s
eG(t)dt]p

<∞, (1.12)

where p > 1 is defined in fgo, then, for some positive constant c,

λ? ≥ c inf
s>0

[ ∫ s+1

s

eG(t)dt
]1−p

.

Consider the example

−∆u = −µ
u
|∇u|2 + λψ(x)f(u) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = 0.
(1.13)

All hypotheses of Theorem 1.4 are satisfied if ψ satisfies (ψ∞)′, µ ≥ 1 and f satisfies

lim
s→0

f(s)
s(ln 1/s)p

> 0, if µ = 1, and lim
s→0

f(s)
sµ(1−p)+p > 0, if µ > 1,

where p = q is given in (ψ∞)′. Besides this, λ? = ∞, if

lim
s→∞

f(s)
s(ln 1/s)p

<∞, if µ = 1, and lim
s→∞

f(s)
sµ(1−p) <∞, if µ > 1.

For the non-existence, we have the following result.

Theorem 1.6. Assume that g : (0,∞) → R, f : (0,∞) → [0,∞), ψ : RN → [0,∞)
are continuous functions and λ ≤ 0. Then (1.1) has no solution.

Concerning the asymptotic behavior, we have the following result.

Theorem 1.7. Assume that (1.6) holds and N ≥ 3, then the solution given by
Theorem 1.2 (which we shall denote as u = uλ) satisfies

F−1(c|x|2−N ) ≤ u(x) ≤ F−1(d|x|2−N ), |x| ≥ 1,

for some positive constants c and d with F defined in (1.10). In particular, if g = 0,
then

c|x|2−N ≤ u(x) ≤ d|x|2−N , |x| ≥ 1.

For example the solution of (1.11), given by Theorem 1.2, satisfies

c|x|4−2N ≤ u(x) ≤ d|x|4−2N , |x| ≥ 1,

if in addition we assume lims→0 f(s)/s <∞.

Theorem 1.8. The solution given by Theorem 1.4 (which we shall denote as u =
uλ) satisfies

F−1
0 (c|x|

γ+2
1−q ) ≤ u(x) ≤ F−1

0 (d|x|
γ+2
1−p ), |x| ≥ R,
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for some positive constants c, d and R with

F0(s) =
∫ 1

s

eG(t)dt, 0 < s < 1.

For example the solution of (1.13) with µ > 1 satisfies
1

c+ |x|
γ+2

(1−p)(µ−1)

≤ u(x) ≤ 1

d+ |x|
γ+2

(1−p)(µ−1)

, |x| ≥ R,

for some constants c, d,R > 0.

Remark 1.9. Examples of ψ : RN → (0,∞) satisfying (ψ∞) with ν > 2 are as
follows:

ψ(x) =
1

1 + |x|ν
, ψ(x) =

1
2 + sin(|x|2) + |x|ν

while

ψ(x) =
1

1 + |x|2p+1
, x ∈ RN

satisfies (ψ∞)′, where p > 2.

The proof of Theorem 1.2 is based on the suitable diffeomorphisms and in San-
tos’s arguments which showed existence of at least one entire positive solution for
the problem (1.2) in the presence of singular and super linear terms at infinity
without imposing any monotonicity condition in f(s) or f(s)/s (for more details
see [16]).

Proof of Theorem 1.2. Consider the function defined in (1.10); that is, F :
[0,∞) → [0,∞) with

F (s) =
∫ s

0

eG(t)dt, s ≥ 0 and F∞ = lim
s→∞

∫ s

0

eG(t)dt.

Thus, F is increasing, F (0) = 0. Now, we will consider two separate cases.
Case 1: F∞ = ∞. In this case, F (s) →∞ as s→∞. Now, let the continuous

function h(s) = F ′(F−1(s))f(F−1(s)), s > 0 and for each τ, λ > 0 given, consider
the continuous function H̃λ : (0,∞)× (0,∞) → (0,∞) defined by

H̃λ(τ, s) =

{
λs sups≤t≤τ

h(t)
t , s ≤ τ,

λsh(τ)τ , s ≥ τ.

So, it is easy to check that

(i) H̃λ(τ, s) ≥ λh(s), 0 < s ≤ τ ,
(ii) H̃λ(τ, s)/s is non-increasing in s > 0,
(iii) lims→0+ H̃λ(τ, s)/s = λ sup0<t≤τ h(t)/t,
(iv) lims→∞ H̃λ(τ, s)/s = λh(τ)/τ .

By (iii), the function Ĥλ : (0,∞)× (0,∞) → (0,∞), given by

Ĥλ(τ, s) =
s2∫ s

0
teHλ(τ,t)

dt

is a well-defined and continuous function. Using (ii), we have

Ĥλ(τ, s) ≥ H̃λ(τ, s), ∀ τ, s > 0.
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Besides this, Ĥλ(τ, ·) ∈ C1(0,∞), for each τ > 0. Using (i)-(iv), it follows that for
each λ ≥ 0, Ĥλ satisfies the following.

Lemma 1.10. If
∫ 1

0
eG(t)dt <∞, then, for each τ > 0,

(i) Ĥλ(τ, s)/s is non-increasing for s > 0,
(ii) lims→0 Ĥλ(τ, s)/s = λ sup0<t≤τ h(t)/t,
(iii) lims→∞ Ĥλ(τ, s)/s = λh(τ)/τ .

Now, we define the continuous function

Hλ(τ) =
1

‖wψ‖∞τ

∫ τ

0

t

Ĥλ(τ, t)
dt, τ > 0,

where wψ is given by the hypothesis (ψ∞). Hence,

Hλ(τ) =
1
λ
H1(τ), τ, λ > 0. (1.14)

Let
λ? = sup

τ≥1
H1(τ) > 0.

Since
lim inf
τ→∞

H1(τ) =
1

‖wψ‖∞fg∞
it follows that

1
‖wψ‖∞fg∞

≤ λ? ≤ ∞.

This proves Remark 1.3 part (i)(1). So, from (1.14), for each 0 < λ < λ?, we can
take a τ∞ = τλ ≥ 1 such that Hλ(τ∞) > 1. That is,

1
τ∞

∫ τ∞

0

t

Ĥλ(τ∞, t)
dt > ‖wψ‖∞. (1.15)

Now, defining the C2- increasing function

ĥλ(s) =
1
τ∞

∫ s

0

t

Ĥλ(τ∞, t)
dt, s ≥ 0

and defining v(x) = ĥ−1
λ (wψ(x)), x ∈ RN , we obtain, using (1.15),

v(x) = ĥ−1
λ (wψ(x)) ≤ ĥ−1

λ (‖wψ‖∞) < ĥ−1
λ (ĥλ(τ∞)) = τ∞, x ∈ RN

and after some calculations, we obtain that v ∈ C2(RN ), v(x) → 0 as |x| → ∞ and
that it satisfies

−∆v ≥ ψ(x)Ĥλ(τ∞, v) ≥ λψ(x)h(v) in RN ,

v > 0 in RN , lim
|x|→∞

v(x) = 0.

On the other hand, given λ1(ψ)/fg0 < λ < λ? (we point out that λ1(ψ)/fg0 = 0 if
either fg0 = ∞ or λ1(ψ) = 0) we can take from (1.9) a kλ > 1 such that

λ1(ψ)
fg0

≤ λ1(ψ, k)
fg0

< λ < λ?, for all k ≥ kλ.

As a consequence of this, there exists a s0 = s0,λ,k ∈ (0, 1) such that

λh(s) ≥ λ1(ψ, k)s, for all 0 < s < s0.
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Now, defining vk = ελ,kψk, where ψk is the positive first eigenfunction of (1.8) with
Ω = Bk(0) and ελ,k > 0 satisfies

ελ,k max{ψk(x) : x ∈ Bk(0)} ≤ s0,

it follows that vk satisfies

−∆vk ≤ λψ(x)h(vk) in Bk(0),

v > 0 in Bk(0), v(x) = 0 on ∂Bk(0).

Following the arguments of either Mohammed [13] or Santos [16], we have a v ∈
C2(RN ) satisfying

−∆v = λψ(x)h(v) in RN ,

v > 0 in RN , lim
|x|→∞

v(x) = 0.

Let
u(x) = uλ(x) = F−1(v(x)), x ∈ RN .

Such that

0 < u ∈ C2(RN ), lim
|x|→∞

u(x) = F−1
(

lim
|x|→∞

v(x)
)

= F−1(0) = 0

and
−∆u = g(u)|∇u|2 + λψ(x)f(u), x ∈ RN .

Hence, u is a solution of (1.1).
Case 2: F∞ < ∞. The proof of Theorem 1.2 in this case is an adaptation

of earlier proof. First, we note that to construct the upper solution, we let the
continuous function h(s) = F ′(F−1(s))f(F−1(s)), 0 < s < F∞ and for each λ > 0
given, we consider the continuous functions H̃λ, Ĥλ defined by

H̃λ(s) = λs sup
s≤t≤F∞

h(t)
t
, 0 < s ≤ F∞

and

Ĥλ(s) =
s2∫ s

0
teHλ(t)
dt
, 0 < s ≤ F∞.

Thus, in a similar way to the proof of Lemma 1.10, we have Ĥλ(s) ≥ λh(s) for
0 < s < F∞ and the following result.

Lemma 1.11. If
∫ 1

0
eG(t)dt <∞, then

(i) Ĥλ(s)/s is non-increasing for 0 < s ≤ F∞
(ii) lims→0 Ĥλ(s)/s = λ sup0<t≤F∞ h(t)/t,
(iii) Ĥλ(F∞) = λF 2

∞
big/

∫ F∞
0

(
supt≤r≤F∞ h(r)/r

)
dt.

Now, we define the continuous function

Hλ(τ) =
1

‖wψ‖∞τ

∫ τ

0

t

Ĥλ(t)
dt, τ > 0,

where wψ is given by hypothesis (ψ∞). Hence,

Hλ(τ) =
1
λ
H1(τ), τ, λ > 0. (1.16)
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Define

λ? = lim
τ→F∞

H1(τ)

= lim
τ→F∞

1
‖wψ‖∞τ

∫ τ

0

t

Ĥ1(t)
dt

=
1

‖wψ‖∞F∞

∫ F∞

0

t

Ĥ1(t)
dt

= H1(F∞) > 0.

Such that, from (1.16), for each 0 < λ < λ?, we have

Hλ(F∞) =
1
λ
H1(F∞) =

λ?

λ
> 1.

That is,
1
F∞

∫ F∞

0

t

Ĥλ(t)
dt > ‖wψ‖∞. (1.17)

Now, defining the C2 increasing function

ĥλ(s) =
1
F∞

∫ s

0

t

Ĥλ(t)
dt, 0 < s ≤ F∞

and defining v(x) = ĥ−1
λ (wψ(x)), x ∈ RN , we obtain, using (1.17),

v(x) = ĥ−1
λ (wψ(x)) ≤ ĥ−1

λ (‖wψ‖∞) < ĥ−1
λ (ĥλ(F∞)) = F∞, x ∈ RN .

Now, in a similar way, we construct an upper solution of (1.2) with f = h. Secondly,
we point out that the lower solution for (1.2) with f = h is constructed the same
way as in the proof of Case 1. This proves Theorem 1.2

2. Proof of Theorem 1.4

In this Section, we will deal with the question of existence of a solution for
Theorem 1.4. For this, we shall use a modified version of a result by Gonçalves and
Roncalli [10] for the existence of an entire blow-up solution which is bounded from
below by a positive constant.

We shall consider k : [0,∞) → [0,∞) a C1-function with k(0) = 0 and k(t) > 0
for t > 0, ψ as before and the problem

∆u = ψ(x)k(u) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = ∞.
(2.1)

Lemma 2.1. Let ψ ∈ Cνloc(RN ) for some ν ∈ (0, 1) and ψ(x) > 0, ∀ x ∈ RN ,
N ≥ 3. Assume that there exist 1 < q ≤ p <∞ such that

`∞ = lim inf
s→∞

k(s)
sq

∈ (0,∞], (2.2)

S∞ = sup
s>0

k(s)
sp

∈ (0,∞) (2.3)

and condition (ψ∞)′ holds with γ < −2p. Then (2.1) admits at least one solution
u ∈ C2(RN ) such that

u(x) ≥ aψS
1

1−p
∞ > 0 for all x ∈ RN , (2.4)
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for some positive constant aψ.

Remark 2.2. The main novelty in Lemma 2.1 is the lower limit of solution u of
(2.1) by a positive constant throughout RN . A similar result was proved in [10]
without Claim 2.4.

Proof of Lemma 2.1. We follows similar arguments as those in [10, Theorem 1.1].
In fact, from conditions (2.2) and (ψ∞)′ there exists a Rψ > 0 such that

b1 =
1
2

lim inf
|x|→∞

ψ(x)
|x|γ

≤ ψ(x)
|x|γ

≤ 2 lim inf
|x|→∞

ψ(x)
|x|γ

= b2, ∀|x| ≥ Rψ

and

k(s) ≥ `∞
2
sq, ∀ s ≥ Rψ. (2.5)

Now, defining

α =
γ + 2
1− p

> 2, β =
γ + 2
1− q

> 2,

Aψ = max
[0,Rψ]

[
tα

(N+α−2)α + 1 + t2

2N

]p
1 + tα−2

, Bψ = max
[Rψ,∞)

[
1

(N+α−2)α + 1
tα + t2−α

2N

]p
1 + t−γ−αp

,

Cψ = min
[0,Rψ]

[
tβ

(N+β−2)β + 1 + δ + t2

2N

]q
1 + tβ−2

, Dψ = min
[Rψ,∞)

[
1

(N+β−2)β + 1+δ
tβ

+ t2−β

2N

]q
1 + t−γ−βq

,

δ =

0, if α = β,

[αβ(N+β−α)]
α

β−α

(β−α)
α

β−α [α(α+1)(N+α−2)]
β

β−α
, if α < β,

we have

0 < λ̃ = min
{(
MψS∞Aψ

) 1
1−p ,

(
b2S∞Bψ

) 1
1−p

}
≤ Λ̃ = max

{
λ̃,

Rψ
1 + δ

,
(mψ`∞Cψ

2
) 1

1−q ,
(b1`∞Dψ

2
) 1

1−q
}
<∞,

where
Mψ = max

|x|≤Rψ
ψ(x) and mψ = min

|x|≤Rψ
ψ(x).

In the sequel, we use the notation

u(x) = λ̃
[ |x|α

(N + α− 2)α
+
|x|2

2N
+ 1

]
, x ∈ RN ,

u(x) = Λ̃
[ |x|β

(N + β − 2)β
+
|x|2

2N
+ δ + 1

]
, x ∈ RN

and separately considering the cases |x| ≤ Rψ and |x| ≥ Rψ. We obtain by direct
computations, using (2.5), that

u(x) ≤ u(x), x ∈ RN ,
u(x), u(x) →∞ as |x| → ∞

∆u(x) ≤ ψ(x)k(u(x)), ∆u(x) ≥ ψ(x)k(u(x)).

Now, by applying [10, Theorem 2.1], we have a solution u ∈ C2(RN ) of (2.1)
with

0 < aψ(S∞)
1

1−p ≤ λ̃ ≤ u(x) ≤ u(x) ≤ u(x), ∀ x ∈ RN ,
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where
aψ = min

{
(MψAψ)

1
1−p , (b2Bψ)

1
1−p

}
> 0.

This completes the proof. �

Proof of Theorem 1.4. For each τ > 0 given, define Fτ : (0, τ ] → (0,∞) by

Fτ (s) =
∫ τ+1

s

eG(t)dt.

So, Fτ is a decreasing continuous function. From
∫ 1

0
eG(t)dt = ∞, we have

lim
s→0

Fτ (s) = ∞ and lim
s→τ

Fτ (s) = Fτ (τ).

Now, we consider the C1-function kτ : [0,∞) → [0,∞) defined by

kτ (s) =


sp, 0 ≤ s < Fτ (τ)

2 ,

ξτ (s),
Fτ (τ)

2 ≤ s ≤ Fτ (τ),
eG(F−1

τ (s))f(F−1
τ (s)), s ≥ Fτ (τ),

for appropriate function ξτ , and the τ -problems family

∆v = λψ(x)kτ (v) in RN ,

v > 0 in RN , lim
|x|→∞

v(x)∞.
(2.6)

We claim that

`∞,τ = lim inf
s→∞

kτ (s)
sq

∈ (0,∞].

In fact, making t = F−1
τ (s), 0 < s ≤ τ , we have

`∞,τ = lim inf
s→∞

kτ (s)
sq

= lim inf
t→0

eGτ (t)f(t)
Fτ (t)q

= lim inf
t→0

eG(t)f(t)[ ∫ 1

t
eG(s)ds+ b2(τ)

]q = lim inf
t→0

eG(t)f(t)[ ∫ 1

t
eG(s)ds

]q[1 + b2(τ)R 1
t
eG(s)ds

]q

= lim inf
t→0

eG(t)f(t)[ ∫ 1

t
eG(s)ds

]q = f
go
,

where b2(τ) denotes a real positive constant. Since f
go
∈ (0,∞], we obtain (2.2) of

Lemma 2.1.
Also, since

lim sup
s→0

kτ (s)
sp

= 1

and making t = F−1
τ (s), 0 < s ≤ τ , we have

lim sup
s→∞

kτ (s)
sp

= lim sup
t→0

eG(t)f(t)[ ∫ τ+1

t
eG(r)dr

]p
= lim sup

t→0

eG(t)f(t)[ ∫ 1

t
eG(r)dr +

∫ τ+1

1
eG(r)dr

]p
≤ lim sup

t→0

eG(t)f(t)[ ∫ 1

t
eG(r)dr

]p = fgo.
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By hypothesis the fgo ∈ [0,∞), we have that

S∞,τ = sup
s>0

kτ (s)
sp

∈ (0,∞), (2.7)

for each τ > 0. Hence, (2.3) of Lemma 2.1 is satisfied. Let

λ? := sup
τ>0

ap−1
ψ

Fτ (τ)p−1S∞,τ
> 0, (2.8)

where aψ > 0 is the constant of Lemma 2.1.
Given 0 < λ < λ?, pick a τ = τ(λ) > 1 such that

Fτ (τ) <
1

λ
1
p−1

[ 1
S∞,τ

] 1
p−1 aψ. (2.9)

and apply Lemma 2.1 to the problem (2.6). That is, there exists a v = vτ = vτ(λ)

solution of (2.6) satisfying, by (2.4) and (2.9),

vτ (x) ≥ aψ[λS∞,τ ]
−1
p−1 > Fτ (τ), for all x ∈ RN .

Define

uτ (x) = F−1
τ (vτ (x)), x ∈ RN .

Thus, of F−1
τ decreasing, we have

uτ (x) = F−1
τ (vτ (x)) ≤ F−1

τ (Fτ (τ)) = τ, x ∈ RN

and from the regularity of F−1
τ , it follows that

0 < uτ ∈ C2(RN ), lim
|x|→∞

uτ (x) = lim
|x|→∞

F−1
τ (v(x)) = 0

and

−∆uτ = g(uτ )|∇uτ |2 + λψ(x)f(uτ ), x ∈ RN .

That is, uτ is a solution of Problem (1.1). This completes the proof. �

Proof of Remark 1.5. Consider the positive number M defined by

M = sup
s>0

eG(s)f(s)[ ∫ s+1

s
eG(t)dt

]p ,
whereM is finite by (1.12), and, if necessary redefine, ξτ in kτ such that 0 < ξτ (s) ≤
(M+1)sp, 1

2Fτ (τ) ≤ s ≤ Fτ (τ). This is possible because (M+1)Fτ (τ)p > eG(τ)f(τ)
for each τ > 0 given.

So, it is easy to verify that S∞,τ , defined in (2.7), satisfies

S∞,τ ≤M + 1, for all τ > 0.

Hence, from (2.8), it follows the claim with c = ap−1
ψ /(M + 1) > 0. �
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3. Proofs of main results

Proof of Theorem 1.6. Assume, by contradiction, that (1.1) admits one solution,
say u ∈ C2(RN ). Since u(x) > 0 for all x ∈ RN and u(x) → 0 as |x| → ∞ it follows
that u achieves its maximum M > 0 in x0. That is, 0 < u(x) ≤ u(x0) = M for all
x ∈ RN . Set v : RN → [0,∞) defined by

v(x) =
∫ M

u(x)

eG(t)dt, x ∈ RN .

So, v ∈ C2(RN ), v ≥ 0, v 6= 0 and

∆v = λψ(x)f(u) ≤ 0, x ∈ RN

because λ ≤ 0. Since
v(x0) = 0 = min

x∈RN
v(x),

it follows, by strong maximum principle, that v(x) = 0 for all x ∈ RN . This is
impossible. This completes the proof. �

Proof of Theorem 1.7. Consider u = uλ ∈ C2(RN ) the solution of (1.1) given by
Theorem 1.2. Remembering the proof of Theorem 1.2 (case F∞ = ∞) we have that
u = F (v), where v = vλ ∈ C2(RN ) satisfies

1
τ∞

∫ v(x)

0

t

Ĥλ(τ∞, t)
dt = wψ(x) ≤ ŵψ(|x|), x ∈ RN . (3.1)

In this last inequality we used (1.7). Define η by

1
τ∞

∫ η(|x|)

0

t

Ĥλ(τ∞, t)
dt = ŵψ(|x|), x ∈ RN .

So, v(x) ≤ η(|x|), x ∈ RN . We claim that

η(r) ≤ dr2−N , r ≥ 1,

where r = |x|, x ∈ RN , for some positive constant d. To verify this claim, define

φ(r) =

{
2η(0), if 0 ≤ r ≤ 1,
2η(0)r2−N , if r ≥ 1.

Thus, η(r) ≤ φ(r), 0 ≤ r ≤ 1. Now, we suppose by contradiction that there exists
a r0 > 1 such that

η(r) ≤ φ(r), 0 ≤ r ≤ r0 and η(r0) = φ(r0).

Using Dı́az and Saa’s [5] inequality on Br0(0) - ball centered in 0 and radius r0 -,
it follows that

0 ≤
∫
Br0 (0)

(−∆φ
φ

+
∆η
η

)
(φ(|x|)2 − η(|x|)2)dx

≤ −
∫
Br0 (0)

ψ̂(|x|)h(η(|x|))(φ(|x|)2 − η(|x|)2) dx .

This is impossible, because the last term is negative. This proves the claim.
On the other hand, using classical estimates (see for example Serrin and Zou

[18]), we obtain a c > 0 constant such that

v(x) ≥ c|x|2−N , |x| ≥ 1.
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As a consequence of the last inequality, the prior claim and of F−1 being increasing,
we have

F−1(c|x|2−N ) ≤ u(x) = F−1(v(x)) ≤ F−1(d|x|2−N ), |x| ≥ 1.

In a similar manner, we reach this conclusion, if F∞ < ∞ holds. This completes
the proof. �

Proof of Theorem 1.8. Consider u = uλ ∈ C2(RN ) the solution of (1.1) given by
Theorem 1.4. So, from the demonstration of Theorem 1.4, there exists a τ = τ(λ) >
0 such that u satisfies

u(x) ≤
∫ τ+1

u(x)

eG(t)dt ≤ u(x), x ∈ RN , (3.2)

where u and u were defined in the proof of Lemma 2.1. As a consequence of the
definition of u and u there are c, d and R positive constants such that

d|x|α ≤ u(x)−
∫ τ+1

1

eG(t)dt, |x| ≥ R, (3.3)

and

u(x)−
∫ τ+1

1

eG(t)dt ≤ |x|βc, |x| ≥ R. (3.4)

Hence from (3.2), (3.3), (3.4) and some calculations, we obtain

d|x|α ≤
∫ 1

u(x)

eG(t)dt ≤ c|x|β , |x| ≥ R.

This completes the proof of Theorem 1.8, remembering that F0 is decreasing. �
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