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COMPACT DECOUPLING FOR THERMOVISCOELASTICITY IN
IRREGULAR DOMAINS

EL MUSTAPHA AIT BEN HASSI, HAMMADI BOUSLOUS, LAHCEN MANIAR

Abstract. Our goal is to prove the compactness of the difference between the
thermoviscoelasticity semigroup and its decoupled semigroup. To show this, we
prove the norm continuity of this difference, the compactness of the difference
of their resolvents and use [4, Theorem 2.3 ]. We generalize a result by Liu
[5]. An illustrative example of a thermoviscoelastic system with Neumann
Laplacian on a Jelly Roll domain is given.

1. Introduction

Consider the abstract thermoviscoelastic model

ẅ(t) +A1w(t)−
∫ 0

−∞
g(s)A1w(t+ s)ds+Bu(t) = 0, t ≥ 0, (1.1)

u̇(t) +A2u(t)−B∗ẇ(t) = 0, t ≥ 0, (1.2)

w(0) = w0, ẇ(0) = w1, u(0) = u0, w(s) = f0(s), s ∈ (−∞, 0), (1.3)

where g is a given function satisfying the following conditions:

g ∈ C1(−∞, 0] ∩ L1(−∞, 0), (1.4)

g(t) ≥ 0, g′(t) ≥ 0 for t < 0, (1.5)∫ 0

−∞
g(s)ds < 1. (1.6)

By the decoupling technique, we obtain the system

¨̄w(t) +A1w̄(t)−
∫ 0

−∞
g(s)A1w̄(t+ s)ds+BA−1

2 B∗ ˙̄w(t) = 0, t ≥ 0, (1.7)

˙̄u(t) +A2ū(t)−B∗ ˙̄w(t) = 0, t ≥ 0, (1.8)

w̄(0) = w0, ˙̄w(0) = w1, ū(0) = u0, w̄(s) = f0(s), s ∈ (−∞, 0). (1.9)

The operators A1 and A2 are positive self adjoint and invertible on two Hilbert
spaces H1 and H2, and B is an unbounded operator from H2 to H1. Liu [5] proved
that these two systems are well posed and generate two semigroups T := (T (t))t≥0
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and Td := (Td(t))t≥0. Assuming that BA−γ
2 is compact for some 0 < γ < 1, he

proved that their difference is compact. In this paper, proceeding as in [1], we
show that t 7→ T (t) − Td(t) and t 7→ T (t) − S(t) are norm continuous for t > 0
where S := (S(t))t≥0 is the semigroup generated by the first equation (1.7) in the
decoupled system. Consequently, under no compactness assumption, rcrit(T (t)) =
rcrit(Td(t)) = rcrit(S(t)) for t ≥ 0 and ω0(T ) = max{ωcrit(S), s(L)}.

Assuming that A−1/2
1 BA−1

2 is a compact operator (in particular if BA−γ
2 is

compact) and
∫ 0

−∞ g(s)s2ds < ∞, we prove the compactness of the difference
R(λ, L) − R(λ, Ld) for every λ ∈ ρ(L) ∩ ρ(Ld), where L and Ld are the genera-
tors of T and Td, respectively. Thus, [4, Theorem 2.3] leads to the compactness of
T (t)− Td(t).

To illustrate this generalization, we consider the thermoviscoelastic system

ẅ − µ∆w − (λ+ µ)∇ divw + µg1 ∗∆w + (λ+ µ)g1 ∗ ∇ divw +m∇u = 0

in Ω× (0,∞),

u̇+ βu−∆u−mdiv ẇ = 0 in Ω× (0,∞),

w = 0,
∂u

∂n
= 0 on Γ× (0,∞),

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), u(x, 0) = u0(x) in Ω,

w(x, 0) + w(x, s) = f0(x, s) in Ω× (−∞, 0)),

where µ, λ are positive constants. The set Ω is the Jelley Roll, a bounded open set
proposed in [9],

Ω = {(x, y) ∈ R2 : 1/2 < r < 1} \ Γ,
where Γ is the curve, in R2, given in polar coordinates by

r(φ) =
3π
2 + arctan(φ)

2π
, −∞ < φ <∞.

For this system, we show that A−1
1 BA−1

2 , on the canonical modified energy Hilbert
space, is a compact operator but the operator BA−γ

2 is not compact for every
0 < γ < 1.

2. Well-posedness

Let H1 and H2 be two Hilbert spaces. The operators A1 : D(A1) ⊂ H1 → H1

and A2 : D(A2) ⊂ H2 → H2 are self adjoint and positive (with not necessarily
compact inverses), while B : D(B) ⊂ H2 → H1 is a closed operator with adjoint
operator B∗. Throughout this paper, we assume the following:

D(A1/2
2 ) ↪→ D(B) and D(A1/2

1 ) ↪→ D(B∗), (2.1)

A−1
2 B∗A

1/2
1 extends to a bounded linear operator from H1 to H2. (2.2)

Note that the operator −A2 generates an analytic strongly continuous semigroup
(e−A2t)t≥0. Under assumption (2.1), BA−1/2

2 is a bounded operator from H2 to H1

and BA−1/2
2 (BA−1/2

2 )∗ is a bounded self adjoint non negative operator in H1.
Setting z(t, s) = w(t) − w(t + s), s ∈ (−∞, 0), the system (1.1)-(1.3) can be

transformed into the system

ẅ(t) + kA1w(t) +
∫ 0

−∞
g(s)A1z(t, s)ds+Bu(t) = 0, t ≥ 0, (2.3)
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zt − ẇ + zs = 0, (2.4)

z(t, 0) = 0, t ≥ 0, (2.5)

u̇(t) +A2u(t)−B∗ẇ(t) = 0, t ≥ 0, (2.6)

w(0) = w0, ẇ(0) = w1, u(0) = u0, z(0, s) = f0(s), s ∈ (−∞, 0), (2.7)

with k = 1−
∫ 0

−∞ g(s)ds. Set the Hilbert space

H = D(A1/2
1 )×H1 × L2(g, (−∞, 0),D(A1/2

1 ))×H2

endowed with the norm

‖(w, v, z, u)‖ =
(
k‖A1/2

1 w‖2H1
+ ‖v‖2H1

+ ‖z‖2
L2(g,(−∞,0),D(A

1/2
1 ))

+ ‖u‖2H2

)1/2

.

Here the space L2(g, (−∞, 0),D(A1/2
1 )) consists of D(A1/2

1 )-valued functions z on
(−∞, 0) endowed with the norm

‖z‖2
L2(g,(−∞,0),D(A

1/2
1 ))

=
∫ 0

−∞
g(s)‖A1/2

1 z(s)‖2ds.

System (2.3)-(2.7) can also be written as a first order system

ẇ = v, (2.8)

v̇ = −kA1w −
∫ 0

−∞
g(s)A1z(t, s)ds−Bu, (2.9)

ż = v − zs (2.10)

u̇ = −A2u+B∗v, (2.11)

(w(0), v(0), u(0), z(0)) = (w0, w1, f0, u
0). (2.12)

We associate with the system (2.8)-(2.11) the operator

L(w, v, z, u) =
(
v,−kA1w −

∫ 0

−∞
g(s)A1z(t, s)ds−Bu, v − zs,−A2u+B∗v

)
,

D(L) = {(w, v, z, u) ∈ H : v ∈ D(A1/2
1 ), u ∈ D(C), kw +

∫ 0

−∞
g(s)z(s)ds ∈ D(A),

z ∈ H1(g, (−∞, 0),D(A1/2
1 )), z(0) = 0},

where H1(g, (−∞, 0),D(A1/2
1 )) is the set

{z ∈ L2(g, (−∞, 0),D(A1/2
1 )) : zs ∈ L2(g, (−∞, 0),D(A1/2

1 ))}.

The decoupled system (1.7)-(1.9) can also be transformed into

˙̄w = v̄, (2.13)

˙̄v = −kA1w̄ −
∫ 0

−∞
g(s)A1z̄(t, s)ds−BA−1

2 B∗v̄, (2.14)

˙̄z = v̄ − z̄s, (2.15)
˙̄u = −A2ū+B∗v̄, (2.16)

(w̄(0), v̄(0, z̄(0), ū(0)) = (w0, w1, f0, u
0), (2.17)
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to which we associate the operator

Ld(w̄, v̄, z̄, ū) = (v̄,−kA1w̄−
∫ 0

−∞
g(s)A1z̄(t, s)ds−BA−1

2 B∗v̄, v̄− z̄s,−A2ū+B∗v̄),

with D(Ld) = D(L). Also, the decoupled second order equation (1.7) can be written
as a first order system

˙̄w = v̄, (2.18)

˙̄v = −kA1w̄ −
∫ 0

−∞
g(s)A1z̄(t, s)ds−BA−1

2 B∗v̄, (2.19)

˙̄z = v̄ − z̄s, (2.20)

(w̄(0), v̄(0), z̄(0)) = (w0, w1, f0), (2.21)

with generating operator defined on H := D(A1/2
1 )×H1 ×L2(g, (−∞, 0),D(A1/2

1 ))
by

M(w̄, v̄, z̄) = (v̄,−kA1w̄ −
∫ 0

−∞
g(s)A1z̄(t, s)ds−BA−1

2 B∗v̄, v̄ − z̄s),

D(M) =
{
(w̄, v̄, z̄) ∈ H : v̄ ∈ D(A1/2

1 ), kw̄ +
∫ 0

−∞
g(s)z̄(s)ds ∈ D(A),

z̄ ∈ H1(g, (−∞, 0),D(A1/2
1 )), z̄(0) = 0

}
.

Remark 2.1. L, Ld and M are respectively the parts in H and H of the matrix
operators

L−1 =


0 I 0 0

−k(A1)−1 0 −G−1 −B
0 I − d

ds 0
0 B∗ 0 −(A2)−1

 ,

(Ld)−1 =


0 I 0 0

−k(A1)−1 −BA−1/2
2 (BA−1/2

2 )∗ −G−1 0
0 I − d

ds 0
0 B∗ 0 −(A2)−1

 ,

M =

 0 I 0
−k(A1)−1 −BA−1/2

2 (BA−1/2
2 )∗ −G−1

0 I − d
ds

 ,

where G−1z = (A1)
1/2
−1

∫ 0

−∞ g(s)A1/2
1 z(s)ds.

Using Lumer Phillips theorem, the following result can be proved analogously as
in [5, Theorem 2.1].

Theorem 2.2. The operators L, Ld and M generate contraction strongly contin-
uous semigroups (T (t))t≥0, (Td(t))t≥0 and (S(t))t≥0 on H,H and H respectively.

3. Norm continuity of the difference between the semigroups

To show the norm continuity of the difference between the two semigroups, we
recall the following technical lemma.
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Lemma 3.1 ([1]). The map t 7→ Aα
2 e
−A2t is norm continuous from (0,∞) to L(H2)

for every 0 ≤ α < 1.

Then we have the following result.

Theorem 3.2. The map t 7→ T (t)−Td(t) is norm continuous from (0,∞) to L(H).

Proof. Let t > 0 and x0 = (w0, v0, f0, u
0) ∈ D(L) such that ‖x0‖ ≤ 1.

T (t)(w0, v0, f0, u
0)− Td(t)(w0, v0, f0, u

0)

=


w(t)− w̄(t)
v(t)− v̄(t)
z(t)− z̄(t)
u(t)− ū(t)

 =
∫ t

0

T (t− s)


0

BA−1
2 B∗v̄(s)−Bū(s)

0
0

 ds.

Let 0 < h < 1. Setting F (s) := Bū(s)− BA−1
2 B∗v̄(s), we check that ‖F (s+ h)−

F (s)‖ → 0 as h→ 0 uniformly in x0. To this end, we have

F (s) = Be−A2su0 +B

∫ s

0

e−A2(s−σ)B∗v̄(σ)dσ −BA−1
2 B∗v̄(s)

= Be−A2su0 +BA−1
2

∫ s

0

A2e
−A2(s−σ)B∗v̄(σ)dσ −BA−1

2 B∗v̄(s).

Using an integration by parts,

F (s) = Be−A2su0 + [BA−1
2 e−A2(s−σ)B∗v̄(σ)]s0 −BA−1

2

∫ s

0

e−A2(s−σ)B∗v̄′(σ)dσ

−BA−1
2 B∗v̄(s)

= Be−A2su0 −BA−1
2 e−A2sB∗v0 −BA−1

2

∫ s

0

e−A2(s−σ)B∗v̄′(σ)dσ

= Be−A2su0 −BA
−1/2
2 e−A2sA

−1/2
2 B∗v0 + kBA−1

2

∫ s

0

e−A2(s−σ)B∗A1w̄(σ)dσ

+BA−1
2

∫ s

0

e−A2(s−σ)B∗[−
∫ 0

−∞
g(τ)Az̄(s, τ)dτ +BA−1

2 B∗v̄(σ)]dσ

= BA
−1/2
2 A

1/2
2 e−A2su0 −BA

−1/2
2 e−A2sA

−1/2
2 B∗v0

+ kBA
−1/2
2

∫ s

0

A
1/2
2 e−A2(s−σ)A−1

2 B∗A
1/2
1 A

1/2
1 w̄(σ)dσ

+BA
−1/2
2

∫ s

0

e−A2(s−σ)A
−1/2
2 B∗BA−1

2 B∗v̄(σ)dσ

−BA−1
2

∫ s

0

e−A2(s−σ)B∗
∫ 0

−∞
g(τ)Az̄(s, τ)dτdσ

= BA
−1/2
2 A

1/2
2 e−A2su0 −BA

−1/2
2 e−A2sA

−1/2
2 B∗v0

+ kBA
−1/2
2

∫ s

0

A
1/2
2 e−A2(s−σ)A−1

2 B∗A
1/2
1 A

1/2
1 w̄(σ)dσ

+BA
−1/2
2

∫ s

0

e−A2(s−σ)A
−1/2
2 B∗BA−1

2 B∗v̄(σ)dσ

−BA
−1/2
2

∫ s

0

A
1/2
2 e−A2(s−σ)A−1

2 B∗A
1/2
1

∫ 0

−∞
g(τ)A1/2

1 z̄(s, τ)dτdσ.
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Since BA−1/2
2 is a bounded operator and s 7→ e−A2s, s 7→ A

1/2
2 e−A2s are norm

continuous from (0,∞) to L(H2), then the mappings s 7→ BA
−1/2
2 A

1/2
2 e−A2s and

s 7→ BA
−1/2
2 e−A2sA

−1/2
2 B∗ are norm continuous from (0,∞) to L(H1).

Under the assumption (2.2) we have A−1
2 B∗A

1/2
1 is a bounded operator ; so there

exists a constant α(s) such that, ‖A−1
2 B∗A

1/2
1 A

1/2
1 w̄(σ)‖ ≤ α(s)‖x0‖, for every

σ ∈ [0, s]. Thus, s 7→
∫ s

0
A

1/2
2 e−A2(s−σ)A−1

2 B∗A
1/2
1 A

1/2
1 w̄(σ)dσ is continuous in

(0,∞) uniformly in ‖x0‖ ≤ 1.
Since A−1/2

2 B∗BA−1
2 B∗ is a bounded operator, using the same argument

s 7→
∫ s

0

e−A2(s−σ)A
−1/2
2 B∗BA−1

2 B∗v̄(σ)dσ

is continuous in (0,∞) uniformly in ‖x0‖ ≤ 1. In the other hand

‖
∫ 0

−∞
g(τ)A1/2

1 z̄(s, τ)dτdσ‖ ≤
( ∫ 0

−∞
g(τ)dτ

)1/2( ∫ 0

−∞
g(τ)‖A1/2

1 z̄(s, τ)‖2dτ
)
1/2.

So A−1
2 B∗A

1/2
1

∫ 0

−∞ g(τ)A1/2
1 z̄(s, τ)dτ is a bounded operator uniformly in ‖x0‖ ≤ 1.

As a consequence, s 7→
∫ s

0
A

1/2
2 e−A2(s−σ)A−1

2 B∗A
1/2
1 (

∫ 0

−∞ g(τ)A1/2
1 z̄(s, τ)dτ)dσ is

norm continuous in (0,∞) uniformly in ‖x0‖ ≤ 1. Finally, ‖F (s+ h)− F (s)‖ → 0
as h→ 0 uniformly in x0. We have

w(t)− w̄(t)
v(t)− v̄(t)
z(t)− z̄(t)
u(t)− ū(t)



=
∫ t

0

T (t− s)


0

BA−1
2 B∗v̄(s)−Bū(s)

0
0

 ds

=
∫ t+h

0

T (t+ h− s)


0

F (s)
0
0

 ds−
∫ t

0

T (t− s)


0

F (s)
0
0

 ds

=
∫ t+h

0

T (s)


0

F (t+ h− s)
0
0

 ds−
∫ t

0

T (s)


0

F (t− s)
0
0

 ds

=
∫ t

0

T (s)


0

F (t+ h− s)− F (t− s)
0
0

 ds+
∫ t+h

t

T (t+ h− s)


0

F (s)
0
0

 ds

=
∫ t

0

T (s)


0

F (t+ h− s)− F (t− s)
0
0

 ds+
∫ h

0

T (s)


0

F (t+ s)
0
0

 ds.
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Hence,

‖


w(t+ h)− w̄(t+ h)
v(t+ h)− v̄(t+ h)
z(t+ h)− z̄(t+ h)
u(t+ h)− ū(t+ h)

−


w(t)− w̄(t)
v(t)− v̄(t)
z(t)− z̄(t)
u(t)− ū(t)

 ‖

≤ ‖
∫ t

0

T (s)


0

F (t+ h− s)− F (t− s)
0
0

 ds‖+ ‖
∫ h

0

T (s)


0

F (t+ s)
0
0

 ds‖

≤ sup
τ∈[0,t]

‖T (τ)‖
∫ t

0

‖F (t+ h− s)− F (t− s)‖ds+
∫ h

0

‖T (s)‖‖F (t+ s)‖ds.

In addition, there exists a constant N such that sups∈[0,t+1] ‖F (s)‖ ≤ N uniformly
in x0, and thus

‖


w(t+ h)− w̄(t+ h)
v(t+ h)− v̄(t+ h)
z(t+ h)− z̄(t+ h)
u(t+ h)− ū(t+ h)

−


w(t)− w̄(t)
v(t)− v̄(t)
z(t)− z̄(t)
u(t)− ū(t)

 ‖

≤ sup
τ∈[0,t+1]

‖T (τ)‖
∫ t

0

‖F (t+ h− s)− F (t− s)‖ds+ c(t)Nh.

As ‖F (s+ h)− F (s)‖ → 0 as h→ 0 uniformly in x0, we conclude that∫ t

0

‖F (t+ h− s)− F (t− s)‖ds→ 0, h→ 0

uniformly for x0 ∈ D(L) verifying ‖x0‖ ≤ 1. This achieves the proof. �

Theorem 3.3. The maps t 7→ Td(t)−S(t) and t 7→ T (t)−S(t) are norm continuous
from (0,∞) to L(H).

Proof. Let x0 = (u0, v0, f0, w
0) ∈ H such that ‖x0‖ ≤ 1 and t > 0.

Td(t)x0 − (S(t)((u0, v0, f0), 0)

= (0, 0, 0, e−A2tw0 +
∫ t

0

e−A2(t−s)B∗π2S(s)((u0, v0, f0)ds)

where π2 : D(A1/2
1 ) × H1 × L2(g, (−∞, 0),D(A1/2

1 )) → H1, (u, v, z) 7→ v. Set
∆(t) = Td(t)x0 − (S(t)(u0, v0, f0), 0). For h > 0, one has

∆(t+ h)−∆(t) =
(
0, 0, e−A2(t+h)w0 − e−A2tw0

+
∫ t+h

0

e−A2(t+h−s)B∗π2S(s)(u0, v0, f0)ds

−
∫ t

0

e−A2(t−s)B∗π2S(s)(u0, v0, f0)ds
)
.

Then

‖∆(t+ h)−∆(t)‖

= ‖e−A2(t+h)w0 − e−A2tw0 +
∫ t+h

0

e−A2(t+h−s)B∗π2S(s)(u0, v0, f0)ds
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−
∫ t

0

e−A2(t−s)B∗π2S(s)(u0, v0, f0)ds)‖

= ‖e−A2(t+h)w0 − e−A2tw0 +
∫ t

0

[e−A2(t+h−s) − e−A2(t−s)]B∗π2S(s)(u0, v0, f0)ds

+
∫ t+h

t

e−A2(t+h−s)B∗π2S(s)(u0, v0, f0)ds)‖

≤ ‖e−A2(t+h) − e−A2t‖‖w0‖

+ ‖
∫ t

0

[e−A2(t+h−s) − e−A2(t−s)]B∗π2S(s)(u0, v0, f0)ds‖

+ ‖
∫ t+h

t

e−A2(t+h−s)B∗π2S(s)(u0, v0, f0)ds)‖.

Hence, since A−1/2
2 B∗ is a bounded operator, we have

‖∆(t+ h)−∆(t)‖

≤
∫ t

0

‖[A1/2
2 e−A2(t+h−s) −A

1/2
2 e−A2(t−s)]A−1/2

2 B∗π2S(s)(u0, v0, f0)‖ds

+
∫ t+h

t

‖A1/2
2 e−A2(t+h−s)A

−1/2
2 B∗π2S(s)(u0, v0, f0))‖ds+ ‖e−A2(t+h) − e−A2t‖

≤
∫ t

0

‖[A1/2
2 e−A2(t+h−s) −A

1/2
2 e−A2(t−s)]A−1/2

2 B∗π2S(s)(u0, v0, f0)‖ds

+
∫ t+h

t

‖A1/2
2 e−A2(t+h−s)A

−1/2
2 B∗π2S(s)(u0, v0, f0))‖ds+ ‖e−A2(t+h) − e−A2t‖.

Since the semigroup (e−A2t)t≥0 is analytic, it is immediately norm continuous. Thus
‖e−A2(t+h) − e−A2t‖ → 0 as h → 0. In the other hand A

−1/2
2 B∗ = (BA−1/2

2 )∗ is a
bounded operator, thus there exists a constant δ(t) such that

‖A−1/2
2 B∗π2S(s)(u0, v0, f0)‖ ≤ δ(t)‖A−1/2

2 B∗‖‖(u0, v0, f0)‖ for every s ∈ [0, t]

‖A−1/2
2 B∗π2S(s)(u0, v0, f0)‖ ≤ δ(t)‖A−1/2

2 B∗‖‖x0‖ for every s ∈ [0, t]

‖A−1/2
2 B∗π2S(s)(u0, v0, f0)‖ ≤ δ(t)‖A−1/2

2 B∗‖ for every s ∈ [0, t].

Moreover

‖
∫ t

0

[A1/2
2 e−A2(t+h−s) −A

1/2
2 e−A2(t−s)]A−1/2

2 B∗π2S(s)(u0, v0, f0)ds‖

≤ δ(t)‖A−1/2
2 B∗‖

∫ t

0

‖A1/2
2 e−A2(t+h−s) −A

1/2
2 e−A2(t−s)‖ds.

It follows from Lemma 3.1 and Lebegue theorem that

‖A1/2
2 e−A2(t+h−s) −A

1/2
2 e−A2(t−s)‖ → 0

as h→ 0 and t > s, and

‖
∫ t

0

[A1/2
2 e−A2(t+h−s) −A

1/2
2 e−A2(t−s)]A−1/2

2 B∗π2S(s)(u0, v0, f0)ds‖ → 0
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as h→ 0 uniformly in x0. For the third term, we have

‖
∫ t+h

t

A
1/2
2 e−A2(t+h−s)A

−1/2
2 B∗π2S(s)(u0, v0, f0)ds)‖

= ‖
∫ h

0

A
1/2
2 e−A2sA

−1/2
2 B∗π2S(s)(u0, v0, f0)ds‖.

Using the similar argument as in the second term, there exists β(t) such that

‖
∫ h

0

A
1/2
2 e−A2sA

−1/2
2 B∗π2S(s)(u0, v0, f0)ds‖ ≤ β(t)

∫ h

0

‖A1/2
2 e−A2s‖ds‖x0‖

≤ ‖x0‖β(t)
∫ h

0

s−1/2ds

≤ 2β(t)
√
h

(here we used ‖A1/2
2 e−A2t‖ = O(t−1/2) as t > 0; see for example [6, Theorem 1.4.3]).

Consequently, ‖
∫ t+h

t
A

1/2
2 e−A2(t+h−s)A

−1/2
2 B∗π2S(s)(u0, v0, f0)ds)‖ → 0 as h→ 0

uniformly in x0. Finally, ‖∆(t+ h)−∆(t)‖ → 0 as h → 0 uniformly in x0. Since,
by Theorem 3.2, t 7→ T (t)− Td(t) is norm continuous on (0,∞), t 7→ T (t)− S(t) is
norm continuous. �

Theorem 3.3 leads to the following result.

Corollary 3.4. rcrit(T (t)) = rcrit(Td(t)) = rcrit(S(t)) for t ≥ 0 and ω0(T ) =
max{ωcrit(Sw), s(L)}.

4. Compactness of the difference between the two semigroups

We have also this main result.

Theorem 4.1. Assume A−1/2
1 BA−1

2 is compact in L(H2,H1) and
∫ 0

−∞ g(s)s2ds <
∞. Then R(λ, L)−R(λ, Ld) is compact on H for every λ ∈ ρ(L) ∩ ρ(Ld).

Proof. We have

R(λ, Ld)−R(λ, L) = LR(λ, L)[L−1 − L−1
d ]LdR(λ, Ld). (4.1)

Let (ϕ,ψ, η, ξ) ∈ H = D(A1/2
1 ) ×H1 × L2(g, (−∞, 0),D(A1/2

1 )) ×H2. We look for
(w, v, z, u) ∈ D(L) such that L(w, v, z, u) = (ϕ,ψ, η, ξ). Note that the equation
L(w, v, z, u) = (ϕ,ψ, η, ξ) is safistied is equivalent to the system

v = ϕ

−kA1w −
∫ 0

−∞
g(s)A1z(t, s)ds−Bu = ψv − zs = η

−A2u+B∗v = ξ

which is equivalent to the system

v = ϕ

−kA1w −
∫ 0

−∞
g(s)A1z(t, s)ds−Bu = ψ

zs = ϕ− η

−A2u+B∗v = ξ
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which is equivalent to the system

−kA1w −
∫ 0

−∞
g(s)A1z(t, s)ds−Bu = ψ

v = ϕ

z = sϕ−
∫ s

0

η(τ)dτ

u = A−1
2 B∗ϕ−A−1

2 ξ.

By assumption,
∫ 0

−∞ g(s)s2ds < ∞, and since ϕ ∈ D(A1/2
1 ), we have sϕ ∈

L2(g, (−∞, 0),D(A1/2
1 )). Using Hölder theorem,

∀s ∈ (−∞, 0),
( ∫ 0

s

‖A11/2η(τ)‖dτ
)2

≤ −s
∫ 0

s

‖A11/2η(τ)‖2dτ.

We can assume that η has compact support in (0,∞), and then

−
∫ 0

−∞
g(s)s

∫ 0

s

‖A11/2η(τ)‖2dτds <∞.

Thus z ∈ L2(g, (−∞, 0),D(A1/2
1 )). Note that L(w, v, z, u) = (ϕ,ψ, η, ξ) is equiva-

lent to the system

w = −k−1A
−1/2
1 [(

∫ 0

−∞
g(s)sds)A1/2

1 ϕ+
∫ 0

−∞
g(s)A1/2

1

∫ 0

s

η(τ)dτds]

− (kA1)−1BA−1
2 B∗ϕ+ (kA1)−1BA−1

2 ξ − (kA1)−1ψ

v = ϕ

z = sϕ−
∫ s

0

η(τ)dτ

u = A−1
2 B∗ϕ−A−1

2 ξ

which is equivalent to the system

w = −(k)−1(
∫ 0

−∞
g(s)sds)ϕ− (kA1)−1/2

∫ 0

−∞
g(s)A1/2

1

∫ 0

s

η(τ)dτds

− (kA1)−1BA−1
2 B∗ϕ+ (kA1)−1BA−1

2 ξ − (kA1)−1ψ

v = ϕ

z = sϕ−
∫ s

0

η(τ)dτ

u = A−1
2 B∗ϕ−A−1

2 ξ.

Replacing Bu by BA−1
2 B∗v̄ and repeating the above procedure for L, we can prove

that the equation Ld(w̄, v̄, z̄, ū) = (ϕ,ψ, η, ξ) is equivalent to the system

v̄ = ϕ

−kA1w̄ −
∫ 0

−∞
g(s)A1z̄(t, s)ds−BA−1

2 B∗v̄ = ψ

z̄s = ϕ− η

−A2ū+B∗v̄ = ξ
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which is equivalent to the system

w̄ = (−k)−1A
−1/2
1

[( ∫ 0

−∞
g(s)sds

)
A

1/2
1 ϕ

−
∫ 0

−∞
g(s)A1/2

1

∫ s

0

η(τ)dτds+BA−1
2 B∗ϕ+ ψ

]
v̄ = ϕ

z̄ = sϕ−
∫ s

0

η(τ)dτ

ū = A−1
2 B∗ϕ−A−1

2 ξ

which is equivalent to the system

w̄ = −k−1(
∫ 0

−∞
g(s)sds)ϕ+ (kA1)−1/2

∫ 0

−∞
g(s)A1/2

1

∫ s

0

η(τ)dτds

− (kA1)−1BA−1
2 B∗ϕ− (kA1)−1ψ

v̄ = ϕ

z̄ = sϕ−
∫ s

0

η(τ)dτ

ū = A−1
2 B∗ϕ−A−1

2 ξ.

Therefore, by an easy computation one obtains

L−1 − L−1
d =


0 0 (kA1)−1BA−1

2 0
0 0 0 0
0 0 0 0
0 0 0 0


which is a compact operator by assumption. The claim follows from the equality
(4.1). �

Now by the Theorem 4.1, Theorem 3.2 and [4, Theorem 3.2], we obtain the main
result of this section.

Theorem 4.2. Assume that A−1/2
1 BA−1

2 is compact in L(H2,H1), (1.4)-(1.6) and
(2.2) hold. Then T (t)− Td(t) is compact on H for all t ≥ 0.

As a consequence of this theorem, we have the following result.

Corollary 4.3. ress(T (t)) = ress(Td(t)) for t ≥ 0 and ω0(T ) = max{ωess(Td), s(L)}.

Remark 4.4. The result of Theorem 4.2 has been shown in [5] directly, assuming
the compactness of the operator BA−γ

2 for some 0 < γ < 1. It is clear that this
last assumption implies that A−1/2

1 BA−1
2 is compact from H2 to H1.

5. Application

We consider the following model for a linear viscoelastic body Ω of Boltzmann
type with thermal damping
ẅ − µ∆w − (λ+ µ)∇ divw + µg1 ∗∆w + (λ+ µ)g1 ∗ ∇ divw +m∇u = 0

in Ω× (0,∞),
(5.1)

u̇+ βu−∆u−mdiv ẇ = 0 in Ω× (0,∞), (5.2)
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w = 0,
∂u

∂n
= 0 on Γ× (0,∞), (5.3)

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), u(x, 0) = u0(x) in Ω, (5.4)

w(x, 0) + w(x, s) = f0(x, s) in Ω× (−∞, 0)), (5.5)

where λ, µ > 0 the Lame’s constants andm > 0 is the thermal strain parameter, β is
a positive constant and g is a given function which satisfies the following conditions

(C1) g1 ∈ C1[0,∞) ∩ L1(0,∞).
(C2) g1(t) ≥ 0 and g′1(t) ≤ 0 for t > 0,
(C3)

∫∞
0
g1(s)ds < 1.

The set Ω is the bounded open Jelly Roll set defined in [9],

Ω = {(x, y) ∈ R2 :
1
2
< r < 1} \ Γ,

where Γ is the curve in R2 given in polar coordinates by

r(φ) =
3π
2 + arctan(φ)

2π
, −∞ < φ <∞.

Note that∫ t

−∞
g1(t− s)∆w(x, s)ds

=
∫ 0

−∞
g1(−s)∆w(x, t+ s)ds

=
∫ 0

−∞
g1(−s)∆(w(x, t+ s)− w(x, t))ds+

∫ 0

−∞
g1(−s)∆w(x, t)ds

= −
∫ 0

−∞
g1(−s)∆z(x, t, s)ds+

∫ 0

−∞
g1(−s)ds∆w(x, t).

A similar expression can be establish for g1 ∗ ∇div w. In order to fit the system
(5.1)-(5.5) into the setting abstract system (1.1)-(1.3), we take

H1 = L2(Ω,R2), H2 = L2(Ω,R),

z(x, t, s) = w(x, t)− w(x, t+ s), g(s) = g1(−s),
and define the operators A1, A2, B by

A1w = −µ∆Dw − (λ+ µ)∇ divw, D(A1) = D(∆D) = H1
0 (Ω,R2),

A2u = (βI −∆N )u, D(A2) = D(∆N ) = H1(Ω,R),

Bu = m∇u, D(B) = H1(Ω,R).

Here, as the domain Ω is irregular the Dirichlet Laplacian ∆D and the Neumann
Laplacian ∆N are defined via quadratic forms. More precisely, ∆D is the unique
positive self adjoint operator associated to the closed quadratic form on H1

0 (Ω)

〈∆f, g〉 =
∫

Ω

∇f∇g dx,

and ∆N is the unique non negative self adjoint operator associated to the closed
quadratic form on H1(Ω)

〈∆f, g〉 =
∫

Ω

∇f∇g dx.
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It is clear that the adjoint B∗ of B is

B∗w = −mdiv w, D(B∗) = {w ∈ H1(Ω,R2) : w · −→n = 0 in ∂Ω},
where −→n is the outward unit normal vector on the boundary ∂Ω. Note that

D(A1/2
2 ) = D(B) and D(A1/2

1 ) ↪→ D(B∗).

We have the following facts.
(i) A−1

2 is not compact on H2, see [9], but A1 has a compact resolvent on H1.
Consequently, A−1/2

1 and A−1/2
1 BA−1

2 are compact .
(ii) For every γ ∈ (0, 1], BA−γ

2 is not compact from H2 into H1. In fact, it is
enough to show that BA−1

2 is not compact from H2 to H1. For this, we
have

A−1
2 B∗BA−1

2 = m2A−1
2 (−∆N )A−1

2 = m2A−1
2 (A2 − βI)A−1

2 = m2(A−1
2 − βA−2

2 ).

Using the spectral mapping theorem, we have σ(A−1
2 B∗BA−1

2 ) = m2(σ(A2)−1 −
βσ(A2)−2). As in [9], (β,∞) ⊂ σ(A2), so A−1

2 B∗BA−1
2 is not compact on H2.

Consequently BA−1
2 is not compact from H2 to H1.
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