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ENTIRE SOLUTIONS FOR A NONLINEAR DIFFERENTIAL
EQUATION

JIANMING QI, JIE DING, TAIYING ZHU

ABSTRACT. In this article, we study the existence of solutions to the differen-
tial equation

(z) + P(f) = Pre™t + Pyeh2,
where n > 2 is an positive integer, f is a transcendental entire function, P(f)
is a differential polynomial in f of degree less than or equal n — 1, P, P are
small functions of e*, hi, hg are polynomials, and z is in the open complex
plane C. Our results extend those obtained by Li [6] 7] [8] [9].

1. INTRODUCTION AND MAIN RESULTS

Nevanlinna value distribution theory of meromorphic functions has been exten-
sively applied to resolve growth (seelf]), value distribution [6], and solvability of
meromorphic solutions of linear and nonlinear differential equations [4, [6] 10, [1T].
Considering meromorphic functions f in the complex plane, we assume that the
reader is familiar with the standard notations and results such as the proximity
function m(r, f), counting function N(r, f), characteristic function T'(r, f), the first
and second main theorems, lemma on the logarithmic derivatives etc. of Nevanlinna
theory; see e.g. [3,[6]. Given a meromorphic function f, we shall call a meromorphic
function a(z) a small function of f(z) if T'(r,a) = S(r, f), where S(r, f) is used to
denote any quantity that satisfies S(r, f) = o(T'(r, f)) as r — oo, possibly outside
a set of r of finite logarithmic measure. A differential polynomial P(f) in f is a
polynomial in f and its derivatives with small functions of f as the coefficients.
The notation .% is defined to the family of all meromorphic functions which satisfy
N(r,+)+N(r,h) = S(r,h). Note that all functions in family .7 are transcendental,
and all functions of the form be** are functions in family .%, where A is any nonzero
constant and b is a rational function.

In 2006, Li and Yang [7, [IT] obtain the following results.

Theorem 1.1. Let n > 4 be an integer, and P(f) denote an algebraic differential
polynomial in f of degree < n — 3. Let Py, Py be two nonzero polynomials, oy and
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ag be two nonzero constants with 3—; =% rational. Then the differential equation
f(z) + P(f) = Pie™'* + Pye*?*
has no transcendental entire solutions.

Theorem 1.2. Let n > 3 be an integer, and P(f) be an algebraic differential
polynomial in f of degree < n — 3, b(z) be a meromorphic function, and A, ¢1, ca
and three nonzero constants, Then the differential equation

F(2) + P(f) = b(z)(c1e™ + cae™™)
has no transcendental entire solutions f(z), satisfying T'(r,b) = S(r, f).

Recently, Considering the degree of the differential polynomial P(f) of n — 2 or
n—1, P. Li [9] proved the following results which are improvements or complemen-

tarity of Theorems [I.1] and

Theorem 1.3. Let n > 2 be an integer. Let f be a transcendental entire function,
P(f) be a differential polynomial in f of degree <n — 1. If

f1(z) + P(f) = Pre™” + Pye™*, (1.1)

where P;(i = 1,2) are nonvanshing small functions of €%, a;(i = 1,2) are positive
numbers satisfying (n — 1)as > nay > 0, then there exists a small function v of f
such that

(f =7)" = Ppe. (1.2)

Theorem 1.4. Let n > 2 be an integer, oy, as be real numbers and a; < 0 < as.
Let Py, Py be small functions of €*. If there exists a transcendental entire function
f satisfying the differential equation , where P(f) is a differential polynomial
in f of degree not exceeding n—2, then a; +as = 0, and there exist constants ¢y, ca
and small functions (1, B2 with respect to f such that

f=c1Bie™ /™ + ey fBpe22/m, (1.3)
moreover, B = P;, i =1,2.
Theorem 1.5. Let n > 2 be an integer, a1, ag be positive numbers satisfying
(n—1)ag > nay > 0. Let Py, Py be small functions of e*. If g—; 18 1rrational, then
the differential equation (1.1)) has no entire solutions, where P(f) is a differential
polynomial in f of degree < n — 1.

Remark 1.6. By an example, Li [9] pointed if the degree of P(f) is n — 1, then
the solutions of (|1.1) may not be the form in (1.3)).

It is natural to ask whether a2z and asz in (1.1]) can be replaced by two poly-
nomials. In this article, by the same method as in [J], we obtain the following
results.

Theorem 1.7. Let n > 2 be an integer. Let f be a transcendental entire function,
P(f) be a differential polynomial in f of degree <mn — 1. If

f(2) + P(f) = P1e@®) 4 Pye@2(2) (1.4)

where P;(i = 1,2) are nonvanshing small meromorphic functions of e*, Q1(z) =
a2+ 12PN anz g, Qa(z) = B2 + B 2P+ Biz + By are
two polynomials satisfying (n — 1)Bx > nag > 0 (where ag_1,. ..o, Br-1,-.-Fo
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are finite constants and k > 1 ) is a positive integer, then there erists a small
meromorphic function v of f such that

(f = )" = Ppe?. (1.5)

Theorem 1.8. Let n > 2 be an integer and Py, P> be small functions of e*. If
there exists a transcendental entire function f satisfying the differential equation
, where P(f) is a differential polynomial in f of degree not exceeding n—2 and
ag <0< B, then ag + Br = 0, and there exist constants c1,co and small functions
081, B2 with respect to f such that

Q Q
f=cfien +cofae,

moreover, B = P;, i =1,2.

Theorem 1.9. Let n > 2 be an integer, P1, Py be small functions of e*. If % 18
irrational, then the differential equation (L.4)) has no entire solutions, where P(f)
is a differential polynomial in [ of degree <n —1 and (n — 1)Bk > nay > 0.

Obviously, our results generalize the results in [6], [7) [8], ©].

2. PRELIMINARY LEMMAS

In order to prove our theorems, we need the following lemmas. First, we need
the following well-known Clunie’s lemma, which has been extensively applied in
studying the value distribution of a differential polynomial P(z, f), as well as the
growth estimates of solutions and meromorphic solvability of differential equations
in the complex plane.

Lemma 2.1 ([IL 2]). Let f be a transcendental meromorphic solution of

an(Z’f) = B(Z,f),

where A(z, f), B(z, f) are differential polynomials in f and its derivatives with
small meromorphic coefficients ay, in the sense of T(r,ay) = S(r, f) for all X € I,
where I is an index set. If the total degree of B(z, f) as a polynomial in [ and its
derivatives is less than or equal n, then m(r, A(z, f)) = S(r, f).

Lemma 2.2 ([3]). Suppose that f is a nonconstant meromorphic function and
F = f"4+Q(f), where Q(f) is a differential polynomial in f with degree < n — 1.
IfN(r, f)+ N(r, ) = S(r, f), then

F= (f + 7)n7
whereby 7y is meromorphic and T(r,y) = S(r, f)

Lemma 2.3 ([8]). Suppose that h is a function in family F. Let f = agh? +
ahP~t 4. 4 ap, and g = boh? + bih? ™l 4. 4 by be polynomials in h with all
coefficients being small functions of h and agboa, # 0 If ¢ < p, then m(r, %) =
S(r,h).
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3. PROOFS OF MAIN THEOREMS

Proof of Theorem[1.7]. First of all, we write P(f) as
n—1
P(f) =Y biM;(f), (3.1)
j=0

where b; are small functions of f, Mo(f) = 1, M;(f)(j = 1,2,...,n — 1) are
homogeneous differential monomials in f of degree j. Without loss of generality,
we assume that by # 0, otherwise, we do the transformation f = f; +c for a suitable
constant ¢. From , we have

n—1
1 b; My(f) 1o 1
= (=) = (=)™ 3.2
Plte +P26Q2 _ bO + j; Plte —|—P26Q2 . bO f] (f) (f) ( )
Note that m(r, 222) = S(r, f),
1
M B T Ppe@ T — by
_ 1
= m(ﬁ Pleak’lzk_l+"'+a0€akzk ¥ PZQﬁkflzk_l"F""f‘ﬁOeﬁkzk — bo)’

where Py, Py, e®r—1%" "'+ Fao o1z +4B0 a0 small functions of e* .
We take h = ezk, q = 0,p = Bk, by Lemma we obtain

1
" e 1 D@ by
= S(r,e”") = 5(r, Pe?®) 4 Pye@() — ) = S(r, £(2)).

Therefore, the left-hand side of (3.2)) is a polynomial in 1/ f of degree at most n — 1
with coefficients being small proximate functions of 1/f. Hence

m(

m(r, ?) = S(T7 f) (33)
Taking the derivatives in both sides of (1.4) gives
nf" U 4 (P(F) = (P + QP + (P + Q4 Po)e. (3.4)

By eliminating e?' and e®2, respectively from (1.4) and the above equation, we
obtain

(Py+ QaPo)f" = Panf" f' + (P, + Q4 P2) P(f) — Pa(P(f)) = B9 (3.5)
(P{+QiP)f" = Pinf" '+ (P{ + QuP)P(f) — Pi(P(f)) = —Be?2,  (3.6)

where 8 = P1 Py — PoP] + (Q4 — Q}) PP, which is a small function of f. We note
that 3 cannot vanish identically, otherwise, by integration we obtain eQ2~@1 = C %
for a constant, which is impossible. From (3.5) and (3.6, we obtain

m(r,e®) < nT(r, f)+S(r, f), j=12. (3.7)
On the other hand, from , we have
nT(r, f) = m(r, f*) = m(r, f* + P(f)) < T(r, PLe® + Ppe??) + S(r, f). (3.8)
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Therefore, S(r,e?1) = S(r,e?2) = S(r, f) := S(r). From (3.2), we have
e TS bjeQi M; (f) 1 e@i

- - = =1,2.
p1e@1 + pae@2 — by " — pre@t +ppe@ —by  fI frmd fr7 o
It follows that o
m( ,%) =S(r), i=1,2 (3.9)
Next, we prove
@1

For a fixed r > 0, let z = re?®. The interval [0,27) can be expressed as the union
of the following three disjoint sets:

f(z
By = {0 € 0.20) s ey < 11

1/ (=)

_ BT S et <1
‘eQz(Z)—Ql(Z” > ,|€ |— }a

= {6 € [0,27)|
_ 1/ (2)] o
By the definition of the proximate function, we have
e@1(2) 1

27 Ql(
- )= log™ dd =1+, +1
V) ), O g B

where
7—/ fn . )|d9 (j=1,2,3).
For 6 € Fy, we have |f(z)| < |e@2(*)=@1(2)|_ Since feill((zi) = fiz((:)) €Q2(f>(2221( 5, We
obtain
Q>
I < m(r, f—n) = S(r).
For 0 € E5, we have |e@1(2)] = |eak2k(1+° )| <1, and thus |an11< ))| < |fn711(z)" It
follows from (J3.3) that
1
Iy < mf(r, F) = 5(r).
For € E3, we have |f(2)| > |e92(*)=Q1(2)|. Therefore,
e@1(2) le@1(2)]
7)) S e @e—a)
_ 1 _ 1
T e(=DQ2(x)-n@i(=)] T |e((n—1)Be—naw)zk (1+o(1)) |’
By the assumption (n — 1)8;r > nay > 0, we obtain |an11( ~ | < 1. Therefore, we

have I3 = 0. Hence ([3.10) holds.
It follows from ({3.5)) that

Fil = B N~ R(F),

fn 1
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where ¢ = (P) + P2Q%)f —nPyf’, and

R(f) = (P3+ PQ5)P(f) — P2P'(f)

which is a differential polynomial in f of degree at most n — 1. By Lemma [2.1} we
obtain m(r,¢) = S(r, f). Note that since ¢ is entire, we have N(r,p) = S(r,¢) =
S(r, f). Hence T(r,¢) = S(r, f), i.e., ¢ is a small function of f, By the definition
of ¢, we obtain

P+ @y, ¢

! _ _r
f o TZPQ f nPQ.

Substituting the above equation into (3.6)) gives

P, Py(P| + Q)P PP
f”,n 180.}0”71* 2( 1+ @1 1)P(f)+ 1 Q(P(f))/:PQGQz.
B B g
By Lemma [2.2] we see that there exists a small function vy of f such that (f—~)" =
Pye@2. This also completes the proof of Theorem [1.7 (]

Proof of Theorem . We discuss only the case ax + 6 > 0. The case aj + [ <0
can be discussed similarly. Suppose that f is a transcendental entire solution of

(1.4). Similar to the proof of Theorem we can still get (3.3)-(3.9)). For a fixed

r >0, let z = re?. We can express the interval [0, 27) as the union of the following
three disjoint sets:

(=
Ei={0e [o,zw)||te(Z)(£(z)| <1},

f2(2)] "
Ey,={0€ [0727T)|m >1,|e* | <1},

[f2(2)] 2

By the definition of the proximate function, we have

eQ1(2)+Q2(2) 1 /27r N eQ1(2)+Q2(2)
m(r, ——s——) = og’ | ————
0 fAn=2(z)

— dd =1 I I
F2n-2(7) o | 1+ 1o+ 13,

where

1 ¢@1(2)+Q>()
I =— log" |—5———1df, j=1,2,3.
J 27T /E Og ‘ f2n72(2) | I .] )y <y

J

For 0 € F;, we have
e@1(2)+Q2(2) e2Q2(2) f2 (Z) eQ2(2)
= <
f2n—2(z) |f2n(z) 6@2(2)*Q1(z) - fn(Z)

Thus by (3.9), we obtain Iy < S(r). For § € Es, it follows from |ezk| <1 and
o + B > 0 that |e(@x+8)z"(1+o(1)| < 1. Therefore,

| 2

Q1 (:)4+Qa(2) 1
< .
) | S )
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Then by (3.3)), we obtain I, < S(r). For § € E3, we have |f2(z)| > |eQ2(3)=@1()|,
Thus

eQ1(2)+Q2(2) |eQ1(2)+Q2(2)| 1
f2r=2(z) < le(n=1)(Q2(2)=Q1(2))| - le(n=2)Q2(2)—nQ1(2)|
= 1 < 1.

|e[(n—2)ﬁk—nak]zk(l-i-o(l)) | -

It follows that Is < S(r). Hence we have

cQi Q>
m(r, W) =S(r, f). (3.11)
Multiplying by gives
PP+ Q) = —f7e e, (3.12)
where Q(f) is a differential polynomial in f of degree at most 2n — 2, and
o= (Pl +Q P)f —nPif')((Py+ Q3 P2) f —nPaf')). (3.13)

From and by Lemma we obtain m(r, ) = S(r, f). Therefore, T'(r,¢) =
S(r, f).

<Iff()Pl’ + Q1 P1)f —nP f' =0, then by integration we obtain f* = cPye?, for
a nonzero constant c. Therefore, f = ae* for a small function a of f. Thus we
see that the left-hand side of is a polynomial in e of degree n. However,
the right-hand side of cannot be a polynomial in e Hence (Pl+Q1P)f —
nPy f' # 0. Similarly, we have (Pj + Q5P»)f — nPaf’ # 0. Therefore, ¢ # 0. Let

(Py+ Q3 P)f —nPof' = h. (3.14)
Then we have
(Pl +Q\P)f —nPif = % (3.15)
By eliminating f’ and f, respectively from (3.14) and (3.15), we obtain
P1 (pPQ 1
f=—h—"—7"1, 3.16
3 3 (3.16)
P+ Q1P P+ QL
/ 1 1 2 2
= h — - 3.17
/ nB nf h’ (3.17)

where 8 = Py Pj— P, P+ (Q4 — Q)) P1 P> which is a small function of f, and cannot
vanish identically. From (3.16[), we see that

2T(r,h) =T (r, f) + S(r, f).

Therefore, any small function of f is also a small function of A. And from the
definition of ¢ we see that h is a function in family .%#. Thus % is a small function

of f. By taking derivative in both sides of (3.16]), we obtain

P1 hl SOPQ

Pyh 1
R G

y -2 (3.18)

F= G+ 7

B
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Comparing the coefficients of the right-hand side of (3.17) and (3.18)), we deduce
that

Pi+QiPr P, Pl

—(Dyyar 3.19

P} 5P P: Py i
( 2+Q2 2)90:(50 2)/7&7. (320)

nf B B h

By integrating (3.19) and (3.20)), respectively, we obtain
P, Py 1

Plte = dl(flh)n, P2€Q2 = dQ(Q )n, (321)

g g h

where d; and dy are two nonzero constants. From the above two equations, we see
that there exist two small functions §; and (2 of e such that P, = 8", i = 1,2,
and

Py Py

32

The right-hand side of the above equation is a small function of f, and thus a
small function of e . Therefore, the above equation holds only when oy + G = 0.
Furthermore, from , we see that there exist two nonzero constants ¢; and ¢y
such that

P1P26Q1+Q2 _ dldg(

). (3.22)

Py a Pyl Q
—h = clﬂle "o, —_— = —Cgﬁge no, (323)
B B h

Finally, from (3.16]), we obtain ([1.8). O

Proof of Theorem[I.9 If f is a transcendental entire solution of (1.4), then by
Theorem there exists a small function v of f such that holds. And thus
N(r, ﬁ) = S5(r, f), i.e., v is an exceptional small function of f. Equation also
shows that there exist two small functions wy and wy of f such that f/ = wyf + ws.
By substituting this equation into (1.4)), we see that Pye®! is a polynomial in f of
degree t < n. By Lemma [2:2] there exist two small functions a and v, of f such
that

a(f —m)" = Pre®.

Therefore, 1 is also an exceptional small function of f. Since any transcendental
entire function cannot have two exceptional small functions, we deduce that v; = ~.
From (1.5) and above equation, we obtain

Ptagn
nQ1—tQ2 __ 2 (3 24)
e = —. .
P

The right-hand side of the above equation is small function of f, and thus a small

function of e*. Hence we obtain n()1 — tQs = 0. Therefore, lim,_, Qi ak L

Q2 Bx  n
must be a rational number, which contradicts the assumption. This also completes
the proof of Theorem [I.9 O
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