Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 73, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ENTIRE SOLUTIONS FOR A NONLINEAR DIFFERENTIAL EQUATION

JIANMING QI, JIE DING, TAIYING ZHU

Abstract

In this article, we study the existence of solutions to the differential equation $$
f^{n}(z)+P(f)=P_{1} e^{h_{1}}+P_{2} e^{h_{2}}
$$ where $n \geq 2$ is an positive integer, f is a transcendental entire function, $P(f)$ is a differential polynomial in f of degree less than or equal $n-1, P_{1}, P_{2}$ are small functions of e^{z}, h_{1}, h_{2} are polynomials, and z is in the open complex plane \mathbb{C}. Our results extend those obtained by Li [6 7, 8 , 9 .

1. Introduction and main results

Nevanlinna value distribution theory of meromorphic functions has been extensively applied to resolve growth (see [6]), value distribution [6], and solvability of meromorphic solutions of linear and nonlinear differential equations [4, 6, 10, 11]. Considering meromorphic functions f in the complex plane, we assume that the reader is familiar with the standard notations and results such as the proximity function $m(r, f)$, counting function $N(r, f)$, characteristic function $T(r, f)$, the first and second main theorems, lemma on the logarithmic derivatives etc. of Nevanlinna theory; see e.g. 3, 6. Given a meromorphic function f, we shall call a meromorphic function $a(z)$ a small function of $f(z)$ if $T(r, a)=S(r, f)$, where $S(r, f)$ is used to denote any quantity that satisfies $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set of r of finite logarithmic measure. A differential polynomial $P(f)$ in f is a polynomial in f and its derivatives with small functions of f as the coefficients. The notation \mathscr{F} is defined to the family of all meromorphic functions which satisfy $\bar{N}\left(r, \frac{1}{h}\right)+\bar{N}(r, h)=S(r, h)$. Note that all functions in family \mathscr{F} are transcendental, and all functions of the form $b e^{\lambda z}$ are functions in family \mathscr{F}, where λ is any nonzero constant and b is a rational function.

In 2006, Li and Yang [7, 11] obtain the following results.
Theorem 1.1. Let $n \geq 4$ be an integer, and $P(f)$ denote an algebraic differential polynomial in f of degree $\leq n-3$. Let P_{1}, P_{2} be two nonzero polynomials, α_{1} and

[^0]α_{2} be two nonzero constants with $\frac{\alpha_{1}}{\alpha_{2}} \neq$ rational. Then the differential equation
$$
f^{n}(z)+P(f)=P_{1} e^{\alpha_{1} z}+P_{2} e^{\alpha_{2} z}
$$
has no transcendental entire solutions.
Theorem 1.2. Let $n \geq 3$ be an integer, and $P(f)$ be an algebraic differential polynomial in f of degree $\leq n-3, b(z)$ be a meromorphic function, and λ, c_{1}, c_{2} and three nonzero constants, Then the differential equation
$$
f^{n}(z)+P(f)=b(z)\left(c_{1} e^{\lambda z}+c_{2} e^{-\lambda z}\right)
$$
has no transcendental entire solutions $f(z)$, satisfying $T(r, b)=S(r, f)$.
Recently, Considering the degree of the differential polynomial $P(f)$ of $n-2$ or $n-1, \mathrm{P} . \mathrm{Li}[9]$ proved the following results which are improvements or complementarity of Theorems 1.1 and 1.2
Theorem 1.3. Let $n \geq 2$ be an integer. Let f be a transcendental entire function, $P(f)$ be a differential polynomial in f of degree $\leq n-1$. If
\[

$$
\begin{equation*}
f^{n}(z)+P(f)=P_{1} e^{\alpha_{1} z}+P_{2} e^{\alpha_{2} z} \tag{1.1}
\end{equation*}
$$

\]

where $P_{i}(i=1,2)$ are nonvanshing small functions of $e^{z}, \alpha_{i}(i=1,2)$ are positive numbers satisfying $(n-1) \alpha_{2} \geq n \alpha_{1}>0$, then there exists a small function γ of f such that

$$
\begin{equation*}
(f-\gamma)^{n}=P_{2} e^{\alpha_{2} z} \tag{1.2}
\end{equation*}
$$

Theorem 1.4. Let $n \geq 2$ be an integer, α_{1}, α_{2} be real numbers and $\alpha_{1}<0<\alpha_{2}$. Let P_{1}, P_{2} be small functions of e^{z}. If there exists a transcendental entire function f satisfying the differential equation (1.1), where $P(f)$ is a differential polynomial in f of degree not exceeding $n-2$, then $\alpha_{1}+\alpha_{2}=0$, and there exist constants c_{1}, c_{2} and small functions β_{1}, β_{2} with respect to f such that

$$
\begin{equation*}
f=c_{1} \beta_{1} e^{\alpha_{1} z / n}+c_{2} \beta_{2} e^{\alpha_{2} z / n} \tag{1.3}
\end{equation*}
$$

moreover, $\beta_{i}^{n}=P_{i}, i=1,2$.
Theorem 1.5. Let $n \geq 2$ be an integer, α_{1}, α_{2} be positive numbers satisfying $(n-1) \alpha_{2} \geq n \alpha_{1}>0$. Let P_{1}, P_{2} be small functions of e^{z}. If $\frac{\alpha_{1}}{\alpha_{2}}$ is irrational, then the differential equation 1.1 has no entire solutions, where $P(f)$ is a differential polynomial in f of degree $\leq n-1$.

Remark 1.6. By an example, Li 9 pointed if the degree of $P(f)$ is $n-1$, then the solutions of (1.1) may not be the form in 1.3.

It is natural to ask whether $\alpha_{1} z$ and $\alpha_{2} z$ in can be replaced by two polynomials. In this article, by the same method as in 9, we obtain the following results.

Theorem 1.7. Let $n \geq 2$ be an integer. Let f be a transcendental entire function, $P(f)$ be a differential polynomial in f of degree $\leq n-1$. If

$$
\begin{equation*}
f^{n}(z)+P(f)=P_{1} e^{Q_{1}(z)}+P_{2} e^{Q_{2}(z)} \tag{1.4}
\end{equation*}
$$

where $P_{i}(i=1,2)$ are nonvanshing small meromorphic functions of $e^{z}, Q_{1}(z)=$ $\alpha_{k} z^{k}+\alpha_{k-1} z^{k-1}+\cdots+\alpha_{1} z+\alpha_{0}, Q_{2}(z)=\beta_{k} z^{k}+\beta_{k-1} z^{k-1}+\cdots+\beta_{1} z+\beta_{0}$ are two polynomials satisfying $(n-1) \beta_{k} \geq n \alpha_{k}>0$ (where $\alpha_{k-1}, \ldots \alpha_{0}, \beta_{k-1}, \ldots \beta_{0}$
are finite constants and $k \geq 1$) is a positive integer, then there exists a small meromorphic function γ of f such that

$$
\begin{equation*}
(f-\gamma)^{n}=P_{2} e^{Q_{2}} \tag{1.5}
\end{equation*}
$$

Theorem 1.8. Let $n \geq 2$ be an integer and P_{1}, P_{2} be small functions of e^{z}. If there exists a transcendental entire function f satisfying the differential equation (1.4), where $P(f)$ is a differential polynomial in f of degree not exceeding $n-2$ and $\alpha_{k}<0<\beta_{k}$, then $\alpha_{k}+\beta_{k}=0$, and there exist constants c_{1}, c_{2} and small functions β_{1}, β_{2} with respect to f such that

$$
f=c_{1} \beta_{1} e^{\frac{Q_{1}}{n}}+c_{2} \beta_{2} e^{\frac{Q_{2}}{n}}
$$

moreover, $\beta_{i}^{n}=P_{i}, i=1,2$.
Theorem 1.9. Let $n \geq 2$ be an integer, P_{1}, P_{2} be small functions of e^{z}. If $\frac{\alpha_{k}}{\beta_{k}}$ is irrational, then the differential equation (1.4) has no entire solutions, where $P(f)$ is a differential polynomial in f of degree $\leq n-1$ and $(n-1) \beta_{k} \geq n \alpha_{k}>0$.

Obviously, our results generalize the results in [6, 7, 8, 9 .

2. Preliminary Lemmas

In order to prove our theorems, we need the following lemmas. First, we need the following well-known Clunie's lemma, which has been extensively applied in studying the value distribution of a differential polynomial $P(z, f)$, as well as the growth estimates of solutions and meromorphic solvability of differential equations in the complex plane.

Lemma 2.1 ([1, 2]). Let f be a transcendental meromorphic solution of

$$
f^{n} A(z, f)=B(z, f)
$$

where $A(z, f), B(z, f)$ are differential polynomials in f and its derivatives with small meromorphic coefficients a_{λ}, in the sense of $T\left(r, a_{\lambda}\right)=S(r, f)$ for all $\lambda \in I$, where I is an index set. If the total degree of $B(z, f)$ as a polynomial in f and its derivatives is less than or equal n, then $m(r, A(z, f))=S(r, f)$.

Lemma 2.2 ([3]). Suppose that f is a nonconstant meromorphic function and $F=f^{n}+Q(f)$, where $Q(f)$ is a differential polynomial in f with degree $\leq n-1$. If $N(r, f)+N\left(r, \frac{1}{F}\right)=S(r, f)$, then

$$
F=(f+\gamma)^{n}
$$

whereby γ is meromorphic and $T(r, \gamma)=S(r, f)$
Lemma 2.3 (8). Suppose that h is a function in family \mathscr{F}. Let $f=a_{0} h^{p}+$ $a_{1} h^{p-1}+\cdots+a_{p}$, and $g=b_{0} h^{q}+b_{1} h^{q-1}+\cdots+b_{q}$ be polynomials in h with all coefficients being small functions of h and $a_{0} b_{0} a_{p} \neq 0$ If $q \leq p$, then $m\left(r, \frac{g}{f}\right)=$ $S(r, h)$.

3. Proofs of main theorems

Proof of Theorem 1.7. First of all, we write $P(f)$ as

$$
\begin{equation*}
P(f)=\sum_{j=0}^{n-1} b_{j} M_{j}(f) \tag{3.1}
\end{equation*}
$$

where b_{j} are small functions of $f, M_{0}(f)=1, M_{j}(f)(j=1,2, \ldots, n-1)$ are homogeneous differential monomials in f of degree j. Without loss of generality, we assume that $b_{0} \not \equiv 0$, otherwise, we do the transformation $f=f_{1}+c$ for a suitable constant c. From 1.4 , we have

$$
\begin{equation*}
\frac{1}{P_{1} e^{Q_{1}}+P_{2} e^{Q_{2}}-b_{0}}+\sum_{j=1}^{n-1} \frac{b_{j}}{P_{1} e^{Q_{1}}+P_{2} e^{Q_{2}}-b_{0}} \frac{M_{j}(f)}{f^{j}}\left(\frac{1}{f}\right)^{n-j}=\left(\frac{1}{f}\right)^{n} \tag{3.2}
\end{equation*}
$$

Note that $m\left(r, \frac{M_{j}(f)}{f^{j}}\right)=S(r, f)$,

$$
\begin{aligned}
& m\left(r, \frac{1}{P_{1} e^{Q_{1}(z)}+P_{2} e^{Q_{2}(z)}-b_{0}}\right) \\
& =m\left(r, \frac{1}{P_{1} e^{\alpha_{k-1} z^{k-1}+\cdots+\alpha_{0}} e^{\alpha_{k} z^{k}}+P_{2} e^{\beta_{k-1} z^{k-1}+\cdots+\beta_{0}} e^{\beta_{k} z^{k}}-b_{0}}\right)
\end{aligned}
$$

where $P_{1}, P_{2}, e^{\alpha_{k-1} z^{k-1}+\cdots+\alpha_{0}}, e^{\beta_{k-1} z^{k-1}+\cdots+\beta_{0}}$ are small functions of $e^{z^{k}}$.
We take $h=e^{z^{k}}, q=0, p=\beta_{k}$, by Lemma 2.3. we obtain

$$
\begin{aligned}
& m\left(r, \frac{1}{P_{1} e^{Q_{1}(z)}+P_{2} e^{Q_{2}(z)}-b_{0}}\right) \\
& =S\left(r, e^{z^{k}}\right)=S\left(r, P_{1} e^{Q_{1}(z)}+P_{2} e^{Q_{2}(z)}-b_{0}\right)=S(r, f(z))
\end{aligned}
$$

Therefore, the left-hand side of 3.2 is a polynomial in $1 / f$ of degree at most $n-1$ with coefficients being small proximate functions of $1 / f$. Hence

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right)=S(r, f) \tag{3.3}
\end{equation*}
$$

Taking the derivatives in both sides of (1.4) gives

$$
\begin{equation*}
n f^{n-1} f^{\prime}+(P(f))^{\prime}=\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right) e^{Q_{1}}+\left(P_{2}^{\prime}+Q_{2}^{\prime} P_{2}\right) e^{Q_{2}} \tag{3.4}
\end{equation*}
$$

By eliminating $e^{Q_{1}}$ and $e^{Q_{2}}$, respectively from (1.4) and the above equation, we obtain

$$
\begin{gather*}
\left(P_{2}^{\prime}+Q_{2}^{\prime} P_{2}\right) f^{n}-P_{2} n f^{n-1} f^{\prime}+\left(P_{2}^{\prime}+Q_{2}^{\prime} P_{2}\right) P(f)-P_{2}(P(f))^{\prime}=\beta e^{Q_{1}} \tag{3.5}\\
\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right) f^{n}-P_{1} n f^{n-1} f^{\prime}+\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right) P(f)-P_{1}(P(f))^{\prime}=-\beta e^{Q_{2}} \tag{3.6}
\end{gather*}
$$

where $\beta=P_{1} P_{2}^{\prime}-P_{2} P_{1}^{\prime}+\left(Q_{2}^{\prime}-Q_{1}^{\prime}\right) P_{1} P_{2}$ which is a small function of f. We note that β cannot vanish identically, otherwise, by integration we obtain $e^{Q_{2}-Q_{1}}=C \frac{P_{1}}{P_{2}}$ for a constant, which is impossible. From (3.5) and (3.6), we obtain

$$
\begin{equation*}
m\left(r, e^{Q_{j}}\right) \leq n T(r, f)+S(r, f), \quad j=1,2 \tag{3.7}
\end{equation*}
$$

On the other hand, from (1.4), we have

$$
\begin{equation*}
n T(r, f)=m\left(r, f^{n}\right)=m\left(r, f^{n}+P(f)\right) \leq T\left(r, P_{1} e^{Q_{1}}+P_{2} e^{Q_{2}}\right)+S(r, f) \tag{3.8}
\end{equation*}
$$

Therefore, $S\left(r, e^{Q_{1}}\right)=S\left(r, e^{Q_{2}}\right)=S(r, f):=S(r)$. From 3.2), we have

$$
\frac{e^{Q_{i}}}{p_{1} e^{Q_{1}}+p_{2} e^{Q_{2}}-b_{0}}+\sum_{j=1}^{n-1} \frac{b_{j} e^{Q_{i}}}{p_{1} e^{Q_{1}}+p_{2} e^{Q_{2}}-b_{0}} \frac{M_{j}(f)}{f^{j}} \frac{1}{f^{n-j}}=\frac{e^{Q_{i}}}{f^{n}}, \quad i=1,2
$$

It follows that

$$
\begin{equation*}
m\left(r, \frac{e^{Q_{i}}}{f^{n}}\right)=S(r), \quad i=1,2 \tag{3.9}
\end{equation*}
$$

Next, we prove

$$
\begin{equation*}
m\left(r, \frac{e^{Q_{1}}}{f^{n-1}}\right)=S(r) \tag{3.10}
\end{equation*}
$$

For a fixed $r>0$, let $z=r e^{i \theta}$. The interval $[0,2 \pi)$ can be expressed as the union of the following three disjoint sets:

$$
\begin{gathered}
E_{1}=\left\{\theta \in[0,2 \pi) \left\lvert\, \frac{|f(z)|}{\left|e^{Q_{2}(z)-Q_{1}(z)}\right|} \leq 1\right.\right\}, \\
E_{2}=\left\{\theta \in[0,2 \pi)\left|\frac{|f(z)|}{\left|e^{Q_{2}(z)-Q_{1}(z)}\right|}>1,\left|e^{z^{k}}\right| \leq 1\right\},\right. \\
E_{3}=\left\{\theta \in[0,2 \pi)\left|\frac{|f(z)|}{\left|e^{Q_{2}(z)-Q_{1}(z)}\right|}>1,\left|e^{z^{k}}\right|>1\right\} .\right.
\end{gathered}
$$

By the definition of the proximate function, we have

$$
m\left(r, \frac{e^{Q_{1}(z)}}{f^{n-1}(z)}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{e^{Q_{1}(z)}}{f^{n-1}(z)}\right| d \theta=I_{1}+I_{2}+I_{3}
$$

where

$$
I_{j}=\frac{1}{2 \pi} \int_{E_{j}} \log ^{+}\left|\frac{e^{Q_{1}(z)}}{f^{n-1}(z)}\right| d \theta, \quad(j=1,2,3)
$$

For $\theta \in E_{1}$, we have $|f(z)| \leq\left|e^{Q_{2}(z)-Q_{1}(z)}\right|$. Since $\frac{e^{Q_{1}(z)}}{f^{n-1}(z)}=\frac{e^{Q_{2}(z)}}{f^{n}(z)} \frac{f(z)}{e^{Q_{2}(z)-Q_{1}(z)}}$, we obtain

$$
I_{1} \leq m\left(r, \frac{e^{Q_{2}}}{f^{n}}\right)=S(r)
$$

For $\theta \in E_{2}$, we have $\left|e^{Q_{1}(z)}\right|=\left|e^{\alpha_{k} z^{k}(1+o(1))}\right| \leq 1$, and thus $\left|\frac{e^{Q_{1}(z)}}{f^{n-1}(z)}\right| \leq \frac{1}{\left|f^{n-1}(z)\right|}$. It follows from (3.3) that

$$
I_{2} \leq m\left(r, \frac{1}{f^{n-1}}\right)=S(r)
$$

For $\theta \in E_{3}$, we have $|f(z)|>\left|e^{Q_{2}(z)-Q_{1}(z)}\right|$. Therefore,

$$
\begin{aligned}
\left|\frac{e^{Q_{1}(z)}}{f^{n-1}(z)}\right| & \leq \frac{\left|e^{Q_{1}(z)}\right|}{\left|e^{(n-1)\left(Q_{2}(z)-Q_{1}(z)\right)}\right|} \\
& =\frac{1}{\left|e^{(n-1) Q_{2}(z)-n Q_{1}(z)}\right|}=\frac{1}{\left|e^{\left((n-1) \beta_{k}-n \alpha_{k}\right) z^{k}(1+o(1))}\right|}
\end{aligned}
$$

By the assumption $(n-1) \beta_{k} \geq n \alpha_{k}>0$, we obtain $\left|\frac{e^{Q_{1}(z)}}{f^{n-1}(z)}\right| \leq 1$. Therefore, we have $I_{3}=0$. Hence (3.10) holds.

It follows from (3.5) that

$$
f^{n-1} \varphi=\beta \frac{e^{Q_{1}}}{f^{n-1}} f^{n-1}-R(f)
$$

where $\varphi=\left(P_{2}^{\prime}+P_{2} Q_{2}^{\prime}\right) f-n P_{2} f^{\prime}$, and

$$
R(f)=\left(P_{2}^{\prime}+P_{2} Q_{2}^{\prime}\right) P(f)-P_{2} P^{\prime}(f)
$$

which is a differential polynomial in f of degree at most $n-1$. By Lemma 2.1, we obtain $m(r, \varphi)=S(r, f)$. Note that since φ is entire, we have $N(r, \varphi)=S(r, \varphi)=$ $S(r, f)$. Hence $T(r, \varphi)=S(r, f)$, i.e., φ is a small function of f, By the definition of φ, we obtain

$$
f^{\prime}=\frac{P_{2}^{\prime}+Q_{2}^{\prime} P_{2}}{n P_{2}} f-\frac{\varphi}{n P_{2}} .
$$

Substituting the above equation into (3.6) gives

$$
f^{n}-\frac{n P_{1} \varphi}{\beta} f^{n-1}-\frac{P_{2}\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right)}{\beta} P(f)+\frac{P_{1} P_{2}}{\beta}(P(f))^{\prime}=P_{2} e^{Q_{2}}
$$

By Lemma 2.2, we see that there exists a small function γ of f such that $(f-\gamma)^{n}=$ $P_{2} e^{Q_{2}}$. This also completes the proof of Theorem 1.7

Proof of Theorem 1.8. We discuss only the case $\alpha_{k}+\beta_{k} \geq 0$. The case $\alpha_{k}+\beta_{k} \leq 0$ can be discussed similarly. Suppose that f is a transcendental entire solution of (1.4). Similar to the proof of Theorem 1.7 , we can still get $(3.3)-(3.9)$. For a fixed $r>0$, let $z=r e^{i \theta}$. We can express the interval $[0,2 \pi)$ as the union of the following three disjoint sets:

$$
\begin{gathered}
E_{1}=\left\{\theta \in[0,2 \pi)\left|\frac{\left|f^{2}(z)\right|}{\left|e^{Q_{2}(z)-Q_{1}(z)}\right|} \leq 1\right|\right\} \\
E_{2}=\left\{\theta \in[0,2 \pi) \left\lvert\, \frac{\left|f^{2}(z)\right|}{\left|e^{Q_{2}(z)-Q_{1}(z) \mid}>1,\left|e^{z^{k}}\right| \leq 1\right\}}\right.\right. \\
E_{3}=\left\{\theta \in[0,2 \pi)\left|\frac{\left|f^{2}(z)\right|}{\left|e^{Q_{2}(z)-Q_{1}(z)}\right|}>1,\left|e^{z^{k}}\right|>1\right\}\right.
\end{gathered}
$$

By the definition of the proximate function, we have

$$
m\left(r, \frac{e^{Q_{1}(z)+Q_{2}(z)}}{f^{2 n-2}(z)}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{e^{Q_{1}(z)+Q_{2}(z)}}{f^{2 n-2}(z)}\right| d \theta=I_{1}+I_{2}+I_{3}
$$

where

$$
I_{j}=\frac{1}{2 \pi} \int_{E_{j}} \log ^{+}\left|\frac{e^{Q_{1}(z)+Q_{2}(z)}}{f^{2 n-2}(z)}\right| d \theta, \quad j=1,2,3
$$

For $\theta \in E_{1}$, we have

$$
\left|\frac{e^{Q_{1}(z)+Q_{2}(z)}}{f^{2 n-2}(z)}\right|=\left|\frac{e^{2 Q_{2}(z)}}{f^{2 n}(z)} \frac{f^{2}(z)}{e^{Q_{2}(z)-Q_{1}(z)}}\right| \leq\left|\frac{e^{Q_{2}(z)}}{f^{n}(z)}\right|^{2}
$$

Thus by (3.9), we obtain $I_{1} \leq S(r)$. For $\theta \in E_{2}$, it follows from $\left|e^{z^{k}}\right| \leq 1$ and $\alpha_{k}+\beta_{k} \geq 0$ that $\left|e^{\left(\alpha_{k}+\beta_{k}\right) z^{k}(1+o(1))}\right| \leq 1$. Therefore,

$$
\left|\frac{e^{Q_{1}(z)+Q_{2}(z)}}{f^{2 n-2}(z)}\right| \leq \frac{1}{\left|f^{2 n-2}(z)\right|}
$$

Then by (3.3), we obtain $I_{2} \leq S(r)$. For $\theta \in E_{3}$, we have $\left|f^{2}(z)\right|>\left|e^{Q_{2}(z)-Q_{1}(z)}\right|$. Thus

$$
\begin{aligned}
\left|\frac{e^{Q_{1}(z)+Q_{2}(z)}}{f^{2 n-2}(z)}\right| & <\frac{\left|e^{Q_{1}(z)+Q_{2}(z)}\right|}{\left|e^{(n-1)\left(Q_{2}(z)-Q_{1}(z)\right)}\right|}=\frac{1}{\left|e^{(n-2) Q_{2}(z)-n Q_{1}(z)}\right|} \\
& =\frac{1}{\left|e^{\left[(n-2) \beta_{k}-n \alpha_{k}\right] z^{k}(1+o(1))}\right|} \leq 1
\end{aligned}
$$

It follows that $I_{3} \leq S(r)$. Hence we have

$$
\begin{equation*}
m\left(r, \frac{e^{Q_{1}+Q_{2}}}{f^{2 n-2}}\right)=S(r, f) \tag{3.11}
\end{equation*}
$$

Multiplying (3.5 by 3.6 gives

$$
\begin{equation*}
f^{2 n-2} \varphi+Q(f)=-\beta^{2} e^{Q_{1}+Q_{2}} \tag{3.12}
\end{equation*}
$$

where $Q(f)$ is a differential polynomial in f of degree at most $2 n-2$, and

$$
\begin{equation*}
\left.\varphi=\left(\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right) f-n P_{1} f^{\prime}\right)\left(\left(P_{2}^{\prime}+Q_{2}^{\prime} P_{2}\right) f-n P_{2} f^{\prime}\right)\right) \tag{3.13}
\end{equation*}
$$

From (3.12) and by Lemma 2.1, we obtain $m(r, \varphi)=S(r, f)$. Therefore, $T(r, \varphi)=$ $S(r, f)$.

If $\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right) f-n P_{1} f^{\prime} \equiv 0$, then by integration we obtain $f^{n}=c P_{1} e^{Q_{1}}$, for a nonzero constant c. Therefore, $f=a e^{\frac{Q_{1}}{n}}$ for a small function a of f. Thus we see that the left-hand side of $\left(\sqrt[1.4]{)}\right.$ is a polynomial in $e^{\frac{Q_{1}}{n}}$ of degree n. However, the right-hand side of (1.4) cannot be a polynomial in $e^{\frac{Q_{1}}{n}}$. Hence $\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right) f-$ $n P_{1} f^{\prime} \not \equiv 0$. Similarly, we have $\left(P_{2}^{\prime}+Q_{2}^{\prime} P_{2}\right) f-n P_{2} f^{\prime} \not \equiv 0$. Therefore, $\varphi \not \equiv 0$. Let

$$
\begin{equation*}
\left(P_{2}^{\prime}+Q_{2}^{\prime} P_{2}\right) f-n P_{2} f^{\prime}=h \tag{3.14}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left(P_{1}^{\prime}+Q_{1}^{\prime} P_{1}\right) f-n P_{1} f^{\prime}=\frac{\varphi}{h} \tag{3.15}
\end{equation*}
$$

By eliminating f^{\prime} and f, respectively from (3.14) and (3.15), we obtain

$$
\begin{gather*}
f=\frac{P_{1}}{\beta} h-\frac{\varphi P_{2}}{\beta} \frac{1}{h} \tag{3.16}\\
f^{\prime}=\frac{P_{1}^{\prime}+Q_{1}^{\prime} P_{1}}{n \beta} h-\frac{P_{2}^{\prime}+Q_{2}^{\prime} P_{2}}{n \beta} \frac{\varphi}{h}, \tag{3.17}
\end{gather*}
$$

where $\beta=P_{1} P_{2}^{\prime}-P_{2} P_{1}^{\prime}+\left(Q_{2}^{\prime}-Q_{1}^{\prime}\right) P_{1} P_{2}$ which is a small function of f, and cannot vanish identically. From 3.16, we see that

$$
2 T(r, h)=T(r, f)+S(r, f)
$$

Therefore, any small function of f is also a small function of h. And from the definition of φ we see that h is a function in family \mathscr{F}. Thus $\frac{h^{\prime}}{h}$ is a small function of f. By taking derivative in both sides of 3.16, we obtain

$$
\begin{equation*}
f^{\prime}=\left(\left(\frac{P_{1}}{\beta}\right)^{\prime}+\frac{P_{1}}{\beta} \frac{h^{\prime}}{h}\right) h-\left(\left(\frac{\varphi P_{2}}{\beta}\right)^{\prime}-\frac{\varphi P_{2}}{\beta} \frac{h^{\prime}}{h}\right) \frac{1}{h} \tag{3.18}
\end{equation*}
$$

Comparing the coefficients of the right-hand side of (3.17) and (3.18), we deduce that

$$
\begin{align*}
\frac{P_{1}^{\prime}+Q_{1}^{\prime} P_{1}}{n \beta} & =\left(\frac{P_{1}}{\beta}\right)^{\prime}+\frac{P_{1}}{\beta} \frac{h^{\prime}}{h}, \tag{3.19}\\
\frac{\left(P_{2}^{\prime}+Q_{2}^{\prime} P_{2}\right) \varphi}{n \beta} & =\left(\frac{\varphi P_{2}}{\beta}\right)^{\prime}-\frac{\varphi P_{2}}{\beta} \frac{h^{\prime}}{h} . \tag{3.20}
\end{align*}
$$

By integrating (3.19) and (3.20), respectively, we obtain

$$
\begin{equation*}
P_{1} e^{Q_{1}}=d_{1}\left(\frac{P_{1}}{\beta} h\right)^{n}, \quad P_{2} e^{Q_{2}}=d_{2}\left(\frac{\varphi P_{2}}{\beta} \frac{1}{h}\right)^{n} \tag{3.21}
\end{equation*}
$$

where d_{1} and d_{2} are two nonzero constants. From the above two equations, we see that there exist two small functions β_{1} and β_{2} of e^{z} such that $P_{i}=\beta_{i}^{n}, i=1,2$, and

$$
\begin{equation*}
P_{1} P_{2} e^{Q_{1}+Q_{2}}=d_{1} d_{2}\left(\frac{P_{1} P_{2} \varphi}{\beta^{2}}\right)^{n} \tag{3.22}
\end{equation*}
$$

The right-hand side of the above equation is a small function of f, and thus a small function of $e^{z^{k}}$. Therefore, the above equation holds only when $\alpha_{k}+\beta_{k} \equiv 0$. Furthermore, from 3.21, we see that there exist two nonzero constants c_{1} and c_{2} such that

$$
\begin{equation*}
\frac{P_{1}}{\beta} h=c_{1} \beta_{1} e^{\frac{Q_{1}}{n}}, \quad \frac{P_{2} \varphi}{\beta} \frac{1}{h}=-c_{2} \beta_{2} e^{\frac{Q_{2}}{n}} \tag{3.23}
\end{equation*}
$$

Finally, from (3.16), we obtain (1.8).

Proof of Theorem 1.9. If f is a transcendental entire solution of (1.4), then by Theorem 1.7, there exists a small function γ of f such that 1.5 holds. And thus $N\left(r, \frac{1}{f-\gamma}\right)=S(r, f)$, i.e., γ is an exceptional small function of f. Equation (1.5) also shows that there exist two small functions ω_{1} and ω_{2} of f such that $f^{\prime}=\omega_{1} f+\omega_{2}$. By substituting this equation into 1.4 , we see that $P_{1} e^{Q_{1}}$ is a polynomial in f of degree $t<n$. By Lemma 2.2, there exist two small functions a and γ_{1} of f such that

$$
a\left(f-\gamma_{1}\right)^{t}=P_{1} e^{Q_{1}}
$$

Therefore, γ_{1} is also an exceptional small function of f. Since any transcendental entire function cannot have two exceptional small functions, we deduce that $\gamma_{1}=\gamma$. From 1.5 and above equation, we obtain

$$
\begin{equation*}
e^{n Q_{1}-t Q_{2}}=\frac{P_{2}^{t} a^{n}}{P_{1}^{n}} \tag{3.24}
\end{equation*}
$$

The right-hand side of the above equation is small function of f, and thus a small function of e^{z}. Hence we obtain $n Q_{1}-t Q_{2} \equiv 0$. Therefore, $\lim _{z \rightarrow \infty} \frac{Q_{1}}{Q_{2}}=\frac{\alpha_{k}}{\beta_{k}}=\frac{t}{n}$ must be a rational number, which contradicts the assumption. This also completes the proof of Theorem 1.9 .

Acknowledgements. The authors would like to express their hearty thanks to Professor Hongxun Yi for his valuable advice and helpful information.

References

[1] S. Bank, I. Laine; Onthe growth of meromorphic solutions of linear and algebraic differential equations, Math. Scand. 40(1997) 119-126.
[2] J. Clunie; On integral and meromorphic functions, J. London Math. Soc. 37 (1962) 17-27.
[3] W. Hayman; Meromorphic Functions, Clarendon Press, Oxford, 1964.
[4] J. Heittokangas, R. Korhonen, I. Laine; On meromorphic solutions of certain nonlinear differential equations, Bull. Austral. Math. Soc. 66(2) (2002) 331-343.
[5] G. Jank, L. Volkmann; Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Verlag, Basel, 1985.
[6] I. Laine; Nevanlinna Theory and Complex Differential Equations, Stud. Math., vol. 15, Walter de Gruyter, Berlin, 1993.
[7] P. Li, C. C. yang; On the non-existence of entire solutions of certain type of nonlinear differential equations. J. Math. Anal. Appl. 320(2006) 827-835.
[8] P. Li, W. J. Wang; Entire function that share a small function with its derivative, J. Math. Anal. Appl. 328(2007) 743-751.
[9] P. Li; Entire solutions of certain type of differential equations, J. Math. Anal. Appl. 344(2008) 253-259.
[10] C. C. Yang; On entire solutions of a certain type of nonlinear differential equations, Bull. Austral. Math. Soc. 64 (3) (2001) 377-380.
[11] C. C. Yang, P. Li; On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math. 82(2004) 442-448.

Jianming Qi
Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 200240, China

E-mail address: qijianming1981@gmail.com
Jie Ding
Department of Mathematics, Shandong University, Jinan 250100, China
E-mail address: dingjie169@163.com
Taiying Zhu
Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 200240, China

E-mail address: ztyyyy@163.com

[^0]: 2000 Mathematics Subject Classification. 30D35, 30D45.
 Key words and phrases. Transcendental entire functions; Nevanlinna theory; differential equations.
 (C)2011 Texas State University - San Marcos.

 Submitted July 10, 2010. Published June 15, 2011.
 Supported by project 10XKJ01 from Leading Academic Discipline Project of Shanghai Dianji University, and grants: 10771121 from the NSFC, Z2008A01 from the NSF of Shandong, and 20060422049 from the RFDP.

