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ENTIRE SOLUTIONS FOR A NONLINEAR DIFFERENTIAL
EQUATION

JIANMING QI, JIE DING, TAIYING ZHU

Abstract. In this article, we study the existence of solutions to the differen-
tial equation

fn(z) + P (f) = P1eh1 + P2eh2 ,

where n ≥ 2 is an positive integer, f is a transcendental entire function, P (f)
is a differential polynomial in f of degree less than or equal n− 1, P1, P2 are
small functions of ez , h1, h2 are polynomials, and z is in the open complex
plane C. Our results extend those obtained by Li [6, 7, 8, 9].

1. Introduction and main results

Nevanlinna value distribution theory of meromorphic functions has been exten-
sively applied to resolve growth (see[6]), value distribution [6], and solvability of
meromorphic solutions of linear and nonlinear differential equations [4, 6, 10, 11].
Considering meromorphic functions f in the complex plane, we assume that the
reader is familiar with the standard notations and results such as the proximity
function m(r, f), counting function N(r, f), characteristic function T (r, f), the first
and second main theorems, lemma on the logarithmic derivatives etc. of Nevanlinna
theory; see e.g. [3, 6]. Given a meromorphic function f , we shall call a meromorphic
function a(z) a small function of f(z) if T (r, a) = S(r, f), where S(r, f) is used to
denote any quantity that satisfies S(r, f) = o(T (r, f)) as r → ∞, possibly outside
a set of r of finite logarithmic measure. A differential polynomial P (f) in f is a
polynomial in f and its derivatives with small functions of f as the coefficients.
The notation F is defined to the family of all meromorphic functions which satisfy
N(r, 1

h )+N(r, h) = S(r, h). Note that all functions in family F are transcendental,
and all functions of the form beλz are functions in family F , where λ is any nonzero
constant and b is a rational function.

In 2006, Li and Yang [7, 11] obtain the following results.

Theorem 1.1. Let n ≥ 4 be an integer, and P (f) denote an algebraic differential
polynomial in f of degree ≤ n− 3. Let P1, P2 be two nonzero polynomials, α1 and
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α2 be two nonzero constants with α1
α2
6= rational. Then the differential equation

fn(z) + P (f) = P1e
α1z + P2e

α2z

has no transcendental entire solutions.

Theorem 1.2. Let n ≥ 3 be an integer, and P (f) be an algebraic differential
polynomial in f of degree ≤ n − 3, b(z) be a meromorphic function, and λ, c1, c2

and three nonzero constants, Then the differential equation

fn(z) + P (f) = b(z)(c1e
λz + c2e

−λz)

has no transcendental entire solutions f(z), satisfying T (r, b) = S(r, f).

Recently, Considering the degree of the differential polynomial P (f) of n− 2 or
n− 1, P. Li [9] proved the following results which are improvements or complemen-
tarity of Theorems 1.1 and 1.2.

Theorem 1.3. Let n ≥ 2 be an integer. Let f be a transcendental entire function,
P (f) be a differential polynomial in f of degree ≤ n− 1. If

fn(z) + P (f) = P1e
α1z + P2e

α2z, (1.1)

where Pi(i = 1, 2) are nonvanshing small functions of ez, αi(i = 1, 2) are positive
numbers satisfying (n− 1)α2 ≥ nα1 > 0, then there exists a small function γ of f
such that

(f − γ)n = P2e
α2z. (1.2)

Theorem 1.4. Let n ≥ 2 be an integer, α1, α2 be real numbers and α1 < 0 < α2.
Let P1, P2 be small functions of ez. If there exists a transcendental entire function
f satisfying the differential equation (1.1), where P (f) is a differential polynomial
in f of degree not exceeding n−2, then α1 +α2 = 0, and there exist constants c1, c2

and small functions β1, β2 with respect to f such that

f = c1β1e
α1z/n + c2β2e

α2z/n, (1.3)

moreover, βn
i = Pi, i = 1, 2.

Theorem 1.5. Let n ≥ 2 be an integer, α1, α2 be positive numbers satisfying
(n− 1)α2 ≥ nα1 > 0. Let P1, P2 be small functions of ez. If α1

α2
is irrational, then

the differential equation (1.1) has no entire solutions, where P (f) is a differential
polynomial in f of degree ≤ n− 1.

Remark 1.6. By an example, Li [9] pointed if the degree of P (f) is n − 1, then
the solutions of (1.1) may not be the form in (1.3).

It is natural to ask whether α1z and α2z in (1.1) can be replaced by two poly-
nomials. In this article, by the same method as in [9], we obtain the following
results.

Theorem 1.7. Let n ≥ 2 be an integer. Let f be a transcendental entire function,
P (f) be a differential polynomial in f of degree ≤ n− 1. If

fn(z) + P (f) = P1e
Q1(z) + P2e

Q2(z), (1.4)

where Pi(i = 1, 2) are nonvanshing small meromorphic functions of ez, Q1(z) =
αkzk + αk−1z

k−1 + · · ·+ α1z + α0, Q2(z) = βkzk + βk−1z
k−1 + · · ·+ β1z + β0 are

two polynomials satisfying (n − 1)βk ≥ nαk > 0 (where αk−1, . . . α0, βk−1, . . . β0
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are finite constants and k ≥ 1 ) is a positive integer, then there exists a small
meromorphic function γ of f such that

(f − γ)n = P2e
Q2 . (1.5)

Theorem 1.8. Let n ≥ 2 be an integer and P1, P2 be small functions of ez. If
there exists a transcendental entire function f satisfying the differential equation
(1.4), where P (f) is a differential polynomial in f of degree not exceeding n−2 and
αk < 0 < βk, then αk +βk = 0, and there exist constants c1, c2 and small functions
β1, β2 with respect to f such that

f = c1β1e
Q1
n + c2β2e

Q2
n ,

moreover, βn
i = Pi, i = 1, 2.

Theorem 1.9. Let n ≥ 2 be an integer, P1, P2 be small functions of ez. If αk

βk
is

irrational, then the differential equation (1.4) has no entire solutions, where P (f)
is a differential polynomial in f of degree ≤ n− 1 and (n− 1)βk ≥ nαk > 0.

Obviously, our results generalize the results in [6, 7, 8, 9].

2. Preliminary Lemmas

In order to prove our theorems, we need the following lemmas. First, we need
the following well-known Clunie’s lemma, which has been extensively applied in
studying the value distribution of a differential polynomial P (z, f), as well as the
growth estimates of solutions and meromorphic solvability of differential equations
in the complex plane.

Lemma 2.1 ([1, 2]). Let f be a transcendental meromorphic solution of

fnA(z, f) = B(z, f),

where A(z, f), B(z, f) are differential polynomials in f and its derivatives with
small meromorphic coefficients aλ, in the sense of T (r, aλ) = S(r, f) for all λ ∈ I,
where I is an index set. If the total degree of B(z, f) as a polynomial in f and its
derivatives is less than or equal n, then m(r, A(z, f)) = S(r, f).

Lemma 2.2 ([3]). Suppose that f is a nonconstant meromorphic function and
F = fn + Q(f), where Q(f) is a differential polynomial in f with degree ≤ n − 1.
If N(r, f) + N(r, 1

F ) = S(r, f), then

F = (f + γ)n,

whereby γ is meromorphic and T (r, γ) = S(r, f)

Lemma 2.3 ([8]). Suppose that h is a function in family F . Let f = a0h
p +

a1h
p−1 + · · · + ap, and g = b0h

q + b1h
q−1 + · · · + bq be polynomials in h with all

coefficients being small functions of h and a0b0ap 6= 0 If q ≤ p, then m(r, g
f ) =

S(r, h).
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3. Proofs of main theorems

Proof of Theorem 1.7. First of all, we write P (f) as

P (f) =
n−1∑
j=0

bjMj(f), (3.1)

where bj are small functions of f , M0(f) = 1, Mj(f)(j = 1, 2, . . . , n − 1) are
homogeneous differential monomials in f of degree j. Without loss of generality,
we assume that b0 6≡ 0, otherwise, we do the transformation f = f1+c for a suitable
constant c. From (1.4), we have

1
P1eQ1 + P2eQ2 − b0

+
n−1∑
j=1

bj

P1eQ1 + P2eQ2 − b0

Mj(f)
f j

(
1
f

)n−j = (
1
f

)n. (3.2)

Note that m(r, Mj(f)
fj ) = S(r, f),

m(r,
1

P1eQ1(z) + P2eQ2(z) − b0
)

= m(r,
1

P1eαk−1zk−1+···+α0eαkzk + P2eβk−1zk−1+···+β0eβkzk − b0

),

where P1, P2, eαk−1zk−1+···+α0 , eβk−1zk−1+···+β0 are small functions of ezk

.
We take h = ezk

, q = 0, p = βk, by Lemma 2.3, we obtain

m(r,
1

P1eQ1(z) + P2eQ2(z) − b0
)

= S(r, ezk

) = S(r, P1e
Q1(z) + P2e

Q2(z) − b0) = S(r, f(z)).

Therefore, the left-hand side of (3.2) is a polynomial in 1/f of degree at most n−1
with coefficients being small proximate functions of 1/f . Hence

m(r,
1
f

) = S(r, f). (3.3)

Taking the derivatives in both sides of (1.4) gives

nfn−1f ′ + (P (f))′ = (P ′
1 + Q′

1P1)eQ1 + (P ′
2 + Q′

2P2)eQ2 . (3.4)

By eliminating eQ1 and eQ2 , respectively from (1.4) and the above equation, we
obtain

(P ′
2 + Q′

2P2)fn − P2nfn−1f ′ + (P ′
2 + Q′

2P2)P (f)− P2(P (f))′ = βeQ1 (3.5)

(P ′
1 + Q′

1P1)fn − P1nfn−1f ′ + (P ′
1 + Q′

1P1)P (f)− P1(P (f))′ = −βeQ2 , (3.6)

where β = P1P
′
2 − P2P

′
1 + (Q′

2 −Q′
1)P1P2 which is a small function of f . We note

that β cannot vanish identically, otherwise, by integration we obtain eQ2−Q1 = C P1
P2

for a constant, which is impossible. From (3.5) and (3.6), we obtain

m(r, eQj ) ≤ nT (r, f) + S(r, f), j = 1, 2. (3.7)

On the other hand, from (1.4), we have

nT (r, f) = m(r, fn) = m(r, fn + P (f)) ≤ T (r, P1e
Q1 + P2e

Q2) + S(r, f). (3.8)
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Therefore, S(r, eQ1) = S(r, eQ2) = S(r, f) := S(r). From (3.2), we have

eQi

p1eQ1 + p2eQ2 − b0
+

n−1∑
j=1

bje
Qi

p1eQ1 + p2eQ2 − b0

Mj(f)
f j

1
fn−j

=
eQi

fn
, i = 1, 2.

It follows that

m(r,
eQi

fn
) = S(r), i = 1, 2. (3.9)

Next, we prove

m(r,
eQ1

fn−1
) = S(r). (3.10)

For a fixed r > 0, let z = reiθ. The interval [0, 2π) can be expressed as the union
of the following three disjoint sets:

E1 = {θ ∈ [0, 2π)| |f(z)|
|eQ2(z)−Q1(z)|

≤ 1},

E2 = {θ ∈ [0, 2π)| |f(z)|
|eQ2(z)−Q1(z)|

> 1, |ezk

| ≤ 1},

E3 = {θ ∈ [0, 2π)| |f(z)|
|eQ2(z)−Q1(z)|

> 1, |ezk

| > 1}.

By the definition of the proximate function, we have

m(r,
eQ1(z)

fn−1(z)
) =

1
2π

∫ 2π

0

log+ | eQ1(z)

fn−1(z)
|dθ = I1 + I2 + I3,

where

Ij =
1
2π

∫
Ej

log+ | eQ1(z)

fn−1(z)
|dθ, (j = 1, 2, 3).

For θ ∈ E1, we have |f(z)| ≤ |eQ2(z)−Q1(z)|. Since eQ1(z)

fn−1(z) = eQ2(z)

fn(z)
f(z)

eQ2(z)−Q1(z) , we
obtain

I1 ≤ m(r,
eQ2

fn
) = S(r).

For θ ∈ E2, we have |eQ1(z)| = |eαkzk(1+o(1))| ≤ 1, and thus | eQ1(z)

fn−1(z) | ≤
1

|fn−1(z)| . It
follows from (3.3) that

I2 ≤ m(r,
1

fn−1
) = S(r).

For θ ∈ E3, we have |f(z)| > |eQ2(z)−Q1(z)|. Therefore,

| eQ1(z)

fn−1(z)
| ≤ |eQ1(z)|

|e(n−1)(Q2(z)−Q1(z))|

=
1

|e(n−1)Q2(z)−nQ1(z)|
=

1
|e((n−1)βk−nαk)zk(1+o(1))|

.

By the assumption (n − 1)βk ≥ nαk > 0, we obtain | eQ1(z)

fn−1(z) | ≤ 1. Therefore, we
have I3 = 0. Hence (3.10) holds.

It follows from (3.5) that

fn−1ϕ = β
eQ1

fn−1
fn−1 −R(f),
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where ϕ = (P ′
2 + P2Q

′
2)f − nP2f

′, and

R(f) = (P ′
2 + P2Q

′
2)P (f)− P2P

′(f)

which is a differential polynomial in f of degree at most n− 1. By Lemma 2.1, we
obtain m(r, ϕ) = S(r, f). Note that since ϕ is entire, we have N(r, ϕ) = S(r, ϕ) =
S(r, f). Hence T (r, ϕ) = S(r, f), i.e., ϕ is a small function of f , By the definition
of ϕ, we obtain

f ′ =
P ′

2 + Q′
2P2

nP2
f − ϕ

nP2
.

Substituting the above equation into (3.6) gives

fn − nP1ϕ

β
fn−1 − P2(P ′

1 + Q′
1P1)

β
P (f) +

P1P2

β
(P (f))′ = P2e

Q2 .

By Lemma 2.2, we see that there exists a small function γ of f such that (f−γ)n =
P2e

Q2 . This also completes the proof of Theorem 1.7. �

Proof of Theorem 1.8. We discuss only the case αk +βk ≥ 0. The case αk +βk ≤ 0
can be discussed similarly. Suppose that f is a transcendental entire solution of
(1.4). Similar to the proof of Theorem 1.7, we can still get (3.3)-(3.9). For a fixed
r > 0, let z = reiθ. We can express the interval [0, 2π) as the union of the following
three disjoint sets:

E1 = {θ ∈ [0, 2π)| |f2(z)|
|eQ2(z)−Q1(z)|

≤ 1|},

E2 = {θ ∈ [0, 2π)| |f2(z)|
|eQ2(z)−Q1(z)|

> 1, |ezk

| ≤ 1},

E3 = {θ ∈ [0, 2π)| |f2(z)|
|eQ2(z)−Q1(z)|

> 1, |ezk

| > 1}.

By the definition of the proximate function, we have

m(r,
eQ1(z)+Q2(z)

f2n−2(z)
) =

1
2π

∫ 2π

0

log+ |e
Q1(z)+Q2(z)

f2n−2(z)
|dθ = I1 + I2 + I3,

where

Ij =
1
2π

∫
Ej

log+ |e
Q1(z)+Q2(z)

f2n−2(z)
|dθ, j = 1, 2, 3.

For θ ∈ E1, we have

|e
Q1(z)+Q2(z)

f2n−2(z)
| = |e

2Q2(z)

f2n(z)
f2(z)

eQ2(z)−Q1(z)
| ≤ |e

Q2(z)

fn(z)
|2.

Thus by (3.9), we obtain I1 ≤ S(r). For θ ∈ E2, it follows from |ezk | ≤ 1 and
αk + βk ≥ 0 that |e(αk+βk)zk(1+o(1))| ≤ 1. Therefore,

|e
Q1(z)+Q2(z)

f2n−2(z)
| ≤ 1

|f2n−2(z)|
.
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Then by (3.3), we obtain I2 ≤ S(r). For θ ∈ E3, we have |f2(z)| > |eQ2(z)−Q1(z)|.
Thus

|e
Q1(z)+Q2(z)

f2n−2(z)
| < |eQ1(z)+Q2(z)|

|e(n−1)(Q2(z)−Q1(z))|
=

1
|e(n−2)Q2(z)−nQ1(z)|

=
1

|e[(n−2)βk−nαk]zk(1+o(1))|
≤ 1.

It follows that I3 ≤ S(r). Hence we have

m(r,
eQ1+Q2

f2n−2
) = S(r, f). (3.11)

Multiplying (3.5) by (3.6) gives

f2n−2ϕ + Q(f) = −β2eQ1+Q2 , (3.12)

where Q(f) is a differential polynomial in f of degree at most 2n− 2, and

ϕ = ((P ′
1 + Q′

1P1)f − nP1f
′)((P ′

2 + Q′
2P2)f − nP2f

′)). (3.13)

From (3.12) and by Lemma 2.1, we obtain m(r, ϕ) = S(r, f). Therefore, T (r, ϕ) =
S(r, f).

If (P ′
1 + Q′

1P1)f − nP1f
′ ≡ 0, then by integration we obtain fn = cP1e

Q1 , for
a nonzero constant c. Therefore, f = ae

Q1
n for a small function a of f . Thus we

see that the left-hand side of (1.4) is a polynomial in e
Q1
n of degree n. However,

the right-hand side of (1.4) cannot be a polynomial in e
Q1
n . Hence (P ′

1 + Q′
1P1)f −

nP1f
′ 6≡ 0. Similarly, we have (P ′

2 + Q′
2P2)f − nP2f

′ 6≡ 0. Therefore, ϕ 6≡ 0. Let

(P ′
2 + Q′

2P2)f − nP2f
′ = h. (3.14)

Then we have

(P ′
1 + Q′

1P1)f − nP1f
′ =

ϕ

h
. (3.15)

By eliminating f ′ and f , respectively from (3.14) and (3.15), we obtain

f =
P1

β
h− ϕP2

β

1
h

, (3.16)

f ′ =
P ′

1 + Q′
1P1

nβ
h− P ′

2 + Q′
2P2

nβ

ϕ

h
, (3.17)

where β = P1P
′
2−P2P

′
1 +(Q′

2−Q′
1)P1P2 which is a small function of f , and cannot

vanish identically. From (3.16), we see that

2T (r, h) = T (r, f) + S(r, f).

Therefore, any small function of f is also a small function of h. And from the
definition of ϕ we see that h is a function in family F . Thus h′

h is a small function
of f . By taking derivative in both sides of (3.16), we obtain

f ′ = ((
P1

β
)′ +

P1

β

h′

h
)h− ((

ϕP2

β
)′ − ϕP2

β

h′

h
)
1
h

. (3.18)
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Comparing the coefficients of the right-hand side of (3.17) and (3.18), we deduce
that

P ′
1 + Q′

1P1

nβ
= (

P1

β
)′ +

P1

β

h′

h
, (3.19)

(P ′
2 + Q′

2P2)ϕ
nβ

= (
ϕP2

β
)′ − ϕP2

β

h′

h
. (3.20)

By integrating (3.19) and (3.20), respectively, we obtain

P1e
Q1 = d1(

P1

β
h)n, P2e

Q2 = d2(
ϕP2

β

1
h

)n, (3.21)

where d1 and d2 are two nonzero constants. From the above two equations, we see
that there exist two small functions β1 and β2 of ez such that Pi = βn

i , i = 1, 2,
and

P1P2e
Q1+Q2 = d1d2(

P1P2ϕ

β2
)n. (3.22)

The right-hand side of the above equation is a small function of f , and thus a
small function of ezk

. Therefore, the above equation holds only when αk + βk ≡ 0.
Furthermore, from (3.21), we see that there exist two nonzero constants c1 and c2

such that
P1

β
h = c1β1e

Q1
n ,

P2ϕ

β

1
h

= −c2β2e
Q2
n . (3.23)

Finally, from (3.16), we obtain (1.8). �

Proof of Theorem 1.9. If f is a transcendental entire solution of (1.4), then by
Theorem 1.7, there exists a small function γ of f such that (1.5) holds. And thus
N(r, 1

f−γ ) = S(r, f), i.e., γ is an exceptional small function of f . Equation (1.5) also
shows that there exist two small functions ω1 and ω2 of f such that f ′ = ω1f + ω2.
By substituting this equation into (1.4), we see that P1e

Q1 is a polynomial in f of
degree t < n. By Lemma 2.2, there exist two small functions a and γ1 of f such
that

a(f − γ1)t = P1e
Q1 .

Therefore, γ1 is also an exceptional small function of f . Since any transcendental
entire function cannot have two exceptional small functions, we deduce that γ1 = γ.
From (1.5) and above equation, we obtain

enQ1−tQ2 =
P t

2an

Pn
1

. (3.24)

The right-hand side of the above equation is small function of f , and thus a small
function of ez. Hence we obtain nQ1 − tQ2 ≡ 0. Therefore, limz→∞

Q1
Q2

= αk

βk
= t

n

must be a rational number, which contradicts the assumption. This also completes
the proof of Theorem 1.9. �
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[5] G. Jank, L. Volkmann; Einführung in die Theorie der ganzen und meromorphen Funktionen

mit Anwendungen auf Differentialgleichungen, Birkhäuser Verlag, Basel, 1985.
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