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THREE POSITIVE SOLUTIONS FOR m-POINT
BOUNDARY-VALUE PROBLEMS WITH ONE-DIMENSIONAL

p-LAPLACIAN

DONGLONG BAI, HANYING FENG

Abstract. In this article, we study the multipoint boundary value problem
for the one-dimensional p-Laplacian

(φp(u′))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

subject to the boundary conditions

u(0) =

m−2X
i=1

aiu(ξi), u′(1) = βu′(0).

Using a fixed point theorem due to Avery and Peterson, we provide sufficient
conditions for the existence of at least three positive solutions to the above
boundary value problem. The interesting point is that the nonlinear term f
involves the first derivative of the unknown function.

1. Introduction

In this article, we study the existence of multiple positive solutions to the bound-
ary value problem (BVP for short) for the one-dimensional p-Laplacian

(φp(u′))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1), (1.1)

u(0) =
m−2∑
i=1

aiu(ξi), u′(1) = βu′(0), (1.2)

where φp(s) = |s|p−2s, p > 1, ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1. use
the following assumptions:

(H1) ai ∈ [0, 1) satisfies
∑m−2

i=1 ai < 1, β ∈ (0, 1);
(H2) f ∈ C([0, 1]× [0,+∞)× R, [0,+∞));
(H3) q ∈ L1[0, 1] is nonnegative on (0, 1) and q is not identically zero on any

subinterval of (0, 1). Furthermore, q satisfies 0 <
∫ 1

0
q(t)dt <∞.

Multipoint boundary value problems of ordinary differential equations arise in a
variety of areas of applied mathematics and physics. For example, the vibrations of
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a guy wire of a uniform cross-section and composed of N parts of different densities
can be set up as a multipoint boundary value problem (see [15]). The study of
multipoint boundary value problems for linear second-order ordinary differential
equations was initiated by Il’in and Moiseev [9]. Since then there has been much
current attention focused on the study of nonlinear multipoint boundary value
problems, see [1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18]. However, to the best
knowledge of the authors, no work has been done for (1.1), (1.2). The aim of this
paper is to fill this gap in the relevant literature.

Karakostas [10] proved the existence of positive solutions for the multipoint
boundary-value problem

x′′(t)− sign(1− α)q(t)f(x, x′)x′ = 0, t ∈ (0, 1),

with one of the following sets of boundary conditions:

x(0) = 0, x′(1) = αx′(0),

or
x(1) = 0, x′(1) = αx′(0),

where α > 0, α 6= 1. By using indices of convergence of the nonlinearities at 0 and
at +∞, the author provide a priori upper and lower bounds for the slope of the
solutions.

Ma [14] proved the existence of positive solutions for the multipoint boundary-
value problem

x′′(t)− q(t)f(x, x′)x′ = 0, t ∈ (0, 1),

x(0) =
n−2∑
i=1

bix(ξi), x′(1) = αx′(0),

where ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, bi ∈ [0, 1), α > 1. They
provided sufficient conditions for the existence of multiple positive solutions to the
above BVP by applying the fixed point theorem in cones.

Motivated by these results, our purpose of this paper is to show the existence of
at least three positive solutions to multipoint BVP (1.1) and (1.2).

2. Preliminaries

For the convenience of readers, we provide some background material from the
theory of cones in Banach spaces. We also state in this section the Avery-Peterson’s
fixed point theorem.

Definition 2.1. Let E be a real Banach space over R. A nonempty closed set
P ⊂ E is said to be a cone provide that

(i) au+ bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0; and
(ii) u,−u ∈ P implies u = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y−x ∈ P .

Definition 2.2. The map α is said to be a nonnegative continuous concave func-
tional on a cone P of a real Banach space E provided that α : P → [0,∞) is
continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)
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for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map γ is a nonnegative
continuous convex functional on a cone P of a real Banach space E provided that
γ : P → [0,∞) is continuous and

γ(tx+ (1− t)y) ≤ tγ(x) + (1− t)γ(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ and θ be nonnegative continuous convex functionals on a cone P , α be
a nonnegative continuous concave functional on a cone P , and ψ a nonnegative
continuous functional on a cone P . Then for positive real numbers a, b, c, d, we
define the following convex sets:

P (γ, d) = {u ∈ P : γ(u) < d},
P (γ, α, b, d) = {u ∈ P : b ≤ α(u), γ(u) ≤ d},

P (γ, θ, α, b, c, d) = {u ∈ P : b ≤ α(u), θ(u) ≤ c, γ(u) ≤ d},
R(γ, ψ, a, d) = {u ∈ P : a ≤ ψ(u), γ(u) ≤ d}.

To prove our results, we need the following fixed point theorem due to Avery
and Peterson [2].

Theorem 2.3. Let P be a cone in a real Banach space E. Let γ and θ be nonneg-
ative continuous convex functionals on P , α be a nonnegative continuous concave
functional on P , and ψ be a nonnegative continuous functional on P satisfying
ψ(λu) ≤ λψ(u) for 0 ≤ λ ≤ 1, such that for some positive numbers M and d,

α(u) ≤ ψ(u) and ‖u‖ ≤Mγ(u) (2.1)

for all u ∈ P (γ, d). Suppose T : P (γ, d) → P (γ, d) is completely continuous and
there exist positive numbers a, b and c with a < b such that

(S1) the set {u ∈ P (γ, θ, α, b, c, d) : α(u) > b} 6= φ and α(Tu) > b for all u in
P (γ, θ, α, b, c, d);

(S2) α(Tu) > b for u ∈ P (γ, α, b, d) with θ(Tu) > c;
(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tu) < a for u ∈ R(γ, ψ, a, d) with ψ(u) = a.

Then T has at least three fixed points u1, u2, u3 ∈ P (γ, d), such that γ(ui) ≤ d for
i = 1, 2, 3, b < α(u1), a < ψ(u2), with α(u2) < b, ψ(u3) < a.

3. Related lemmas

Let the Banach space E = C1[0, 1] be endowed with the norm

‖u‖ = max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|
}
.

Define the cone P ⊂ E by P = {u ∈ E : u(t) ≥ 0, u(0) =
∑m−2

i=1 aiu(ξi), u′(1) =
βu′(0), u is concave on [0, 1]} ⊂ E.

It follows from (H3) that there exists a natural number k > max{ 1
ξ1
, 1

1−ξm−2
}

such that 0 <
∫ 1−(1/k)

1/k
q(t)dt <∞.

Let the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals θ, γ, and the nonnegative continuous functional ψ be defined on
the cone P by

γ(u) = max
0≤t≤1

|u′(t)|, ψ(u) = θ(u) = max
0≤t≤1

|u(t)|,
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α(u) = min
1/k≤t≤1−(1/k)

|u(t)| for u ∈ P.

Lemma 3.1. Assume that (H1)–(H3) hold. Then, for any x ∈ C+[0, 1] =: {x ∈
C1[0, 1] : x(t) ≥ 0},

(φp(u′))′ + q(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1), (3.1)

u(0) =
m−2∑
i=1

aiu(ξi), u′(1) = βu′(0), (3.2)

has the unique solution

u(t) =
∫ t

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, x(τ), x′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds

+
1

1−
∑m−2

i=1 ai

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, x(τ), x′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds.

(3.3)

Proof. For an x ∈ C+[0, 1], suppose u is a solution of (3.1), (3.2). By integration
of (3.1), it follows that

u′(t) = φ−1
p

(
φp(u′(0))−

∫ t

0

q(τ)f(τ, x(τ), x′(τ))dτ
)
,

u(t) = u(0) +
∫ t

0

φ−1
p

(
φp(u′(0))−

∫ s

0

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds.

Using the boundary condition (3.2), we can easily show that

u(t) =
∫ t

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, x(τ), x′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds

+
1

1−
∑m−2

i=1 ai

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, x(τ), x′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds.

One the other hand, it is easy to verify that if u is the solution of (3.3), then u is
a solution of (3.1) and (3.2). �

Lemma 3.2. Assume that (H1)–(H3) hold. If x ∈ C+[0, 1], then the unique solu-
tion u(t) of (3.1) and (3.2) is concave and u(t) ≥ 0, u′(t) ≥ 0, t ∈ [0, 1].

Proof. From the fact that (φp(u′))′(t) = −q(t)f(t, x(t), x′(t)) ≤ 0, we have φp(u′(t))
is nonincreasing. It follows that u′(t) is also nonincreasing. Thus, we know that
the graph of u(t) is concave down on (0, 1). Then the concavity of u together with
boundary condition u′(1) = βu′(0) implies that u′(t) ≥ 0 for t ∈ [0, 1].
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From u′(t) ≥ 0, we know that u(ξi) ≥ u(0), for i = 1, 2, . . . ,m− 2. This implies

u(0) =
m−2∑
i=1

aiu(ξi) ≥
m−2∑
i=1

aiu(0).

By 1 −
∑m−2

i=1 ai > 0, it is obvious that u(0) ≥ 0. Hence, we know that u(t) ≥ 0,
t ∈ [0, 1]. �

Lemma 3.3. If u ∈ P , then max0≤t≤1 |u(t)| ≤ M max0≤t≤1 |u′(t)|, where M =

1 +
Pm−2

i=1 aiξi

1−
Pm−2

i=1 ai
.

Proof. For u ∈ P , by the concavity of u and that u′(t) ≥ 0, one arrives at

u(1)− u(0) ≤ u′(0) = max
0≤t≤1

|u′(t)|.

On the other hand,

(1−
m−2∑
i=1

ai)u(0) = u(0)−
m−2∑
i=1

aiu(0) =
m−2∑
i=1

aiu(ξi)−
m−2∑
i=1

aiu(0)

=
m−2∑
i=1

ai(u(ξi)− u(0)) =
m−2∑
i=1

aiξiu
′(ηi),

where ηi ∈ (0, ξi). So

u(0) =
∑m−2

i=1 aiξiu
′(ηi)

1−
∑m−2

i=1 ai

≤
∑m−2

i=1 aiξi

1−
∑m−2

i=1 ai

max
0≤t≤1

|u′(t)|.

Thus one has

max
0≤t≤1

|u(t)| = u(1) ≤
(
1 +

∑m−2
i=1 aiξi

1−
∑m−2

i=1 ai

)
u′(0) = M max

0≤t≤1
|u′(t)|.

With Lemma 3.3 and the concavity of u, for all u ∈ P , we obtain
1
k
θ(u) ≤ α(u) ≤ θ(u) = ψ(u), ‖u‖ = max{θ(u), γ(u)} ≤Mγ(u). (3.4)

�

Lemma 3.4. Define an operator T : P → P ,

(Tu)(t) =
∫ t

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, u(τ), u′(τ))dτl

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds

+
1

1−
∑m−2

i=1 ai

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, u(τ), u′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds.

(3.5)

Then T : P → P is completely continuous.

Proof. According to the definition of T and Lemma 3.2, it is easy to show that
T (P ) ⊂ P . By similar arguments in [10, 17], T : P → P is completely continuous.

�
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4. Existence of positive solutions

We are now ready to apply the Avery-Peterson’s fixed point theorem to the
operator T to give sufficient conditions for the existence of at least three positive
solutions to (1.1), (1.2). For convenience we introduce following notation. Let

K =
4k2(1−

∑m−2
i=1 ai)

(kβ + β + 3k − 1)(1−
∑m−2

i=1 ai) + (k2 + k)
∑m−2

i=1 ai[2ξi − (1− β)ξ2i ]
,

L = φ−1
p

( 1
1− φp(β)

∫ 1

0

q(τ)dτ
)
,

M =
∫ 1−(1/k)

1/k

φ−1
p

( ∫ 1−(1/k)

s

q(τ)dτ +
φp(β)

1− φp(β)

∫ 1−(1/k)

1/k

q(τ)dτ
)
ds

+
1

1−
∑m−2

i=1 ai

m−2∑
i=1

ai

∫ ξi

1/k

φ−1
p

( ∫ 1−(1/k)

s

q(τ)dτ

+
φp(β)

1− φp(β)

∫ 1−(1/k)

1/k

q(τ)dτ
)
ds,

N =
∫ 1

0

φ−1
p

( ∫ 1

s

q(τ)dτ +
φp(β)

1− φp(β)

∫ 1

0

q(τ)dτ
)
ds

+
1

1−
∑m−2

i=1 ai

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

( ∫ 1

s

q(τ)dτ +
φp(β)

1− φp(β)

∫ 1

0

q(τ)dτ
)
ds.

Theorem 4.1. Assume that (H1)–(H3) hold. Let 0 < a < b ≤ min{ 1
K ,

M
k }d, and

suppose that f satisfies the following conditions:
(A1) f(t, u, v) ≤ φp(d/L) for (t, u, v) ∈ [0, 1]× [0,Md]× [0, d];
(A2) f(t, u, v) ≥ φp(kb/M) for (t, u, v) ∈ [1/k, 1− 1/k]× [b, kb]× [0, d];
(A3) f(t, u, v) < φp(a/N) for (t, u, v) ∈ [0, 1]× [0, a]× [0, d].

Then boundary-value problem (1.1), (1.2) has at least three positive solutions u1, u2, u3

such that max0≤t≤1 |u′i(t)| ≤ d, for i = 1, 2, 3, and

b < min
1/k≤t≤1−(1/k)

|u1(t)|, max
0≤t≤1

|u1(t)| ≤Md, a < max
0≤t≤1

|u2(t)| < kb,

with
min

1/k≤t≤1−(1/k)
|u2(t)| < b, max

0≤t≤1
|u3(t)| < a.

Proof. Recall that (1.1), (1.2) has a solution u = u(t) if and only if u solves the
operator equation u = Tu. Thus we set out to verify that the operator T satisfies
Avery-Peterson’s fixed point theorem which will prove the existence of three fixed
points of T . The proof is divided into four steps.

(1) We will show that (A1) implies

T : P (γ, d) → P (γ, d). (4.1)

In fact, for u ∈ P (γ, d), there is γ(u) = max0≤t≤1 |u′(t)| ≤ d. With Lemma
3.3, we have max0≤t≤1 |u(t)| ≤ Md. Then condition (A1) implies f(t, u, v) ≤
φp(d/L). On the other hand, one has Tu ∈ P for u ∈ P , then Tu is concave and
max0≤t≤1 |(Tu)′(t)| = (Tu)′(0), so

γ(Tu) = max
0≤t≤1

|(Tu)′(t)| = (Tu)′(0)
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= φ−1
p

( ∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ +
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)

= φ−1
p

( 1
1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)

≤ φ−1
p

( 1
1− φp(β)

∫ 1

0

q(τ)dτφp(d/L)
)

=
d

L
φ−1

p

( 1
1− φp(β)

∫ 1

0

q(τ)dτ
)

=
d

L
L = d.

Thus, (4.1) holds.
(2) We show that the condition (S1) in Theorem 2.3 holds. We take

u0(t) = −
2k2b(1−

∑m−2
i=1 ai)[(1− β)t2 − 2t] + 2k2b

∑m−2
i=1 ai[(1− β)ξ2i − 2ξi]

(kβ + β + 3k − 1)(1−
∑m−2

i=1 ai) + (k2 + k)
∑m−2

i=1 ai[2ξi − (1− β)ξ2i ]
,

for t ∈ [0, 1]. It is easy to see that u0(0) =
∑m−2

i=1 aiu0(ξi), u′0(1) = βu′0(0),
u0(t) ≥ 0 and is concave on [0, 1] so that u0(t) ∈ P . At the same time,

α(u0) = min
1/k≤t≤1−(1/k)

|u0| = u0(
1
k

)

=
2b

(
(1−

∑m−2
i=1 ai)(2k + β − 1) + k2

∑m−2
i=1 ai[2ξi − (1− β)ξ2i ]

)
(kβ + β + 3k − 1)(1−

∑m−2
i=1 ai) + (k2 + k)

∑m−2
i=1 ai[2ξi − (1− β)ξ2i ]

> b,

θ(u0) = max
0≤t≤1

|u0(t)| = u0(1)

=
2k2b

(
(1−

∑m−2
i=1 ai)(β + 1) +

∑m−2
i=1 ai[2ξi − (1− β)ξ2i ]

)
(kβ + β + 3k − 1)(1−

∑m−2
i=1 ai) + (k2 + k)

∑m−2
i=1 ai[2ξi − (1− β)ξ2i ]

< kb,

γ(u0) = max
0≤t≤1

|u′(t)| = u′0(0)

=
4k2b(1−

∑m−2
i=1 ai)

(kβ + β + 3k − 1)(1−
∑m−2

i=1 ai) + (k2 + k)
∑m−2

i=1 ai[2ξi − (1− β)ξ2i ]
= Kb ≤ d.

So u0(t) ∈ P (γ, θ, α, b, kb, d) and {u ∈ P (γ, θ, α, b, kb, d) | α(u) > b} 6= φ. Thus for
u ∈ P (γ, θ, α, b, kb, d), there is b ≤ u(t) ≤ kb, 0 ≤ u′(t) ≤ d, for 1/k ≤ t ≤ 1− 1/k.
Hence by condition (A2) of this theorem, one has f(t, u, u′(t)) ≥ φp(kb/M), for t ∈
[1/k, 1− 1/k]. Noting (Tu)(1) ≥ 0 from Lemma 3.2 and combining the conditions
on α and P , one arrives at

α(Tu) = min
1/k≤t≤1−(1/k)

|(Tu)(t)| ≥ 1
k

max
0≤t≤1

|(Tu)(t)| = 1
k

(Tu)(1)

=
1
k

∫ 1

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, u(τ), u′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds
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+
1

k(1−
∑m−2

i=1 ai)

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, u(τ), u′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds

>
1
k

∫ 1−(1/k)

1/k

φ−1
p

( ∫ 1−(1/k)

s

q(τ)f(τ, u(τ), u′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1−(1/k)

1/k

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds

+
1

k(1−
∑m−2

i=1 ai)

m−2∑
i=1

ai

∫ ξi

1/k

φ−1
p

( ∫ 1−(1/k)

s

q(τ)f(τ, u(τ), u′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1−(1/k)

1/k

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds

≥ 1
k

∫ 1−(1/k)

1/k

φ−1
p

( ∫ 1−(1/k)

s

q(τ)dτφp(
kb

M
)

+
φp(β)

1− φp(β)

∫ 1−(1/k)

1/k

q(τ)dτφp(
kb

M
)
)
ds

+
1

k(1−
∑m−2

i=1 ai)

m−2∑
i=1

ai

∫ ξi

1/k

φ−1
p

( ∫ 1−(1/k)

s

q(τ)dτφp(
kb

M
)

+
φp(β)

1− φp(β)

∫ 1−(1/k)

1/k

q(τ)dτφp(
kb

M
)
)
ds

=
1
k

kb

M
M = b.

Therefore, α(Tu) > b, for all u ∈ P (γ, θ, α, b, kb, d). Consequently, condition (S1)
in Theorem 2.3 holds.

(3) We now prove (S2) in Theorem 2.3 holds. With (3.4) we have

α(Tu) ≥ 1
k
θ(Tu) >

1
k
kb = b,

for u ∈ P (γ, α, b, d) with θ(Tu) > kb. Hence, condition (S2) in Theorem 2.3 is
satisfied.

(4) Finally, we show that (S3) in Theorem 2.3 is satisfied. Since ψ(0) = 0 < a,
so 0 6∈ R(γ, ψ, a, d). Suppose that u ∈ R(γ, ψ, a, d) with ψ(u) = a. Then by the
condition (A3) of this theorem,

ψ(Tu) = max
0≤t≤1

|(Tu)(t)| = (Tu)(1)

=
∫ 1

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, u(τ), u′(τ))dτ

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds

+
1

1−
∑m−2

i=1 ai

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

( ∫ 1

s

q(τ)f(τ, u(τ), u′(τ))dτ
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+
φp(β)

1− φp(β)

∫ 1

0

q(τ)f(τ, u(τ), u′(τ))dτ
)
ds

<

∫ 1

0

φ−1
p

( ∫ 1

s

q(τ)dτφp(a/N) +
φp(β)

1− φp(β)

∫ 1

0

q(τ)dτφp(a/N)
)
ds

+
1

1−
∑m−2

i=1 ai

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

( ∫ 1

s

q(τ)dτφp(a/N)

+
φp(β)

1− φp(β)

∫ 1

0

q(τ)dτφp(a/N)
)
ds

=
a

N
N = a.

Thus, condition (S3) in Theorem 2.3 holds.
Then Theorem 2.3 implies that (1.1), (1.2) has at least three positive solutions

satisfying the statement in Theorem 4.1. The proof is complete. �

5. Example

Let p = 3, q(t) = 1 in (1.1) and m = 4, β = 1/2, ξ1 = 1/3, ξ2 = 2.3, a1 = 1/2,
a2 = 1/4 in (1.2). Now we consider the boundary-value problem

(|u′(t)|u′(t))′ + f(t, u(t), u′(t)) = 0, t ∈ (0, 1), (5.1)

u(0) =
1
2
u(

1
3
) +

1
4
u(

2
3
), u′(1) =

1
2
u′(0), (5.2)

where

f(t, u, v) =

{
t
20 + 1.8× 104 · u40 + 1

100 ( v
3×1021 )4 + 1

1000 , u ≤ 6;
t
20 + 1.8× 104 · 640 + 1

100 ( v
3×1021 )4 + 1

1000 , u > 6.

Choose a = 2/3, b = 1, k = 6, d = 3 × 1021, we note that K = 4/5, L = 2
√

3/3,
M = 7/3, M .= 1.185, N .= 2.281. Consequently, f(t, u, v) satisfies

(1) f(t, u, v) < 2.407×1035 < φ3(d/L) .= 6.75×1042 for (t, u, v) ∈ [0, 1]× [0, 7×
1021]× [0, 3× 1021];

(2) f(t, u, v) > 1.8×104 > φ3(kb/M) .= 25.637 for (t, u, v) ∈ [1/6, 5/6]× [1, 6]×
[0, 3× 1021];

(3) f(t, u, v) < 0.063 < φ3(a/N) .= 0.085 for (t, u, v) ∈ [0, 1]× [0, 2/3]× [0, 3×
1021].

Then all conditions of Theorem 4.1 hold. Therefore, (5.1), (5.2) has at least three
positive solutions u1, u2, u3 satisfying

max
0≤t≤1

|u′i(t)| ≤ 3× 1021 for i = 1, 2, 3,

1 < min
1/k≤t≤1−(1/k)

|u1(t)|, max
0≤t≤1

|u1(t)| ≤ 7× 1021,
2
3
< max

0≤t≤1
|u2(t)| < 6,

with min1/k≤t≤1−(1/k) |u2(t)| < 1, max0≤t≤1 |u3(t)| < 2/3.
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