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A LINEAR FIRST-ORDER HYPERBOLIC EQUATION WITH A
DISCONTINUOUS COEFFICIENT: DISTRIBUTIONAL
SHADOWS AND PROPAGATION OF SINGULARITIES

HIDEO DEGUCHI

Abstract. It is well-known that distributional solutions to the Cauchy prob-
lem for ut +(b(t, x)u)x = 0 with b(t, x) = 2H(x− t), where H is the Heaviside
function, are non-unique. However, it has a unique generalized solution in the
sense of Colombeau. The relationship between its generalized solutions and
distributional solutions is established. Moreover, the propagation of singular-
ities is studied.

1. Introduction

In this paper we study generalized solutions of the Cauchy problem for a first-
order hyperbolic equation

ut + (b(t, x)u)x = 0, (t, x) ∈ R2,

u|t=0 = u0, x ∈ R
(1.1)

with b(t, x) = 2H(x − t), where H is the Heaviside function, in the framework of
generalized functions introduced by Colombeau [2, 3]. We will seek solutions in an
algebra G (R2) of generalized functions, which will be defined in Section 2 below.
We mention that G (R) contains the space D ′(R) of distributions so that initial
data with strong singularities can be considered in our setup. The formulation of
problem (1.1) in G will be given in Section 3.

Until now, the following three questions for a variety of partial differential equa-
tions in Colombeau’s algebras have been addressed: (a) existence and uniqueness
of generalized solutions; (b) behavior of generalized solutions in the framework of
distribution theory (distributional shadow); (c) regularity of generalized solutions.

For linear first-order hyperbolic systems with discontinuous coefficients, the ex-
istence and uniqueness were established in one space-dimensional case by Ober-
guggenberger [14], for symmetric hyperbolic systems in higher space-dimensional
case by Lafon and Oberguggenberger [12] and for hyperbolic pseudodifferential sys-
tems with generalized symbols by Hörmann [10].
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Almost all previous results on question (b) for differential equations have been
obtained under the hypothesis of unique distributional solutions. However, it is well-
known [11] that distributional solutions of linear first-order hyperbolic equations
with discontinuous coefficients may fail to exist or may be non-unique. Question (b)
for the linear hyperbolic equation having no distributional solution given by Hurd
and Sattinger [11], namely, for problem (1.1) with b = −H and u0 ≡ 1, where H is
the Heaviside function, was answered by Oberguggenberger [13]. Similar equations
have been studied by Hörmann and de Hoop [9]. In this paper we are concerned
with question (b) for linear hyperbolic equations having non-unique distributional
solutions. According to Hurd and Sattinger [11], for t > 0, problem (1.1) with
u0 ≡ 0 has infinitely many distributional solutions

uc(t, x) :=


0, if x < 0 or x > 2t,
c, if 0 < x < t,

−c, if t < x < 2t
(1.2)

with c ∈ R. On the other hand, as stated above, it has been proved in [14] that
problem (1.1) has a unique generalized solution U ∈ G (R2) for any initial data.
First, we will investigate how the generalized solutions are related to the distri-
butional solutions uc. Several results on behavior of generalized solutions in the
framework of distribution theory of differential equations having non-unique distri-
butional solutions have been obtained. For ordinary differential equations, see [5],
and for parabolic equations, see [6].

Concerning the regularity of generalized solutions of problem (1.1), we focus on
the case of initial data given by the delta function at s ∈ R. As can be seen in
Section 2, there exist an abundant variety of elements of G (R) having the property
of the delta function at s, which are called Dirac generalized functions at s. In
particular, there exist Dirac generalized functions at s which can be interpreted to
have different strengths of singularity at s. Thus we have the following question:
how does the strength of the singularity of a Dirac generalized function taken as
initial data affect the regularity of the generalized solution of problem (1.1)? Sec-
ondly, we will give an answer to this question. The propagation of singularities
for linear first-order hyperbolic equations with other particular discontinuous coef-
ficients has been studied by Hörmann and de Hoop [9], Garetto and Hörmann [7]
and Oberguggenberger [16].

The rest of this paper is organized as follows: we recall the definition and basic
properties of the Colombeau algebra G in Section 2. In Section 3, we first give our
formulation of problem (1.1) and describe a result on existence and uniqueness of
its generalized solution U ∈ G (R2) for any initial data U0 ∈ G (R) which has been
obtained by Oberguggenberger [14]. In Section 4, we discuss how the generalized
solutions are related to the distributional solutions uc given by form (1.2) (The-
orem 4.2). In Section 5, we look at problem (1.1) with various Dirac generalized
functions as initial data. We investigate the behavior of the generalized solutions in
the framework of distribution theory, and further the regularity of the generalized
solutions (Theorems 5.1, 5.3, 5.4, 5.6, 5.7 and 5.9).

2. Colombeau’s theory of generalized functions

We will employ the special Colombeau algebra denoted by G s in Grosser et al.
[8], which was called the simplified Colombeau algebra in Biagioni [1]. However,
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here we will simply use the letter G instead. Let us briefly recall the definition and
basic properties of the algebra G of generalized functions. For more details, see
Grosser et al. [8].

Let Ω be a non-empty open subset of Rd. Let E (Ω) be the differential algebra
of all maps from the interval (0, 1] into C∞(Ω). Thus each element of E (Ω) is a
family (uε)ε∈(0,1] of real valued smooth functions on Ω. The subalgebra EM (Ω) is
defined by all elements (uε)ε∈(0,1] of E (Ω) with the property that, for all K b Ω
and α ∈ Nd

0, there exists p ≥ 0 such that

sup
x∈K

|∂α
x u

ε(x)| = O(ε−p) as ε ↓ 0.

The ideal N (Ω) is defined by all elements (uε)ε∈(0,1] of E (Ω) with the property
that, for all K b Ω, α ∈ Nd

0 and q ≥ 0,

sup
x∈K

|∂α
x u

ε(x)| = O(εq) as ε ↓ 0.

The algebra G (Ω) of generalized functions is defined by the quotient space

G (Ω) = EM (Ω)/N (Ω).

We use capital letters for elements of G (Ω) to distinguish generalized functions from
distributions and denote by (uε)ε∈(0,1] a representative of U ∈ G (Ω). Then for any
U , V ∈ G (Ω) and α ∈ Nd

0, we can define the partial derivative ∂αU to be the class
of (∂αuε)ε∈(0,1] and the product UV to be the class of (uεvε)ε∈(0,1]. Also, for any
U = class of (uε(t, x))ε∈(0,1] ∈ G (R2), we can define its restriction U |t=0 ∈ G (R) to
the line {t = 0} to be the class of (uε(0, x))ε∈(0,1].

Remark 2.1. The algebra G (Ω) contains the space E ′(Ω) of compactly supported
distributions. In fact, the map

f 7→ class of (f ∗ ρε |Ω)ε∈(0,1]

defines an imbedding of E ′(Ω) into G (Ω), where

ρε(x) =
1
εd
ρ

(x
ε

)
and ρ is a fixed element of S (Rd) such that

∫
ρ(x) dx = 1 and

∫
xαρ(x) dx = 0 for

any α ∈ Nd
0, |α| ≥ 1. In this sense, we obtain an inclusion relation E ′(Ω) ⊂ G (Ω).

This can be extended in a unique way to an imbedding of the space D ′(Ω) of
distributions. Moreover, this imbedding turns C∞(Ω) into a subalgebra of G (Ω).

Definition 2.2. A generalized function U ∈ G (Ω) is said to be associated with a
distribution w ∈ D ′(Ω) if it has a representative (uε)ε∈(0,1] ∈ EM (Ω) such that

uε → w in D ′(Ω) as ε ↓ 0.

We denote by U ≈ w and call w the distributional shadow of U if U is associated
with w.

Remark 2.3. A subalgebra Glog(Ω) of G (Ω) is defined similarly as G (Ω) by re-
placing the bound supx∈K |∂α

x u
ε(x)| = O(ε−p) in EM (Ω) by the stronger bound

supx∈K |∂α
x u

ε(x)| = O((log(1/ε))p). For any distribution f ∈ D ′(Ω), there exists a
generalized function U ∈ Glog(Ω) which is associated with f , see Colombeau and
Heibig [4]. Therefore, any distribution on Ω can be interpreted as an element of
Glog(Ω) in the sense of association.
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We next define the notion of generalized functions of Dirac type.

Definition 2.4. We say that U ∈ G (R) is a Dirac generalized function at s ∈ R
if it has a representative (uε)ε∈(0,1] satisfying

(1) there exists a(ε) > 0, a(ε) → 0 as ε ↓ 0, such that uε(x) = 0 if |x−s| ≥ a(ε);
(2)

∫
R u

ε(x) dx = 1 for all ε ∈ (0, 1];
(3) supε∈(0,1]

∫
R |u

ε(x)| dx <∞.
Then U admits the delta function δs at s as distributional shadow.

Regularity theory for linear equations has been based on the subalgebra G∞(Ω)
of regular generalized functions in G (Ω) introduced by Oberguggenberger [15]. It
is defined by all elements which have a representative (uε)ε∈(0,1] with the property
that, for all K b Ω, there exists p ≥ 0 such that, for all α ∈ Nd

0,

sup
x∈K

|∂α
x u

ε(x)| = O(ε−p) as ε ↓ 0.

We observe that all derivatives of uε have locally the same order of growth in
ε > 0, unlike elements of EM (Ω). This subalgebra G∞(Ω) has the property
G∞(Ω) ∩D ′(Ω) = C∞(Ω), see [15, Theorem 25.2, p. 275]. Hence, for the purpose
of describing the regularity of generalized functions, G∞(Ω) plays the same role
for G (Ω) as C∞(Ω) does in the setting of distributions. The G∞-singular support
(denoted by sing suppG∞) of a generalized function is defined as the complement
of the largest open set on which the generalized function is regular in the above
sense. A subalgebra G∞

log(Ω) of Glog(Ω) is defined similarly as G∞(Ω) by replacing
the bound supx∈K |∂α

x u
ε(x)| = O(ε−p) by the stronger bound supx∈K |∂α

x u
ε(x)| =

O((log(1/ε))p). The G∞
log-singular support (denoted by sing suppG∞log

) can be also
introduced.

Remark 2.5. Let s ∈ R and let χ be a fixed element of D(R) such that χ is
symmetric, non-negative, with suppχ ⊂ [−1, 1], χ(0) > 0 and

∫
R χ(x) dx = 1. Put

χε(x) = χ(x/ε)/ε. Then U ∈ G (R) defined by the class of (χε(· − s))ε∈(0,1] is a
Dirac generalized function at s and sing suppG∞ U = {s}. However, if U ∈ G (R)
is defined as the class of (χh(ε)(· − s))ε∈(0,1] with h(ε) = 1/ log(1/ε), then it is a
Dirac generalized function at s again, but sing suppG∞ U = ∅. Hence, the speed of
convergence of a representative of U to the delta function at s can be interpreted
as the strength of the singularity of U at s. Thus, there exist infinitely many Dirac
generalized functions with different strengths of singularity at s in G (R).

3. Existence and uniqueness of generalized solutions

We formulate problem (1.1) in Colombeau’s algebra G in the form

Ut + (BU)x = 0 in G (R2),

U |t=0 = U0 in G (R)
(3.1)

with the generalized function B ∈ G (R2) having the representative (bε)ε∈(0,1] given
by

bε(t, x) := b ∗ ϕh(ε) = 2
∫ ∫

R2
H(x− t− h(ε)y + h(ε)s)ϕ(s, y) dy ds,

where h(ε) := 1/ log(1/ε) and ϕ is a fixed element of D(R2) such that ϕ is symmet-
ric, non-negative, with suppϕ ⊂ [−1, 1]× [−1, 1], ϕ(0, 0) > 0 and

∫ ∫
ϕ(t, x) dx dt =
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1. We note that B belongs to Glog(R2) and further admits b(t, x) = 2H(x − t) as
distributional shadow.

Definition 3.1. We say that U ∈ G (R2) is a (generalized) solution of problem
(3.1) if it has a representative (uε)ε∈(0,1] ∈ EM (R2) such that

uε
t + (bεuε)x = Nε, (t, x) ∈ R2,

uε|t=0 = uε
0 + nε, x ∈ R

for some (Nε)ε∈(0,1] ∈ N (R2) and (nε)ε∈(0,1] ∈ N (R), where (uε
0)ε∈(0,1] and

(bε)ε∈(0,1] are representatives of U0 and B, respectively.

For any U0 ∈ G (R), problem (3.1) has a unique solution U ∈ G (R2), see [14], in
which a more general existence and uniqueness result has been obtained.

4. Relationship to non-unique distributional solutions

In this section we establish the relationship between the generalized solutions of
problem (3.1) and the distributional solutions uc of problem (1.1). For this purpose,
we first prepare the following lemma.

Lemma 4.1. For ε ∈ (0, 1), let

Gε(x) :=
∫ 2

−x/h(ε)

dz

1− b̃ε(−h(ε)z)
on [−2h(ε), 0),

where b̃ε(z) := 2
∫ ∫

R2 H(z−h(ε)y+h(ε)s)ϕ(s, y) dy ds. Then Gε has the following
four properties:

(i) Gε is a strictly increasing continuous function on [−2h(ε), 0) such that
Gε(−2h(ε)) = 0 and limx↑0G

ε(x) = ∞;
(ii) there exist two constants C1, C2 > 0 such that, for any x ∈ [−2h(ε), 0) and

ε ∈ (0, 1),

C1 log
(2h(ε)
−x

)
≤ Gε(x) ≤ C2 log

(2h(ε)
−x

)
; (4.1)

(iii) there exists the inverse function (Gε)−1 on [0,∞), which satisfies

d(Gε)−1(x)
dx

= h(ε)[1− b̃ε((Gε)−1(x))]; (4.2)

(iv) for any a, x ∈ [0,∞),

2 exp
(
− a

C1

)
h(ε)εx/C1 ≤

∣∣(Gε)−1
( x

h(ε)
+ a

)∣∣ ≤ 2 exp
(
− a

C2

)
h(ε)εx/C2 , (4.3)

where C1, C2 > 0 are the constants given in (ii).

Proof. Property (i) is clear. To show property (ii), rewrite 1 = 2
∫ ∫

s>y
ϕ(s, y) dy ds.

Then we find that

1− b̃ε(−h(ε)z) = 1− 2
∫ ∫

s>y+z

ϕ(s, y) dy ds = 2
∫ ∫

y<s<y+z

ϕ(s, y) ds dy.

Hence, there exist two constants c1, c2 > 0 such that c1z ≤ 1 − b̃ε(−h(ε)z) ≤ c2z

for 0 ≤ z ≤ 2. Putting C1 = 1/c2 and C2 = 1/c1, the reciprocal of 1− b̃ε(−h(ε)z)
satisfies the inequality

C1

z
≤ 1

1− b̃ε(−h(ε)z)
≤ C2

z
.



6 H. DEGUCHI EJDE-2011/76

Integrating this over [−x/h(ε), 2) gives inequality (4.1).
Next, we prove property (iii). By property (i), there exists (Gε)−1 on [0,∞).

We differentiate (Gε)−1 to get d(Gε)−1(x)/dx = 1/(Gε)′((Gε)−1(x)). We have
(Gε)′(x) = 1/h(ε)(1− b̃ε(x)) and so get formula (4.2).

Finally, we prove property (iv). Put y = (Gε)−1(x/h(ε) + a) < 0. By property
(ii), there exist two constants C1, C2 > 0 such that

C1 log
(2h(ε)
−y

)
≤ Gε(y) ≤ C2 log

(2h(ε)
−y

)
.

Noting that Gε(y) = x/h(ε) + a, we have

C1 [log 2h(ε)− log(−y)] ≤ x

h(ε)
+ a ≤ C2 [log 2h(ε)− log(−y)] .

Therefore, we see that

log 2h(ε)− a

C1
− x

C1h(ε)
≤ log(−y) ≤ log 2h(ε)− a

C2
− x

C2h(ε)
.

Since h(ε) = 1/ log(1/ε), it follows that

2 exp
(
− a

C1

)
h(ε)εx/C1 ≤ −y ≤ 2 exp

(
− a

C2

)
h(ε)εx/C2 .

Thus inequality (4.3) follows. �

We now turn to a comparison between generalized solutions of problem (3.1) and
the distributional solutions uc given by (1.2) of problem (1.1).

Theorem 4.2. For any c ∈ R and T > 0, there exists initial data U0 ≈ 0 such
that the solution U ∈ G (R2) of problem (3.1) admits a distributional shadow on
(−T, T )× R, which is given by

u(t, x) =

{
uc(t, x), if 0 < t < T, x ∈ R,
0, if − T < t ≤ 0, x ∈ R,

where uc is the function given by (1.2).

Proof. We consider the Cauchy problem

Vt +BVx = 0 in G (R2),

V |t=0 = V0 in G (R).
(4.4)

The existence and uniqueness of solutions V ∈ G (R2) of problem (4.4) are guaran-
teed for all initial data V0 ∈ G (R) by Oberguggenberger [14]. Clearly, Vx satisfies
problem (3.1). Define the function v(t, x) :=

∫ x

0
u(t, y) dy. In order to prove the

assertion, it suffices to show that, for any c ∈ R and T > 0, there exists initial data
V0 such that V ′

0 ≈ 0 on R and V ≈ v on (−T, T ) × R. We will only prove this for
the case c > 0. The case c ≤ 0 can be argued similarly. The proof is divided into
three steps.

Step 1. Fix c > 0 and ε ∈ (0, 1) arbitrarily. Let Gε be as in Lemma 4.1.
Recall that Gε is a strictly increasing continuous function on [−2h(ε), 0) with
Gε(−2h(ε)) = 0 and limx↑0G

ε(x) = ∞. Hence, there exists a point 0 < η(ε) <
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2h(ε) such that Gε(−η(ε)) = 2. Define

wε
0(x) :=


ch(ε)(Gε(x)− 2), if − η(ε) ≤ x < 0,
ch(ε)(Gε(−x)− 2), if 0 < x ≤ η(ε),
0, if |x| > η(ε),

(4.5)

and let wε be a solution of the problem

wε
t + bεwε

x = 0, (t, x) ∈ R2, t 6= x

wε|t=0 = wε
0, x ∈ R, x 6= 0.

We will show below that, for t ≥ 0,

wε(t, x) =


0, if x ≤ −2h(ε) or x ≥ 2t+ 2h(ε),
cx, if 0 ≤ x ≤ t− 2h(ε),
−cx+ 2ct, if t+ 2h(ε) ≤ x ≤ 2t.

Similarly, we can obtain that, for t < 0,

wε(t, x) = 0 if x ≤ t− 2h(ε) or x ≥ t+ 2h(ε).

The characteristic curve γε(t, x, τ) passing through (t, x) at time τ = t is the
solution of the problem

γε
τ (t, x, τ) = bε(τ, γε(t, x, τ)),

γε|τ=t = x.
(4.6)

Along the characteristic curves, wε is easily calculated as

wε(t, x) = wε
0(γ

ε(t, x, 0)). (4.7)

If x ≤ −2h(ε) and t > 0, then γε(t, x, 0) = x and wε
0(x) = 0. Hence, by (4.7),

we have wε(t, x) = 0. If x ≥ 2t + 2h(ε) and t > 0, then γε(t, x, 0) = x − 2t and
wε

0(x− 2t) = 0. Hence, by (4.7), we get wε(t, x) = 0.
We next prove that wε(t, x) = cx if 0 ≤ x ≤ t − 2h(ε). Fix (t, x) arbitrarily so

that 0 ≤ x ≤ t− 2h(ε). Let b̃ε be as in Lemma 4.1. Then, from (4.6), we see that
γε(t, x, τ) satisfies the equation (γε(t, x, τ)−τ)τ = b̃ε(γε(t, x, τ)−τ)−1. We divide
both sides by b̃ε(γε(t, x, τ)− τ)− 1 and integrate it over [0, t] to get∫ t

0

(γε(t, x, τ)− τ)τ

b̃ε(γε(t, x, τ)− τ)− 1
dτ = t.

Putting γ = γε(t, x, τ)− τ and noting that γε(t, x, t) = x, we have∫ x−t

γε(t,x,0)

dγ

b̃ε(γ)− 1
= t. (4.8)

Since x− t ≤ −2h(ε) and b̃ε(γ) = 0 for γ ≤ −2h(ε), it follows that∫ −2h(ε)

γε(t,x,0)

dγ

b̃ε(γ)− 1
= x+ 2h(ε).

Put z = −γ/h(ε). Then∫ 2

−γε(t,x,0)/h(ε)

dz

1− b̃ε(−h(ε)z)
=

x

h(ε)
+ 2.
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The left-hand side is rewritten asGε(γε(t, x, 0)) and so γε(t, x, 0) = (Gε)−1(x/h(ε)+
2). Therefore, by (4.5) and (4.7), we get wε(t, x) = cx.

We next prove that wε(t, x) = −cx + 2ct if t + 2h(ε) ≤ x ≤ 2t. Fix (t, x)
arbitrarily so that t + 2h(ε) ≤ x ≤ 2t. The same argument as above gives (4.8).
Since x− t ≥ 2h(ε) and b̃ε(γ) = 2 for γ ≥ 2h(ε), we have∫ 2h(ε)

γε(t,x,0)

dγ

b̃ε(γ)− 1
= −x+ 2t+ 2h(ε).

Put z = γ/h(ε). Then∫ 2

γε(t,x,0)/h(ε)

dz

b̃ε(h(ε)z)− 1
=
−x+ 2t
h(ε)

+ 2.

The left-hand side is equal to Gε(−γε(t, x, 0)), since b̃ε(h(ε)z)−1 = 1− b̃ε(−h(ε)z)
for z ∈ R. Hence, γε(t, x, 0) = −(Gε)−1((−x + 2t)/h(ε) + 2). Therefore, by (4.5)
and (4.7), we obtain that wε(t, x) = −cx+ 2ct.

Step 2. Fix T > 0 arbitrarily. Then T/h(ε) > 2 for ε > 0 small enough. For
such ε > 0, we choose 0 < λ(ε) < η(ε) such that Gε(−λ(ε)) = T/h(ε), and put

wε
0(x) :=

{
wε

0(x), if |x| > λ(ε),
wε

0(λ(ε)), if |x| ≤ λ(ε).

Let wε be a solution of the problem

(wε)t + bε(wε)x = 0, (t, x) ∈ R2,

wε|t=0 = wε
0, x ∈ R.

Then it is easy to check that, for t ≥ 0,

wε(t, x) =


0, if x ≤ −2h(ε) or x ≥ 2t+ 2h(ε),
cx, if 0 ≤ x ≤ min{t− 2h(ε), γε(0,−λ(ε), t)},
−cx+ 2ct, if max{t+ 2h(ε), γε(0, λ(ε), t)} ≤ x ≤ 2t,

and further that, for t < 0,

wε(t, x) = 0 if x ≤ t− 2h(ε) or x ≥ t+ 2h(ε).

We now prove that wε converges to v in D ′((−T, T ) × R) as ε ↓ 0. Consider
the characteristic curve γε(0,−λ(ε), τ) passing through (0,−λ(ε)) at τ = 0. There
exists tε1 > 0 such that tε1 = γε(0,−λ(ε), tε1) + 2h(ε). As in Step 1, we can show
that

tε1 = h(ε)
∫ 2

λ(ε)/h(ε)

dz

1− b̃ε(−h(ε)z)
= h(ε)Gε(−λ(ε)) = T.

Similarly, for the characteristic curve γε(0, λ(ε), τ) passing through (0, λ(ε)) at
τ = 0, there exists tε2 > 0 such that tε2 = γε(0, λ(ε), tε2)− 2h(ε). Moreover, tε2 = T .
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Hence, for any ψ ∈ D((−T, T )× R), we see that∫ T

−T

∫ ∞

−∞
(wε(t, x)− v(t, x))ψ(t, x) dx dt

=
∫ ∫

−2h(ε)<x<min{0,t−2h(ε)}, 0<t<T

(wε(t, x)− v(t, x))ψ(t, x) dx dt

+
∫ ∫

t−2h(ε)<x<t+2h(ε),−T<t<T

(wε(t, x)− v(t, x))ψ(t, x) dx dt

+
∫ ∫

max{2t,t+2h(ε)}<x<2t+2h(ε), 0<t<T

(wε(t, x)− v(t, x))ψ(t, x) dx dt.

(4.9)

The area of {(t, x) ∈ R2 | −2h(ε) < x < min{0, t − 2h(ε)}} ∩ suppψ converges
to 0 as ε ↓ 0. Moreover, (wε − v)ε∈(0,1] is uniformly bounded on this intersection.
Hence, the first integral on the right-hand side of (4.9) converges to 0 as ε ↓ 0. We
can similarly show that the second and third integrals converge to 0 as ε ↓ 0. Thus,
wε converges to v in D ′((−T, T )× R) as ε ↓ 0.

Step 3. Finally, we construct (vε
0)ε∈(0,1] ∈ EM (R) such that (vε

0)
′ converges to

0 in D ′(R) as ε ↓ 0, and further that the solution vε of the problem

vε
t + bεvε

x = 0, (t, x) ∈ R2,

vε|t=0 = vε
0, x ∈ R

(4.10)

converges to v in D ′((−T, T )×R) as ε ↓ 0. The existence of such (vε
0)ε∈(0,1] implies

the existence of initial data V0 ∈ G (R) satisfying the desired properties that V ′
0 ≈ 0

on R and V ≈ v on (−T, T )× R.
Let χ ∈ D(R) be as in Remark 2.5. Define the function vε

0(x) := (wε
0 ∗χλ(ε))(x).

We have supx∈R |wε
0(x)| = |wε

0(λ(ε))| = cT − 2ch(ε). Furthermore, by inequal-
ity (4.3), there exist two constants C1, C2 > 0 such that 2h(ε)εT/C1 ≤ λ(ε) ≤
2h(ε)εT/C2 . Hence, we see that the family of vε

0 defines an element of EM (R), and
further that (vε

0)
′ converges to 0 in D ′(R) as ε ↓ 0.

To show that the solution vε of problem (4.10) converges to v in D ′((−T, T )×R)
as ε ↓ 0, it suffices to prove that vε

0 − wε
0 converges uniformly to 0 on any compact

subset of R as ε ↓ 0. The difference vε
0(x)− wε

0(x) satisfies the inequality∣∣vε
0(x)− wε

0(x)
∣∣ ≤ ∫ ∞

−∞
|wε

0(x− λ(ε)y)− wε
0(x)|χ(y) dy.

Moreover,

|wε
0(x− λ(ε)y)− wε

0(x)| ≤ sup
−η(ε)≤ξ≤−λ(ε)

|(wε
0)
′(ξ)|λ(ε)|y| = c

1− b̃ε(−λ(ε))
λ(ε)|y|.

As in the proof of Lemma 4.1, we have 1/(1− b̃ε(−λ(ε))) ≤ C2h(ε)/λ(ε) for some
constant C2 > 0. Thus, we get∣∣vε

0(x)− wε
0(x)

∣∣ ≤ cC2

∫ ∞

−∞
|y|χ(y) dy · h(ε) → 0 as ε ↓ 0.

The proof of Theorem 4.2 is now complete. �

Remark 4.3. In Theorem 4.2, for t < 0, the solution U ∈ G (R2) admits 0 as
distributional shadow, which is the unique distributional solution of problem (1.1)
for negative time with 0 initial data, see Hurd and Sattinger [11].
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Remark 4.4. Theorem 4.2 means that, in the setting of Colombeau’s theory,
all distributional solutions uc with initial data 0 can be regarded as generalized
solutions with different initial data.

Remark 4.5. A similar result to Theorem 4.2 does not necessarily hold for other
differential equations having non-unique distributional solutions. In fact, there
exists an ordinary differential equation having a classical solution with which none
of its generalized solutions is associated. For details, see [5].

5. Propagation of singularities

In this section we study the propagation of singularities for problem (3.1). The
coefficient B in problem (3.1) is G∞-regular, since B is an element of Glog(R2) ⊂
G∞(R2). Hence, the subalgebra G∞

log ⊂ Glog is suitable to study the propagation of
singularities for problem (3.1). However, we are also interested in the propagation
of singularities in G∞, since U0 ∈ G∞(R) does not necessarily imply that U ∈
G∞(R2). Thus, we discuss the propagation of singularities in both G∞

log and G∞

for problem (3.1).
Let χ ∈ D(R) be as in Remark 2.5. Assume that U0 ∈ G (R) is given by the

class of (χh(ε))ε∈(0,1]. Then U0 is a Dirac generalized function at 0 and belongs to
G∞(R) \ G∞

log(R). As may be seen in the following theorem, the singularity in G∞
log

of the initial data U0 splits in two directions at the origin due to the discontinuity
of the coefficient.

→
0 x

↑t

δ(x)/2
↗

0 0

0 0

�
�

�
�

�
�

�
�
�

δ(x− t)
↖

t = x

��
�����

��
t = x/2

δ(x− 2t)/2
↖

Figure 1. Distributional shadow

Theorem 5.1. Let U0 ∈ G (R) be as above. Then the solution U ∈ G (R2) of
problem (3.1) admits a distributional shadow, which is given by

u(t, x) =

{
δ(x)+δ(x−2t)

2 , if t ≥ 0, x ∈ R,
δ(x− t), if t < 0, x ∈ R.

Furthermore,

sing suppG∞log
U = {(t, 0) | t ≥ 0} ∪ {(t, 2t) | t ≥ 0} ∪ {(t, t) | t ≤ 0} (= sing supp u).
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Proof. Let vε
0 = H ∗χh(ε) and let V0 ∈ G (R) be given by the class of (vε

0)ε∈(0,1]. In
order to prove the first assertion, it suffices to show that the solution V ∈ G (R2)
of problem (4.4) admits a distributional shadow, which is given by

v(t, x) =

{
H(x)+H(x−2t)

2 , if t ≥ 0, x ∈ R,
H(x− t), if t < 0, x ∈ R.

Let (vε)ε∈(0,1] be a representative of V ∈ G (R2) satisfying

vε
t + bεvε

x = 0, (t, x) ∈ R2,

vε|t=0 = vε
0, x ∈ R.

(5.1)

Consider the characteristic curve γε(0, x, t) passing through (0, x) at time t = 0.
Along the characteristic curves, we have vε(t, γε(0, x, t)) = vε

0(x). We can easily
check that vε converges to H(x− t) a.e. in (−∞, 0)× R as ε ↓ 0.

We now fix 0 < a ≤ 1 arbitrarily, and put tε1 := γε(0,−ah(ε), tε1) + 2h(ε). As in
Step 1 of the proof of Theorem 4.2, we have

tε1 = h(ε)
∫ 2

a

dz

1− b̃ε(−h(ε)z)
= h(ε)

∫ 2

a

dz

1− 2
∫ ∫

s>y+z
ϕ(s, y) dy ds

→ 0 as ε ↓ 0.

Note that, for any t ≥ tε1, γ
ε(0,−ah(ε), t) = γε(0,−ah(ε), tε1). Hence, for any t ≥ 0,

we have γε(0,−ah(ε), t) → 0 as ε ↓ 0. Moreover,

vε(t, γε(0,−ah(ε), t)) = vε
0(−ah(ε)) =

∫ −a

−∞
χ(y) dy,

so that vε(t, γε(0,−h(ε), t)) = 0 and vε(t, γε(0,−ah(ε), t)) ↑ 1/2 as a ↓ 0. Similarly,
we take tε2 := γε(0, ah(ε), tε2)− 2h(ε) to get

tε2 = h(ε)
∫ 2

a

dz

b̃ε(h(ε)z)− 1
= h(ε)

∫ 2

a

dz

2
∫ ∫

s>y−z
ϕ(s, y) dy ds− 1

→ 0 as ε ↓ 0.

Note that, for any t ≥ tε2, γ
ε(0, ah(ε), t) = 2t− γε(0, ah(ε), tε2) + 4h(ε). Therefore,

for any t ≥ 0, γε(0, ah(ε), t) → 2t as ε ↓ 0. Moreover,

vε(t, γε(0, ah(ε), t)) = vε
0(ah(ε)) =

∫ a

−∞
χ(y) dy,

so that vε(t, γε(0, h(ε), t)) = 1 and vε(t, γε(0, ah(ε), t)) ↓ 1/2 as a ↓ 0. Hence,
taking into account the fact that vε(t, x) is non-decreasing in x, we obtain that vε

converges to (H(x) + H(x − 2t))/2 a.e. in (0,∞) × R as ε ↓ 0. Thus, the first
assertion follows.

Next, we prove the second assertion. The proof is divided into four steps.
Step 1. First, we prove that U ∈ G (R2) is G∞

log-regular on {(t, x) ∈ R2 | x <
min{0, t}} ∪ {(t, x) ∈ R2 | x > max{t, 2t}}.

It is easy to check that V ∈ G (R2) equals 0 on {(t, x) ∈ R2 | x < min{0, t}}
and further equals 1 on {(t, x) ∈ R2 | x > max{t, 2t}}. Hence, U = Vx ∈ G (R2) is
G∞

log-regular on the union of these two sets.
Step 2. Secondly, we prove that {(t, t) | t ≤ 0} is contained in sing suppG∞log

U .
Fix t < 0 arbitrarily. We see that vε(t, x) = vε

0(γ
ε(t, x, 0)). Since vε

0 = H ∗χh(ε),
we get

vε
x(t, x) = (vε

0)
′(γε(t, x, 0))γε

x(t, x, 0) =
1

h(ε)
χ

(
γε(t, x, 0)
h(ε)

)
γε

x(t, x, 0). (5.2)
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From problem (4.6) and the definition of b̃ε, we find that γε(t, x, τ) satisfies the
problem

γε
τ (t, x, τ) = b̃ε(γε(t, x, τ)− τ),

γε|τ=t = x.
(5.3)

We differentiate these equations in x to get

γε
τx(t, x, τ) = (̃bε)′(γε(t, x, τ)− τ)γε

x(t, x, τ),

γε
x|τ=t = 1.

We divide the first equation by γε
x(t, x, τ) and integrate it over [t, 0] to see that∫ 0

t

γε
τx(t, x, τ)
γε

x(t, x, τ)
dτ =

∫ 0

t

(̃bε)′(γε(t, x, τ)− τ) dτ.

A simple calculation shows that

γε
x(t, x, 0) = exp

( ∫ 0

t

(̃bε)′(γε(t, x, τ)− τ) dτ
)
.

Since γε(t, t, τ) = τ , we see that

γε
x(t, t, 0) = exp

( ∫ 0

t

(̃bε)′(0) dτ
)

= exp
(
− (̃bε)′(0)t

)
.

By the definition of b̃ε, we have (̃bε)′(0) = 2
∫ 1

−1
ϕ(s, s) ds/h(ε). Hence, noting that

h(ε) = 1/ log(1/ε), we see that

γε
x(t, t, 0) = exp

( 2
h(ε)

∫ 1

−1

ϕ(s, s) ds · (−t)
)

=
(1
ε

)2
R 1
−1 ϕ(s,s) ds·(−t)

. (5.4)

Combining equations (5.2) and (5.4), we obtain that, for ε > 0 small enough,

vε
x(t, t) =

1
h(ε)

χ(0)
(1
ε

)2
R 1
−1 ϕ(s,s) ds·(−t) ≥ χ(0)

(1
ε

)2
R 1
−1 ϕ(s,s) ds·(−t)

.

Since U = Vx ∈ G (R2), this shows that {(t, t) | t ≤ 0} ⊂ sing suppG∞log
U .

Step 3. Thirdly, we prove that {(t, 0) | t ≥ 0} and {(t, 2t) | t ≥ 0} are contained
in sing suppG∞log

U .
Put tε1 = γε(0,−ah(ε), tε1) + 2h(ε). Then as shown above, tε1 ↓ 0 as ε ↓ 0. For

t ≥ tε1, consider

vε(t, γε(0,−ah(ε), t))− vε(t, γε(0,−2h(ε), t))
γε(0,−ah(ε), t)− γε(0,−2h(ε), t)

,

where 0 < a < 1 is a constant such that
∫ −a

−∞ χ(y) dy > 0. As shown above, we have

γε(0,−ah(ε), t) = γε(0,−ah(ε), tε1) = h(ε)
∫ 2

a

dz

1− b̃ε(−h(ε)z)
− 2h(ε).

Since γε(0,−2h(ε), t) = −2h(ε), we get

0 < γε(0,−ah(ε), t)− γε(0,−2h(ε), t) = h(ε)
∫ 2

a

dz

1− b̃ε(−h(ε)z)
.
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Furthermore,

vε(t, γε(0,−ah(ε), t)) =
∫ −a

−∞
χ(y) dy > 0,

vε(t, γε(0,−2h(ε), t)) = 0.

Therefore,

vε(t, γε(0,−ah(ε), t))− vε(t, γε(0,−2h(ε), t))
γε(0,−ah(ε), t)− γε(0,−2h(ε), t)

=

∫ −a

−∞ χ(y) dy∫ 2

a
dz

1−ebε(−h(ε)z)

· 1
h(ε)

.

By the mean value theorem, there exists xε
1 ∈ (γε(0,−2h(ε), t), γε(0,−ah(ε), t))

such that

vε
x(t, xε

1) =

∫ −a

−∞ χ(y) dy∫ 2

a
dz

1−ebε(−h(ε)z)

· 1
h(ε)

.

Note that ∂α
x v

ε(t, γε(0,−2h(ε), t)) = 0 for α ∈ N. Then, repeating the above
process gives us (xε

α)α≥2 such that xε
α ∈ (γε(0,−2h(ε), t), xε

α−1) and

∂α
x v

ε(t, xε
α) =

∂α−1
x vε(t, xε

α−1)− ∂α−1
x vε(t, γε(0,−2h(ε), t))

xε
α−1 − γε(0,−2h(ε), t)

≥
∫ −a

−∞ χ(y) dy( ∫ 2

a
dz

1−ebε(−h(ε)z)

)α · 1
h(ε)α

.

Since U = Vx ∈ G (R2), this shows that {(t, 0) | t ≥ 0} ⊂ sing suppG∞log
U . In a

similar way, we can show that {(t, 2t) | t ≥ 0} ⊂ sing suppG∞log
U .

Step 4. Fourthly, we prove that U ∈ G (R2) is G∞
log-regular on {(t, x) ∈ R2 | 0 <

x < 2t}.
Step 4-1. To do so, we first estimate γε(t, x, 0) for all (t, x) such that 0 ≤ x ≤ 2t.
When 0 ≤ x ≤ t − 2h(ε), as seen in Step 1 of the proof of Theorem 4.2,

γε(t, x, 0) = (Gε)−1(x/h(ε)+2). By inequality (4.3), there exists a constant C2 > 0
such that

0 < −γε(t, x, 0) ≤ 2 exp
(
− 2
C2

)
h(ε)εx/C2 . (5.5)

When t + 2h(ε) ≤ x ≤ 2t, we have γε(t, x, 0) = −(Gε)−1((2t − x)/h(ε) + 2).
Hence, by (4.3), we have

0 < γε(t, x, 0) ≤ 2 exp
(
− 2
C2

)
h(ε)ε(2t−x)/C2 .

When t− 2h(ε) ≤ x < t, we get∫ (t−x)/h(ε)

−γε(t,x,0)/h(ε)

dz

1− b̃ε(−h(ε)z)
=

t

h(ε)
.

As seen from the proof of Lemma 4.1, we have 1/(1 − b̃ε(−h(ε)z)) ≤ C2/z for
0 ≤ z ≤ 2 and so

t

h(ε)
≤

∫ (t−x)/h(ε)

−γε(t,x,0)/h(ε)

C2

z
dz = C2 log

t− x

−γε(t, x, 0)
.

Since h(ε) = 1/ log(1/ε), it follows that

0 < −γε(t, x, 0) ≤ (t− x)εt/C2 . (5.6)
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When t < x ≤ t+ 2h(ε), we get∫ (x−t)/h(ε)

γε(t,x,0)/h(ε)

dz

1− b̃ε(−h(ε)z)
=

t

h(ε)
,

and so
0 < γε(t, x, 0) ≤ (x− t)εt/C2 .

When t = x, we have γε(t, t, 0) = 0.
Step 4-2. We next estimate γε

x(t, x, 0). When 0 ≤ x ≤ t − 2h(ε), we have
γε(t, x, 0) = (Gε)−1(x/h(ε) + 2). Hence, as in the proof of Lemma 4.1, we get, for
some constant c2 > 0,

γε
x(t, x, 0) = 1− b̃ε(γε(t, x, 0)) ≤ c2

|γε(t, x, 0)|
h(ε)

≤ 2c2 exp
(
− 2
C2

)
εx/C2 ,

where we used formula (4.2) in the first step and inequality (5.5) in the last step.
When t + 2h(ε) ≤ x ≤ 2t, γε(t, x, 0) = −(Gε)−1((2t − x)/h(ε) + 2). Similarly,

we get

γε
x(t, x, 0) = 1− b̃ε(−γε(t, x, 0)) ≤ 2c2 exp

(
− 2
C2

)
ε(2t−x)/C2 .

When t − 2h(ε) ≤ x < t, we have γε(t, x, 0) = (Gε)−1(t/h(ε) + Gε(x − t)).
Differentiating this in x gives

γε
x(t, x, 0) =

1− b̃ε(γε(t, x, 0))

1− b̃ε(x− t)
. (5.7)

The numerator of (5.7) can be estimated as follows:

1− b̃ε(γε(t, x, 0)) ≤ c2
|γε(t, x, 0)|

h(ε)
≤ c2

(t− x)εt/C2

h(ε)
,

where we used inequality (5.6) in the last step. Similarly, the denominator of (5.7) is
estimated as follows: for some constant c1 > 0, we have 1−b̃ε(x−t) ≥ c1(t−x)/h(ε).
Hence,

0 < γε
x(t, x, 0) ≤ c2

c1
εt/C2 .

When t < x ≤ t+ 2h(ε), we have γε(t, x, 0) = −(Gε)−1(t/h(ε) +Gε(t− x)) and
so get

0 < γε
x(t, x, 0) ≤ c2

c1
εt/C2 .

To estimate γε
x(t, t, 0), we consider problem (5.3). As in Step 2, we can derive

that

γε
x(t, x, s) = exp

(
−

∫ t

s

(̃bε)′(γε(t, x, τ)− τ) dτ
)
. (5.8)

Note that γε(t, t, τ) = τ and (̃bε)′(0) = 2
∫ 1

−1
ϕ(s, s) ds/h(ε). Hence,

γε
x(t, t, 0) = ε(2

R 1
−1 ϕ(s,s) ds)t.

Step 4-3. Finally, we prove that, for all K b {(t, x) ∈ R2 | 0 < x < 2t} and
α ∈ N2

0,
‖∂αvε

x(t, x)‖L∞(K) → 0 as ε ↓ 0. (5.9)

This implies that U = Vx ∈ G (R2) is G∞
log-regular on {(t, x) ∈ R2 | 0 < x < 2t}.
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Note that

vε
x(t, x) = χ

(γε(t, x, 0)
h(ε)

)γε
x(t, x, 0)
h(ε)

.

Hence, to prove (5.9), it suffices to show that, for all K b {(t, x) ∈ R2 | 0 < x < 2t}
and α ∈ N2,

‖∂αγε(t, x, 0)‖L∞(K)

h(ε)
→ 0 as ε ↓ 0. (5.10)

Since (̃bε)′(z) ≥ 0 for z ∈ R, we see from (5.8) that, for 0 ≤ s ≤ t,

0 < γε
x(t, x, s) ≤ 1. (5.11)

From (5.8) again, we find that

γε
xx(t, x, s) = −γε

x(t, x, s)
∫ t

s

(̃bε)′′(γε(t, x, τ)− τ)γε
x(t, x, τ) dτ.

We see that ‖(̃bε)′′‖L∞(R) ≤ C ′′/h(ε)2 for some constant C ′′ > 0. In view of
this inequality and (5.11), we get |γε

xx(t, x, s)| ≤ C ′′(t − s)/h(ε)2 for 0 ≤ s ≤ t.
Furthermore, if s = 0, then from Step 4-2, we see that

|γε
xx(t, x, 0)|
h(ε)

≤ C ′′ |γε
x(t, x, 0)|t
h(ε)3

→ 0 on K as ε ↓ 0.

By repeating this process, we obtain that a similar estimate holds for any derivative
of γε(t, x, 0) in x. We also find from problem (5.3) that

γε
t (t, x, s) = −b̃ε(x− t) exp

(
−

∫ t

s

(̃bε)′(γε(t, x, τ)− τ) dτ
)
. (5.12)

In view of (5.12), we can similarly show inequality (5.10). The proof of Theorem
5.1 is now complete. �

Remark 5.2. We assumed that χ is symmetric. Hence,
∫ 0

−∞ χ(y) dy = 1/2. If,

instead of the symmetry of χ, we assume that
∫ 0

−∞ χ(y) dy = a for 0 ≤ a ≤ 1, then
the solution U ∈ G (R2) of problem (3.1) with the initial data U0 given by the class
of (χh(ε))ε∈(0,1] possesses the distributional shadow

u(t, x) =

{
aδ(x) + (1− a)δ(x− 2t), if t ≥ 0, x ∈ R,
δ(x− t), if t < 0, x ∈ R.

Next, we calculate the G∞-singular support of the solution U ∈ G (R2) with the
same initial data U0 as in Theorem 5.1. The following theorem shows that the
splitting of the singularity at the origin does not occur in the sense of G∞.

Theorem 5.3. Under the same assumption as in Theorem 5.1, it holds that

sing suppG∞ U = {(t, t) | t ≤ 0}.

Proof. The proof is divided into two steps.
Step 1. First, we prove that U ∈ G (R2) is G∞-regular on R2 \ {(t, t) | t ≤ 0}.
As can be seen in Step 1 of the proof of Theorem 5.1, the solution U ∈ G (R2)

is G∞-regular on {(t, x) ∈ R2 | x < min{0, t}} ∪ {(t, x) ∈ R2 | x > max{t, 2t}}.
Hence, it suffices to prove that U ∈ G (R2) is G∞-regular on (0,∞)× R.

Let (t, x) ∈ (0,∞) × R and 0 ≤ s ≤ t. As in Step 4-3 of the proof of Theorem
5.1, we get 0 < γε

x(t, x, s) ≤ 1 and |γε
xx(t, x, s)| ≤ C ′′(t − s)/h(ε)2. Similarly, we
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can prove that all derivatives of γε(t, x, s) in x are dominated by a finite sum of
terms in the form of κi(t − s)j/h(ε)k with a constant κi > 0. Note by (5.12) that
γε

t (t, x, s) = −b̃ε(x− t)γε
x(t, x, s). Hence, we see that, all derivatives of γε(t, x, s) in

t and x are also dominated by a finite sum of terms in the form of κi(t− s)j/h(ε)k.
Let us recall that the solution vε of problem (5.1) satisfies (5.2). Then, we see that,
for all K b (0,∞)× R and α ∈ N2

0,

‖∂αvε
x(t, x)‖L∞(K) = O(ε−1) as ε ↓ 0.

Since U = Vx ∈ G (R2), this shows that U is G∞-regular on (0,∞)× R.
Step 2. Secondly, we prove that {(t, t) | t ≤ 0} is contained in sing suppG∞ U .
For t < 0, consider

vε(t, γε(0, 0, t))− vε(t, γε(0,−2h(ε), t))
γε(0, 0, t)− γε(0,−2h(ε), t)

.

Clearly, γε(0, 0, t) = t. As in Step 1 of the proof of Theorem 4.2, we see that
t − γε(0,−2h(ε), t) = −(Gε)−1(−t/h(ε)). Hence, by inequality (4.3), we get, for
some constant C2 > 0,

0 < t− γε(0,−2h(ε), t) ≤ 2h(ε)ε−t/C2 .

Furthermore,

vε(t, γε(0, 0, t)) =
1
2
,

vε(t, γε(0,−2h(ε), t)) = 0.

Therefore,
vε(t, γε(0, 0, t))− vε(t, γε(0,−2h(ε), t))

γε(0, 0, t)− γε(0,−2h(ε), t)
≥ 1

4h(ε)
· 1
ε−t/C2

.

By the mean value theorem, there exists xε
1 ∈ (γε(0,−2h(ε), t), t) such that

vε
x(t, xε

1) ≥
1

4h(ε)
· 1
ε−t/C2

.

Note that ∂α
x v

ε(t, γε(0,−2h(ε), t)) = 0 for α ∈ N. Then we repeat this process to
find (xε

α)α≥2 such that xε
α ∈ (γε(0,−2h(ε), t), xε

α−1) and

∂α
x v

ε(t, xε
α) =

∂α−1
x vε(t, xε

α−1)− ∂α−1
x vε(t, γε(0,−2h(ε), t))

xε
α−1 − γε(0,−2h(ε), t)

≥ 1
2α+1h(ε)α

· 1
ε−αt/C2

.

Since U = Vx ∈ G (R2), this shows that {(t, t) | t ≤ 0} ⊂ sing suppG∞ U . The proof
of Theorem 5.3 is now complete. �

Next, we discuss the case of initial data U0 given by other Dirac generalized func-
tions at 0. As stated in Remark 2.5, there exist infinitely many Dirac generalized
functions with different strengths of singularity at 0. For any constant t0 > 0, we
define c(ε) := −(Gε)−1(t0/h(ε))/2h(ε). We find from inequality (4.3) that there
exist two constants C1, C2 > 0 independent of t0 such that εt0/C1 ≤ c(ε) ≤ εt0/C2

for ε ∈ (0, 1]. Hence, we have (χc(ε))ε∈(0,1] ∈ EM (R), which allows us to define
U0 ∈ G (R) as the class of (χc(ε))ε∈(0,1]. Then U0 is a Dirac generalized function at
0 and does not belong to G∞(R). Furthermore, the singularity of U0 at 0 can be
interpreted to become stronger as t0 becomes large. As may be seen in the following
theorem, the stronger the singularity of the initial data U0 at 0 becomes, the longer
the singularity in G∞

log propagates along the line {t = x}, and it splits at time t0.
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δ(x− t)
↖

t = x

!!!!!!!
t = x/2 + t0/2

δ(x− 2t+ t0)/2
↖

δ(x− t0)/2
↗

t0

Figure 2. Distributional shadow

Theorem 5.4. Let t0 and U0 ∈ G (R) be as above. Then the solution U ∈ G (R2)
of problem (3.1) admits a distributional shadow, which is given by

u(t, x) =

{
δ(x−t0)+δ(x−2t+t0)

2 , if t ≥ t0, x ∈ R,
δ(x− t), if t < t0, x ∈ R.

Furthermore,

{(t, t0) | t ≥ t0} ∪ {(t, 2t− t0) | t ≥ t0} ∪ {(t, t) | t ≤ t0}
⊂ sing suppG∞log

U ⊂ {(t, t0) | t ≥ t0} ∪ {(t, 2t− t0) | t ≥ t0} ∪ {(t, t) | t ∈ R}.

Proof. Let vε
0 = H ∗ χc(ε) and let V0 ∈ G (R) be given by the class of (vε

0)ε∈(0,1]. In
order to prove the first assertion, it suffices to show that the solution V ∈ G (R2)
of problem (4.4) admits a distributional shadow, which is given by

v(t, x) =

{
H(x−t0)+H(x−2t+t0)

2 , if t ≥ t0, x ∈ R,
H(x− t), if t < t0, x ∈ R.

Let (vε)ε∈(0,1] be a representative of V ∈ G (R2) satisfying problem (5.1). Then
we have vε(t, γε(0, x, t)) = vε

0(x) and see that vε converges to H(x − t) a.e. in
(−∞, 0)× R as ε ↓ 0.

We now fix 0 < a ≤ 1 arbitrarily, and put tε1 := γε(0,−ac(ε), tε1) + 2h(ε). As in
Step 1 of the proof of Theorem 4.2, we have

tε1 = h(ε)
∫ 2

ac(ε)/h(ε)

dz

1− b̃ε(−h(ε)z)
.

By the definition of c(ε), we get

tε1 = t0 − h(ε)
∫ ac(ε)/h(ε)

2c(ε)

dz

1− b̃ε(−h(ε)z)
.
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As in the proof of Lemma 4.1, we get, for some constant C2 > 0 and ε > 0 small
enough,

h(ε)
∫ ac(ε)/h(ε)

2c(ε)

dz

1− b̃ε(−h(ε)z)
≤ h(ε)

∫ ac(ε)/h(ε)

2c(ε)

C2

z
dz.

We have

h(ε)
∫ ac(ε)/h(ε)

2c(ε)

C2

z
dz = −C2h(ε) log

2h(ε)
a

→ 0 as ε ↓ 0,

so that tε1 → t0 as ε ↓ 0. Note that for any t ≥ tε1, γ
ε(0,−ac(ε), t) = γε(0,−ac(ε), tε1).

Therefore, for any 0 ≤ t ≤ t0, γε(0,−ac(ε), t) → t as ε ↓ 0, and for any t ≥ t0,
γε(0,−ac(ε), t) → t0 as ε ↓ 0. Furthermore,

vε(t, γε(0,−ac(ε), t)) = vε
0(−ac(ε)) =

∫ −a

−∞
χ(y) dy,

and so vε(t, γε(0,−c(ε), t)) = 0 and vε(t, γε(0,−ac(ε), t)) ↑ 1/2 as a ↓ 0. Similarly,
we take tε2 := γε(0, ac(ε), tε2)− 2h(ε) to get

tε2 = h(ε)
∫ 2

ac(ε)/h(ε)

dz

b̃ε(h(ε)z)− 1
→ t0 as ε ↓ 0.

Note that, for any t ≥ tε2, γ
ε(0, ac(ε), t) = 2t−γε(0, ac(ε), tε2)+4h(ε). Hence, for any

0 ≤ t ≤ t0, γε(0, ac(ε), t) → t as ε ↓ 0, and for any t ≥ t0, γε(0, ac(ε), t) → 2t − t0
as ε ↓ 0. Furthermore,

vε(t, γε(0, ac(ε), t)) = vε
0(ac(ε)) =

∫ a

−∞
χ(y) dy,

and so vε(t, γε(0, c(ε), t)) = 1 and vε(t, γε(0, ac(ε), t)) ↓ 1/2 as a ↓ 0. Therefore, in
view of the fact that vε(t, x) is non-decreasing in x, we obtain that vε converges to
H(x− t) a.e. in (0, t0)×R and to (H(x− t0)+H(x−2t+ t0))/2 a.e. in (t0,∞)×R
as ε ↓ 0. Thus, the first assertion follows.

Next, we prove the second assertion. We will do so in four steps.
Step 1. First, we prove that U ∈ G (R2) is G∞

log-regular on {(t, x) ∈ R2 | x <
min{t0, t}} ∪ {(t, x) ∈ R2 | x > max{t, 2t− t0}}.

It is easy to check that V ∈ G (R2) equals 0 on {(t, x) ∈ R2 | x < min{t0, t}} and
further equals 1 on {(t, x) ∈ R2 | x > max{t, 2t− t0}}. Hence, U = Vx ∈ G (R2) is
G∞

log-regular on the union of these two sets.
Step 2. Secondly, we prove that {(t, t) | t ≤ t0} is contained in sing suppG∞log

U .
Put tε1 = γε(0,−c(ε), tε1) + 2h(ε). Then, as shown above, tε1 ↑ t0 as ε ↓ 0. For

t < tε1, consider
vε(t, γε(0, 0, t))− vε(t, γε(0,−c(ε), t))

γε(0, 0, t)− γε(0,−c(ε), t)
.

As in Step 1 of the proof of Theorem 4.2, we get

Gε(γε(0,−c(ε), t)− t) =
tε1 − t

h(ε)
.

Using inequality (4.3), we have, for some constant C2 > 0,

0 < t− γε(0,−c(ε), t) ≤ 2h(ε)ε(t
ε
1−t)/C2 .

Since γε(0, 0, t) = t, it follows that

0 < γε(0, 0, t)− γε(0,−c(ε), t) ≤ 2h(ε)ε(t
ε
1−t)/C2 . (5.13)
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We use vε(t, γε(0, 0, t)) = 1/2, vε(t, γε(0,−c(ε), t)) = 0 and (5.13) to see that

vε(t, γε(0, 0, t))− vε(t, γε(0,−c(ε), t))
γε(0, 0, t)− γε(0,−c(ε), t)

≥ 1
4h(ε)

· 1
ε(t

ε
1−t)/C2

.

By the mean value theorem, there exists xε ∈ (γε(0,−c(ε), t), γε(0, 0, t)) such that

vε
x(t, xε) ≥ 1

4h(ε)
· 1
ε(t

ε
1−t)/C2

.

Since U = Vx ∈ G (R2), this means that {(t, t) | t ≤ t0} ⊂ sing suppG∞log
U .

Step 3. Thirdly, we prove that {(t, t0) | t ≥ t0} and {(t, 2t − t0) | t ≥ t0} are
contained in sing suppG∞log

U .
For t > t0, consider

vε(t, γε(0,−ac(ε), t))− vε(t, γε(0,−c(ε), t))
γε(0,−ac(ε), t)− γε(0,−c(ε), t)

for 0 < a ≤ 1. As shown above, if we put tε1 = γε(0,−ac(ε), tε1) + 2h(ε), then we
have tε1 ↑ t0 as ε ↓ 0 and

γε(0,−ac(ε), t) = γε(0,−ac(ε), tε1) = h(ε)
∫ 2

ac(ε)/h(ε)

dz

1− b̃ε(−h(ε)z)
− 2h(ε).

Hence,

γε(0,−ac(ε), t)− γε(0,−c(ε), t) = h(ε)
∫ c(ε)/h(ε)

ac(ε)/h(ε)

dz

1− b̃ε(−h(ε)z)
.

We now take 0 < a < 1 so that
∫ −a

−∞ χ(y) dy > 0. Then, as in the proof of Lemma
4.1, we get, for some constant C2 > 0,

0 < γε(0,−ac(ε), t)− γε(0,−c(ε), t) ≤ h(ε)
∫ c(ε)/h(ε)

ac(ε)/h(ε)

C2

z
dz = C2h(ε) log

1
a
.

Furthermore,

vε(t, γε(0,−ac(ε), t)) =
∫ −a

−∞
χ(y) dy > 0,

vε(t, γε(0,−c(ε), t)) = 0.

Hence,

vε(t, γε(0,−ac(ε), t))− vε(t, γε(0,−c(ε), t))
γε(0,−ac(ε), t)− γε(0,−c(ε), t)

≥
∫ −a

−∞ χ(y) dy
C2 log 1/a

· 1
h(ε)

.

By the mean value theorem, there exists xε
1 ∈ (γε(0,−c(ε), t), γε(0,−ac(ε), t)) such

that

vε
x(t, xε

1) ≥
∫ −a

−∞ χ(y) dy
C2 log 1/a

· 1
h(ε)

.

Note that ∂α
x v

ε(t, γε(0,−c(ε), t)) = 0 for α ∈ N. Hence, we repeat this process to
get (xε

α)α≥2 such that xε
α ∈ (γε(0,−c(ε), t), xε

α−1) and

∂α
x v

ε(t, xε
α) =

∂α−1
x vε(t, xε

α−1)− ∂α−1
x vε(t, γε(0,−c(ε), t))

xε
α−1 − γε(0,−c(ε), t)

≥
∫ −a

−∞ χ(y) dy
(C2 log 1/a)α ·

1
h(ε)α

.
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Since U = Vx ∈ G (R2), this shows that {(t, t0) | t ≥ t0} ⊂ sing suppG∞log
U . In a

similar way, we can show that {(t, 2t− t0) | t ≥ t0} ⊂ sing suppG∞log
U .

Step 4. Fourthly, we prove that U ∈ G (R2) is G∞
log-regular on {(t, x) ∈ R2 | t0 <

x < t} and {(t, x) ∈ R2 | t < x < 2t− t0}.
Step 4-1. To do so, we first estimate γε(t, x, 0) for all (t, x) such that t0 ≤ x ≤

t− 2h(ε) or t+ 2h(ε) ≤ x ≤ 2t− t0.
When t0 ≤ x ≤ t − 2h(ε), as seen in Step 1 of the proof of Theorem 4.2,

γε(t, x, 0) = (Gε)−1(x/h(ε) + 2). Hence, Gε(γε(t, x, 0)) = x/h(ε) + 2. By the
definition of c(ε), we have Gε(−2h(ε)c(ε)) = t0/h(ε). Taking the difference gives

Gε(γε(t, x, 0))−Gε(−2h(ε)c(ε)) =
x− t0
h(ε)

+ 2.

By the definition of Gε, we have∫ 2c(ε)

−γε(t,x,0)/h(ε)

dz

1− b̃ε(−h(ε)z)
=
x− t0
h(ε)

+ 2.

As seen from the proof of Lemma 4.1, we have 1/(1 − b̃ε(−h(ε)z)) ≤ C2/z for
0 ≤ z ≤ 2 and so

x− t0
h(ε)

+ 2 ≤
∫ 2c(ε)

−γε(t,x,0)/h(ε)

C2

z
dz = C2 log

2h(ε)c(ε)
−γε(t, x, 0)

.

Since h(ε) = 1/ log(1/ε), we have(1
ε

)x−t0
e2 ≤

( 2h(ε)c(ε)
−γε(t, x, 0)

)C2

.

Hence,

0 < −γε(t, x, 0) ≤ 2 exp
(
− 2
C2

)
h(ε)c(ε)ε(x−t0)/C2 . (5.14)

When t+ 2h(ε) ≤ x ≤ 2t− t0, we have γε(t, x, 0) = −(Gε)−1((2t− x)/h(ε) + 2).
A similar argument to the one above gives

0 < γε(t, x, 0) ≤ 2 exp
(
− 2
C2

)
h(ε)c(ε)ε(2t−x−t0)/C2 .

Step 4-2. We next estimate γε
x(t, x, 0). When t0 ≤ x ≤ t − 2h(ε), we have

γε(t, x, 0) = (Gε)−1(x/h(ε) + 2). Hence, as in the proof of Lemma 4.1, we get, for
some constant c2 > 0,

γε
x(t, x, 0) = 1− b̃ε(γε(t, x, 0)) ≤ c2

|γε(t, x, 0)|
h(ε)

≤ 2c2 exp
(
− 2
C2

)
c(ε)ε(x−t0)/C2 ,

where we used formula (4.2) in the first step and inequality (5.14) in the last step.
When t+2h(ε) ≤ x ≤ 2t−t0, γε(t, x, 0) = −(Gε)−1((2t−x)/h(ε)+2). Similarly,

we get

γε
x(t, x, 0) = 1− b̃ε(−γε(t, x, 0)) ≤ 2c2 exp

(
− 2
C2

)
c(ε)ε(2t−x−t0)/C2 .

Step 4-3. Finally, we prove that, for allK b {(t, x) ∈ R2 | t0 < x < t}∪{(t, x) ∈
R2 | t < x < 2t− t0} and α ∈ N2

0,

‖∂αvε
x(t, x)‖L∞(K) → 0 as ε ↓ 0. (5.15)
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This implies that U = Vx ∈ G (R2) is G∞
log-regular on {(t, x) ∈ R2 | t0 < x <

t} ∪ {(t, x) ∈ R2 | t < x < 2t− t0}.
Note that

vε
x(t, x) = χ

(γε(t, x, 0)
c(ε)

)γε
x(t, x, 0)
c(ε)

.

Hence, to prove (5.15), it suffices to show that, for all K b {(t, x) ∈ R2 | t0 < x <
t} ∪ {(t, x) ∈ R2 | t < x < 2t− t0} and α ∈ N2,

‖∂αγε(t, x, 0)‖L∞(K)

c(ε)
→ 0 as ε ↓ 0.

This can be done similarly to Step 4-3 of the proof of Theorem 5.1. The proof of
Theorem 5.4 is now complete. �

Remark 5.5. It can be conjectured in Theorem 5.4 that

sing suppG∞log
U

= {(t, t0) | t ≥ t0} ∪ {(t, 2t− t0) | t ≥ t0} ∪ {(t, t) | t ≤ t0} (= sing supp u),

but this is open.

As in Step 2 of the proof of Theorem 5.3, we can apply the mean value theorem
repeatedly in Step 2 of the proof of Theorem 5.4 to show the following inclusion
relation on the G∞-singular support of the solution U . However, it is open whether
equality holds.

Theorem 5.6. Under the same assumption as in Theorem 5.4, it holds that

sing suppG∞ U ⊃ {(t, t) | t ≤ t0}.
Finally, we discuss the case that U0 ∈ G (R) is defined as the class of (κ1χa1(ε)(·+

s1)+κ2χa2(ε)(·−s2))ε∈(0,1], where κ1, κ2 ∈ R, s1, s2 > 0, a1(ε), a2(ε) ≤ h(ε). Then
U0 ≈ κ1δ−s1 + κ2δs2 , where δ−s1 and δs2 are the delta functions at −s1 and s2,
respectively. As may be seen in the following theorem, the G∞

log-singular support of
the corresponding solution U ∈ G (R2) and the singular support of its distributional
shadow do not necessarily coincide.

Theorem 5.7. Let U0 ∈ G (R) be as above. Then the solution U ∈ G (R2) of
problem (3.1) admits a distributional shadow, which is given by

u(t, x) =



κ1δ(x+ s1) + κ2δ(x− 2t− s2),
if t ≥ max{−s1,−s2},

κ1δ(x+ s1) + κ2δ(x− t),
if min{−s1,−s2} < t < max{−s1,−s2} and s1 > s2,

κ1δ(x− t) + κ2δ(x− 2t− s2),
if min{−s1,−s2} < t < max{−s1,−s2} and s1 < s2,

(κ1 + κ2)δ(x− t),
if t ≤ min{−s1,−s2}.

Furthermore,
sing suppG∞log

U

= {(t,−s1) | t ≥ −s1} ∪ {(t, 2t+ s2) | t ≥ −s2} ∪ {(t, t) | t ≤ max{−s1,−s2}}.
(5.16)
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Figure 3. Distributional shadow for the case s1 > s2

Thus, if κ1 = −κ2 6= 0, then

sing suppG∞log
U 6= sing suppu.

Proof. The first assertion can be proved similarly to the proof of Theorem 5.1. We
will only prove the second assertion for the case κ1κ2 6= 0. The case κ1κ2 = 0 can
be argued similarly.

Let vε
0 = H∗(κ1χa1(ε)(·+s1)+κ2χa2(ε)(·−s2)) and let V0 ∈ G (R) be given by the

class of (vε
0)ε∈(0,1]. In order to prove the second assertion, it suffices to investigate

the behavior of the solution V ∈ G (R2) of problem (4.4).
Let (vε)ε∈(0,1] be a representative of V ∈ G (R2) satisfying problem (5.1). As

in the proof of Theorems 5.1 and 5.4, we can apply the method of characteristic
curves to see that Vx identically equals 0 on the complement of the set given by
(5.16). Since U = Vx ∈ G (R2), it follows that U is G∞

log-regular on the complement
of the set given by (5.16).

Now, we show that {(t,−s1) | t ≥ −s1}∪{(t, 2t+s2) | t ≥ −s2} ⊂ sing suppG∞log
U .

We have vε(t, x) = vε
0(γ

ε(t, x, 0)). If −s1 − a1(ε) ≤ x ≤ −s1 + a1(ε) and t ≥
−s1 + a1(ε) + 2h(ε), then γε(t, x, 0) = x, so that vε(t, x) = vε

0(x). We see that
∂α

x v
ε(t,−s1) = κ1χ

(α−1)(0)/a1(ε)α for α ∈ N. Hence, {(t,−s1) | t ≥ −s1} ⊂
sing suppG∞log

U . Similarly, if 2t + s2 − a2(ε) ≤ x ≤ 2t + s2 + a2(ε) and t ≥
−s2 + a2(ε) + 2h(ε), then γε(t, x, 0) = x − 2t, so that vε(t, x) = vε

0(x − 2t). We
see that ∂α

x v
ε(t, 2t+ s2) = κ2χ

(α−1)(0)/a2(ε)α for α ∈ N. Hence, {(t, 2t+ s2) | t ≥
−s2} ⊂ sing suppG∞log

U .
Finally, we prove that {(t, t) | t ≤ max{−s1,−s2}} ⊂ sing suppG∞log

U . For
t < −s1, consider

vε(t, γε(0,−s1, t))− vε(t, γε(0,−s1 − a1(ε), t))
γε(0,−s1, t)− γε(0,−s1 − a1(ε), t)

.
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As in Step 1 of the proof of Theorem 4.2, we get, for ε > 0 small enough,

Gε(γε(0,−s1, t)− t) = − t+ s1
h(ε)

+ 2, (5.17)

Gε(γε(0,−s1 − a1(ε), t)− t) = − t+ s1 + a1(ε)
h(ε)

+ 2. (5.18)

By (4.3) and (5.18), we have, for some constant C2 > 0,

t− γε(0,−s1 − a1(ε), t) ≤ 2 exp
(
− 2
C2

)
h(ε)ε−(t+s1+a1(ε))/C2 . (5.19)

Subtracting (5.18) from (5.17) gives

Gε(γε(0,−s1, t)− t)−Gε(γε(0,−s1 − a1(ε), t)− t) =
a1(ε)
h(ε)

. (5.20)

On the other hand, by the definition of Gε, we get

0 < Gε(γε(0,−s1, t)− t)−Gε(γε(0,−s1 − a1(ε), t)− t)

=
∫ (t−γε(0,−s1−a1(ε),t))/h(ε)

(t−γε(0,−s1,t))/h(ε)

dz

1− b̃ε(−h(ε)z)
.

As in the proof of Lemma 4.1, we have 1/(1− b̃ε(−h(ε)z)) ≥ C1/z for some constant
C1 > 0 and so

Gε(γε(0,−s1, t)− t)−Gε(γε(0,−s1 − a1(ε), t)− t)

≥
∫ (t−γε(0,−s1−a1(ε),t))/h(ε)

(t−γε(0,−s1,t))/h(ε)

C1

z
dz

≥ C1

[ t− γε(0,−s1 − a1(ε), t)
h(ε)

− t− γε(0,−s1, t)
h(ε)

][ h(ε)
t− γε(0,−s1 − a1(ε), t)

]
=
C1[γε(0,−s1, t)− γε(0,−s1 − a1(ε), t)]

t− γε(0,−s1 − a1(ε), t)
.

Hence, by (5.20), we have

γε(0,−s1, t)− γε(0,−s1 − a1(ε), t) ≤
t− γε(0,−s1 − a1(ε), t)

C1
· a1(ε)
h(ε)

. (5.21)

We combine (5.19) and (5.21) to see that

γε(0,−s1, t)−γε(0,−s1−a1(ε), t) ≤
2
C1

exp
(
− 2
C2

)
a1(ε)ε−(t+s1+a1(ε))/C2 . (5.22)

We use vε(t, γε(0,−s1, t)) = κ1/2, vε(t, γε(0,−s1 − a1(ε), t)) = 0 and (5.22) to get

vε(t, γε(0,−s1, t))− vε(t, γε(0,−s1 − a1(ε), t))
γε(0,−s1, t)− γε(0,−s1 − a1(ε), t)

≥ κ1C1

4 exp(−2/C2)a1(ε)
· 1
ε−(t+s1+a1(ε))/C2

.

Then by the mean value theorem, we find xε ∈ (γε(0,−s1 − a1(ε), t), γε(0,−s1, t))
such that

vε
x(t, xε) ≥ κ1C1

4 exp(−2/C2)a1(ε)
· 1
ε−(t+s1+a1(ε))/C2

.
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Since U = Vx ∈ G (R2), this means that {(t, t) | t ≤ −s1} ⊂ sing suppG∞log
U .

Similarly, we can see that {(t, t) | t ≤ −s2} ⊂ sing suppG∞log
U . Therefore, {(t, t) |

t ≤ max{−s1,−s2}} ⊂ sing suppG∞log
U . Thus, (5.16) follows. �

Remark 5.8. In Theorem 5.7, when s1 = s2 and κ1 = −κ2 6= 0, the solution
U ∈ G (R2) of problem (3.1) admits a distributional shadow on (−s1,∞)×R, which
is given by u(t, x) = κ1δ(x + s1) + κ2δ(x − 2t − s1). Since, for any κ1, κ2 such
that κ1 = −κ2 6= 0, this distribution u satisfies problem (1.1) with initial data 0 at
t = −s1, it follows that there exist infinitely many different distributional solutions
with initial data 0 at t = −s1. Thus, Theorem 5.7 means that, in the setting of
Colombeau’s theory, these distributional solutions with initial data 0 at t = −s1
can be regarded as generalized solutions with different initial data, as in Theorem
4.2.

As in Step 2 of the proof of Theorem 5.3, we can use the mean value theorem
repeatedly in the last part of the proof of Theorem 5.7 to get the following equality
on the G∞-singular support of the solution U . Hence, we see that, even if U0 ∈
G∞(R), the singularity in G∞ occurs suddenly when the propagation of singularities
is observed backward in time.

Theorem 5.9. Under the same assumption as in Theorem 5.7, if U0 ∈ G∞(R),
then

sing suppG∞ U = {(t, t) | t ≤ max{−s1,−s2}}.
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