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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A
SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

RODICA LUCA

Abstract. We study the existence, uniqueness and asymptotic behaviour of
solutions to a second-order nonlinear hyperbolic system of equations. The
spatial variable is in the positive half-axis.

1. Introduction

We study the second-order nonlinear hyperbolic system

∂u

∂t
(t, x) +

∂2v

∂x2
(t, x) + α(x, u) = f(t, x),

∂v

∂t
(t, x)− ∂2u

∂x2
(t, x) + β(x, v) = g(t, x), t > 0, x > 0,

(1.1)

with the boundary condition(
col

(
− ∂u

∂x (t, 0), u(t, 0)
)

w′(t)

)
∈ −G

(
col

(
v(t, 0), ∂v

∂x (t, 0)
)

w(t)

)
) + B(t), t > 0, (1.2)

and the initial condition
u(0, x) = u0(x), v(0, x) = v0(x), x > 0,

w(0) = w0.
(1.3)

The unknowns u, v and f and g are the vectorial functions depending on (t, x) ∈
R+ × R+ with values in Rn, the unknown w is a vectorial function depending on
t ∈ R+ with values in Rm. In the system (1.1), the functions α and β are of the
form α(x, u) = col(α1(x, u1), . . . , αn(x, un)), β(x, v) = col(β1(x, v1), . . . , βn(x, vn)),
G is an operator in R2n+m and B(t) = col(b1(t), . . . , b2n+m(t)) ∈ R2n+m, for all
t > 0.

This problem is a generalization of the case studied by Luca [8], where B(t) ≡ 0.
The methods we shall use to prove the main results in this article are different
from that used in Luca [8]. We also mention the articles [6, 7, 9], where we have
investigated a n-order hyperbolic system, for spatial variable x ∈ (0, 1) and t > 0,
subject to some nonlinear boundary conditions.
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In the present work, we shall prove the existence, uniqueness, some regularity
properties and the asymptotic behaviour of the strong and weak solutions for the
problem (1.1), (1.2), (1.3). For the basic notation, concepts and results in the
theory of monotone operators and nonlinear evolution equations of monotone type
in Hilbert spaces we refer the reader to Barbu [2], Brezis [3], Lakshmikantham et
al [5].

Now we introduce the assumptions to be used in this article.
(A1) (a) The functions x → αk(x, p) and x → βk(x, p) are measurable on R+,

for any fixed p ∈ R. Besides, the functions p → αk(x, p) and p → βk(x, p)
are continuous and nondecreasing from R into R, for a.a. x ∈ R+, k = 1, n.

(b) There exist ak > 0, bk > 0, k = 1, n and the functions c1
k, c2

k ∈
L2(R+) such that

|αk(x, p)| ≤ ak|p|+ c1
k(x), |βk(x, p)| ≤ bk|p|+ c2

k(x),

for a.a. x ∈ R+, for all p ∈ R, k = 1, n.
(c) There exist χ1 > 0, χ2 > 0 such that

(αk(x, p1)− αk(x, p2))(p1 − p2) ≥ χ1(p1 − p2)2,

(βk(x, p1)− βk(x, p2))(p1 − p2) ≥ χ2(p1 − p2)2,

for a.a. x ∈ R+, for all p1, p2 ∈ R, k = 1, n.
(A2) (a) G : D(G) ⊂ R2n+m → R2n+m is a maximal monotone operator (possi-

bly multivalued). Moreover, G =
(

G11 G12

G21 G22

)
with

G11 : D(G11) ⊂ R2n → R2n, G12 : D(G12) ⊂ Rm → R2n,

G21 : D(G21) ⊂ R2n → Rm, G22 : D(G22) ⊂ Rm → Rm,

where

G((u1, . . . , u2n+m)T ) =
(

G11((u1, . . . , u2n)T ) + G12((u2n+1, . . . , u2n+m)T )
G21((u1, . . . , u2n)T ) + G22((u2n+1, . . . , u2n+m)T )

)
.

(b) There exists ζ1 > 0 such that for all x, y ∈ D(G), x = col(xa, xb),
y = col(ya, yb) ∈ R2n × Rm and for all w1 ∈ G(x), w2 ∈ G(y) we have

〈w1 − w2, x− y〉R2n+m ≥ ζ1‖xb − yb‖2
Rm .

(c) There exists ζ2 > 0 such that for all x, y ∈ D(G) and for all w1 ∈
G(x), w2 ∈ G(y) we have

〈w1 − w2, x− y〉R2n+m ≥ ζ2‖x− y‖2
R2n+m .

The operator G is a generalization of the matrix case. It also covers some
general boundary conditions for (1.1). For example, if G12 = 0 and G21 = 0,
then the boundary condition (1.2) becomes

col(−ux(t, 0), u(t, 0)) ∈ −G11(col(v(t, 0), vx(t, 0))) + B1(t), (1.4)

w′(t) ∈ −G22(w(t)) + B2(t), (1.5)

where B(t) = col(B1(t), B2(t)).
The condition (1.5) with (1.3) give us, by integration, the function w. For (1.4),

by making suitable choices of G11, we deduce many classical boundary conditions.
Here are some examples in the case G11 = ∂l, the subdifferential of l : R2n →
(−∞,+∞]:
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(a) If

l

(
u
v

)
=

{
0, if u = a, v = b

+∞, otherwise.

then (1.4) becomes v(t, 0) = a, vx(t, 0) = b.

(b) For n = 1 and l

(
u
v

)
=

{
bv, if u = a

∞, otherwise,
we obtain u(t, 0) = B2(t) − b,

v(t, 0) = a.

(c) For n = 1 and l

(
u
v

)
=

{
au, if v = b

∞, otherwise,
we obtain ux(t, 0) = −B1(t) + a,

vx(t, 0) = b.

(d) For n = 1 and l

(
u
v

)
= au + bv, then (1.4) becomes ux(t, 0) = −B1(t) + a,

u(t, 0) = B2(t)− b.

2. Preliminary results

Firstly we consider the case B(t) ≡ b0 (a constant vector). In this situation, we
can replace G by G̃, defined by G̃w = Gw − b0, which is under the assumption
(A2)a, a maximal monotone operator. So, we suppose without loss of generality
that B(t) ≡ 0. In what follows, we shall recall some results from Luca [8] relat-
ing to the existence and uniqueness of the solutions of our problem (1.1), (1.2),
(1.3). We consider the spaces X = (L2(R+; Rn))2, Rm and Y = X × Rm with the
corresponding scalar products

〈f, g〉X = 〈f1, g1〉L2(R+;Rn) + 〈f2, g2〉L2(R+;Rn), f =
(

f1

f2

)
, g =

(
g1

g2

)
∈ X,

〈x, y〉Rm =
m∑

i=1

xiyi, x, y ∈ Rm,

〈 (
f
x

)
,

(
g
y

) 〉
Y

= 〈f, g〉X + 〈x, y〉Rm ,

(
f
x

)
,

(
g
y

)
∈ Y.

We define the operator A : D(A) ⊂ Y → Y ,

D(A) = {y ∈ Y, y = col(u, v, w); u, v ∈ H2(R+; Rn), w ∈ Rm,

col(γ0v, w) ∈ D(G), γ1u ∈ −G11(γ0v)−G12(w)},

where γ0v = col(v(0), v′(0)), γ1u = col(−u′(0), u(0)),

A

u
v
w

 =

 v′′

−u′′

G21(γ0v) + G22(w)

 ,

u
v
w

 ∈ D(A).

We also define the operator B : D(B) ⊂ Y → Y ,

B(y) = col(α(·, u), β(·, v), 0), D(B) = {y ∈ Y, y = col(u, v, w); B(y) ∈ Y }.

Under assumption (A2)a, we have D(A) 6= ∅, D(A) = X ×D(G12) ∩D(G22) and,
under the assumptions (A1)ab, we obtain D(B) = Y .

Lemma 2.1. If (A2)a holds, then the operator A is maximal monotone.

Lemma 2.2. If (A1)ab hold, then the operator B is maximal monotone.
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Remark 2.3. By Lemma 2.1, Lemma 2.2 and Rockafellar’s theorem (see Barbu
[2, Theorem 1.7, Chapter II]), it follows that, under the assumptions (A1)ab and
(A2)a, the operator A+ B : D(A) ⊂ Y → Y is maximal monotone in the space Y .

Using the operators A and B, our problem (1.1), (1.2), (1.3) can be equivalently
expressed as the following Cauchy problem in the space Y

dy

dt
(t) +A(y(t)) + B((y(t)) 3 F (t, ·), , t > 0,

y(0) = y0,
(2.1)

where y(t) = col(u(t), v(t), w(t)), F (t, ·) = col(f(t, ·), g(t, ·), 0), y0 = col(u0, v0, w0).

Lemma 2.4. Assume that (A1)ab, (A2)a hold. If f, g ∈ W 1,1(0, T ;L2(R+; Rn))
(with T > 0 fixed), u0, v0 ∈ H2(R+; Rn), col(γ0v0, w0) ∈ D(G), γ1u0 belongs to
−G11(γ0v0)−G12(w0), then problem (1.1), (1.2), (1.3) has a unique strong solution
col(u, v, w) ∈ W 1,∞(0, T ;Y ). Moreover u, v ∈ L∞(0, T ;H2(R+; Rn)).

Remark 2.5. For all t ∈ [0, T ), the above functions u(t, ·), v(t, ·) satisfy the system
(1.1) for a.a. x ∈ R+ (with ∂+u/∂t, ∂+v/∂t instead of ∂u/∂t, ∂v/∂t), and together
with w(t) verify the boundary condition (1.2) (with d+w/dt instead of dw/dt) and
the initial data (1.3).

Lemma 2.6. Assume that (A1)ab, (A2)a hold. If f, g ∈ L1(0, T ;L2(R+; Rn)) (with
T > 0 fixed), u0, v0 ∈ L2(R+; Rn), w0 ∈ D(G12) ∩D(G22) then the problem (1.1),
(1.2), (1.3) has a unique weak solution col(u, v, w) ∈ C([0, T ];Y ).

For the proofs of Lemmas 2.1–2.6 see Luca [8].
In what follows we shall present an existence result for the stationary problem

associated to (2.1).

Lemma 2.7. If (A1)abc, (A2)ab hold, then the stationary problem

A(y) + B(y) 3 0 (2.2)

has a unique solution y = col(u, v, w) ∈ D(A).

Proof. By Remark 2.3, the operator A+B is maximal monotone in Y . In addition,
it is strongly monotone. Indeed, for all y = col(u, v, w), ỹ = col(ũ, ṽ, w̃) ∈ D(A),
h ∈ (A+ B)(y), h̃ ∈ (A+ B)(ỹ) we have

〈h− h̃, y − ỹ〉Y

= 〈g − g̃, z − z̃〉R2n+m +
n∑

k=1

∫ ∞

0

[αk(x, uk(x))− αk(x, ũk(x))][uk(x)− ũk(x)]dx

+
n∑

k=1

∫ ∞

0

[βk(x, vk(x))− βk(x, ṽk(x))][vk(x)− ṽk(x)]dx

≥ ζ1‖w − w̃‖2
Rm +

n∑
k=1

χ1‖uk − ũk‖2
L2(R+) +

n∑
k=1

χ2‖vk − ṽk‖2
L2(R+)

≥ χ0‖y − ỹ‖2
Y ,

where z = col(γ0v, w), z̃ = col(γ0ṽ, w̃), g ∈ G(z), g̃ ∈ G(z̃) and

χ0 = min{χ1, χ2, ζ1/si, , i = 1,m}.
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Therefore, this operator is coercive and then R(A + B) = Y . So we deduce that
equation (2.2) has a unique solution y = col(u, v, w) ∈ D(A). �

Now using Remark 2.3, Lemma 2.6, Lemma 2.7 and Brezis [3, Theorem 3.9], we
deduce the following result.

Lemma 2.8. Assume that (A1)abc, (A2)ab hold, f, g ∈ L1
loc(R+;L2(R+; Rn)) ver-

ify the conditions limt→∞ f(t) = f0, limt→∞ g(t) = g0, strongly in L2(R+; Rn),
and δ = col(p, q, r) is the unique solution of equation (2.2). Then limt→∞ y(t) = δ,
strongly in Y , where y(t) = col(u(t), v(t), w(t)), t ≥ 0 is an arbitrary weak solution
of equation (2.1)1. More precisely

‖y(t)− δ‖Y ≤ e−χ0t‖y(0)− δ‖Y +
∫ t

0

eχ0(s−t)‖F (s)− F 0‖Y ds, t ≥ 0,

where F 0 = col(f0, g0, 0).
If dF

dt ∈ L1(R+;Y ) and y(0) ∈ D(A) then limt→∞ ‖d+y
dt (t)‖Y = 0 strongly in Y

and∫ ∞

0

‖d+y

dt
(t)‖Y dt ≤ 1

χ0
‖((A+ B)(y(0))− F (0))0‖Y +

1
χ0

∫ ∞

0

‖dF

dt
(t)‖Y dt.

3. Existence, uniqueness and asymptotic behaviour of solutions

In the general case B(t) is not constant, we make a change of variables uk =
ũk + ˜̃uk, where˜̃uk(t, x) = (1 + x)e−xbn+k(t)− xe−xbk(t), k = 1, n.

Our problem (1.1), (1.2), (1.3) can be written as

∂ũ

∂t
(t, x) +

∂2v

∂x2
(t, x) + α(x, ũ + ˜̃u(t, x)) = f̃(t, x),

∂v

∂t
(t, x)− ∂2ũ

∂x2
(t, x) + β(x, v) = g̃(t, x), t > 0, x > 0,

(3.1)

with the boundary condition−∂eu
∂x (t, 0)
ũ(t, 0)
w′(t)

 ∈ −G

 v(t, 0)
∂v
∂x (t, 0)
w(t)

 +

 0
0

B2(t)

 , t > 0, (3.2)

and the initial data
ũ(0, x) = ũ0(x), v(0, x) = v0(x), x > 0,

w(0) = w0,
(3.3)

where

f̃k(t, x) = fk(t, x)− ∂˜̃uk

∂t
(t, x) = fk(t, x)− (1 + x)e−xb′n+k(t) + xe−xb′k(t),

g̃k(t, x) = gk(t, x) +
∂2˜̃uk

∂x2
(t, x) = gk(t, x) + (x− 1)e−xbn+k(t)− (x− 2)e−xbk(t),

x > 0, t > 0, k = 1, n,

ũk0(x) = uk0(x)− (1 + x)e−xbn+k(0) + xe−xbk(0), x > 0, k = 1, n,

B2(t) = col(b2n+1(t), . . . , b2n+m(t)).
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Using the operators A and B, the problem (3.1), (3.2), (3.3) can be equivalently
formulated as a time dependent Cauchy problem in the space Y ,

d

dt

ũ
v
w

 +A

ũ
v
w

 + B

ũ + ˜̃u(t)
v
w

 3

f̃(t, ·)
g̃(t, ·)
B2(t)


ũ(0)

v(0)
w(0)

 =

ũ0

v0

w0

 ,

(3.4)

where f̃ = col(f̃1, . . . , f̃n), g̃ = col(g̃1, . . . , g̃n), ũ0 = col(ũ10, . . . , ũn0).

Theorem 3.1. Assume that (A1)ab, (A2)ac hold, f, g ∈ W 1,1(0, T ;L2(R+; Rn))
(T > 0 fixed), bk ∈ W 1,2(0, T ), k = 1, 2n + m, u0, v0 ∈ H2(R+; Rn), w0 ∈ Rm,
col(γ0v0, w0) ∈ D(G) and B1(0) ∈ γ1u0 + G11(γ0v0) + G12(w0). Then prob-
lem (3.4) (equivalently problem (3.1), (3.2), (3.3)) has a unique strong solution
col(u, v, w) ∈ W 1,∞(0, T ;Y ). Moreover u, v ∈ L∞(0, T ;H2(R+; Rn)), (B1(t) =
col(b1(t), . . . , b2n(t))).

Proof. We shall use some similar techniques as those used in Luca [9]. We assume
in a first stage that f, g ∈ W 1,∞(0, T ;L2(R+; Rn)), bk ∈ W 2,∞(0, T ), k = 1, 2n,
bj ∈ W 1,∞(0, T ), j = 2n + 1, 2n + m, and the functions αk(x, ·), k = 1, n are
Lipschitz continuous with Lipschitz constant L independent of x. We consider the
operators C(t), t ∈ [0, T ], defined by D(C(t)) = D(A) and

C(t)

ũ
v
w

 = A

ũ
v
w

 + B

ũ + ˜̃u(t)
v
w

−

f̃(t, ·)
g̃(t, ·)
B2(t)

 ,

ũ
v
w

 ∈ D(A).

Using Remark 2.3, we deduce that the operators C(t), t ∈ [0, T ] are maximal
monotone in Y . By the above assumption on the functions αk, k = 1, n, we have

|αk(x, ũk + ˜̃uk(t, x))− αk(x, ũk + ˜̃uk(s, x))|

≤ L|˜̃uk(t, x)− ˜̃uk(s, x)|
≤ L[(1 + x)e−x|bn+k(t)− bn+k(s)|+ xe−x|bk(t)− bk(s)|],

for all t, s ∈ [0, T ] for almost all x > 0, k = 1, n. Therefore, we deduce

‖αk(·, ũk + ˜̃uk(t, ·))− αk(·, ũk + ˜̃uk(s, ·))‖2
L2(R+)

≤ 2L2|bn+k(t)− bn+k(s)|2
∫ ∞

0

(1 + x)2e−2xdx + 2L2|bk(t)− bk(s)|2
∫ ∞

0

x2e−2xdx

=
5L2

2
|bn+k(t)− bn+k(s)|2 +

L2

2
|bk(t)− bk(s)|2, ∀t, s ∈ [0, T ], k = 1, n.

(3.5)

On the other hand for the functions f̃k, k = 1, n we obtain the inequality

|f̃k(t, x)− f̃k(s, x)| ≤ |fk(t, x)− fk(s, x)|+ (1 + x)e−x|b′n+k(t)− b′n+k(s)|
+ xe−x|b′k(t)− b′k(s)|, ∀t, s ∈ [0, T ], x > 0, k = 1, n,
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and so
‖f̃k(t, ·)− f̃k(s, ·)‖2

L2(R+) ≤ 3‖fk(t, ·)− fk(s, ·)‖2
L2(R+)

+
15
4
|b′n+k(t)− b′n+k(s)|2 +

3
4
|b′k(t)− b′k(s)|2,

(3.6)

for all t, s ∈ [0, T ], k = 1, n. For the functions g̃k, k = 1, n we deduce

|g̃k(t, x)− g̃k(s, x)| ≤ |gk(t, x)− gk(s, x)|+ |x− 1|e−x|bn+k(t)− bn+k(s)|
+ |x− 2|e−x|bk(t)− bk(s)|, ∀t, s ∈ [0, T ], x > 0, k = 1, n,

and so

‖g̃k(t, ·)− g̃k(s, ·)‖2
L2(R+) ≤ 3‖gk(t, ·)− gk(s, ·)‖2

L2(R+) +
3
4
|bn+k(t)− bn+k(s)|2

+
15
4
|bk(t)− bk(s)|2, ∀t, s ∈ [0, T ], k = 1, n.

(3.7)

Therefore, we obtain the following inequality for the operators C(t),

‖ht − hs‖Y

≤ ‖α(·, ũ + ˜̃u(t, ·))− α(·, ũ + ˜̃u(s, ·))‖L2(R+;Rn) + ‖f̃(t, ·)− f̃(s, ·)‖L2(R+;Rn)

+ ‖g̃(t, ·)− g̃(s, ·)‖L2(R+;Rn) + ‖B2(t)−B2(s)‖Rm ,

for all t, s ∈ [0, T ], all ỹ = col(ũ, v, w) ∈ D(A), all ht ∈ C(t)(ỹ), all hs ∈ C(s)(ỹ).
Using now the relations (3.5)–(3.7) and the assumptions on the functions f, g, bk,

k = 1, 2n + m, from the last inequality we deduce that there exists L1 > 0 such
that

‖ht − hs‖Y ≤ L1|t− s|, ∀t, s ∈ [0, T ], ∀ỹ ∈ D(A), ∀ht ∈ C(t)(ỹ), hs ∈ C(s)(ỹ).

Therefore, the operator family {C(t); t ∈ [0, T ]} verifies the conditions of Kato’s
Theorem (see Kato [4]). By the assumptions of our theorem, we deduce that ỹ0 =
col(ũ0, v0, w0) ∈ D(A). It follows that the problem (3.4) has a unique strong
solution ỹ = col(ũ, v, w) ∈ W 1,∞(0, T ;Y ), col(ũ(t), v(t), w(t)) ∈ D(A), for all t ∈
[0, T ]. Moreover ỹ is everywhere differentiable from right on [0, T ) and

d+

dt

ũ(t)
v(t)
w(t)

 +A

ũ(t)
v(t)
w(t)

 + B

ũ(t) + ˜̃u(t)
v(t)
w(t)

 3

f̃(t, ·)
g̃(t, ·)
B2(t)


ũ(0)

v(0)
w(0)

 =

ũ0

v0

w0

 .

Hence y(t) = col(u(t), v(t), w(t)) solves the problem

d+y

dt
(t) +A(y(t)) + B(y(t)) 3 F1(t, ·), 0 ≤ t < T, in Y

γ1u(t) ∈ −G11(γ0v(t))−G12(w(t)) + B1(t), 0 ≤ t < T

y(0) = y0,

where F1(t, ·) = col(f(t, ·), g(t, ·), B2(t)). We deduce that y = col(u, v, w) is a
solution of the problem (1.1), (1.2), (1.3).

In a second stage, we suppose that αk(x, ·), k = 1, n are not Lipschitz continuous
and we replace the functions αk(x, ·) by the Yosida approximations αλ

k(x, ·), k =
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1, n, λ > 0. Using the above reasoning, we deduce that the problem (3.4) with αλ
k

instead of αk has a unique strong solution col(ũλ, vλ, wλ) ∈ W 1,∞(0, T ;Y ). Then
yλ = col(uλ, vλ, wλ) solves the problem

d+yλ

dt
(t) +A(yλ(t)) + Bλ(yλ(t)) 3 F1(t, ·), 0 ≤ t < T, in Y

γ1u
λ(t) ∈ −G11(γ0v

λ(t))−G12(wλ(t)) + B1(t), 0 ≤ t < T

yλ(0) = y0,

(3.8)

with

Bλ

u
v
w

 =

col(αλ
1 (·, u1), . . . , αλ

n(·, un))
col(β1(·, v1), . . . , βn(·, vn))

0

 , λ > 0.

We write the first relation in (3.8) for t + h and t, we subtract the relations and we
multiply the obtained relation by yλ(t+h)− yλ(t) in the space Y . We obtain after
some computations

1
2

d+

dt
‖yλ(t + h)− yλ(t)‖2

Y + 〈gt+h − gt, zt+h − zt〉R2n+m

− 〈B1(t + h)−B1(t), γ0v
λ(t + h)− γ0v

λ(t)〉Rn

≤ 〈f(t + h, ·)− f(t, ·), uλ(t + h)− uλ(t)〉L2(R+;Rn)

+ 〈g(t + h, ·)− g(t, ·), vλ(t + h)− vλ(t)〉L2(R+;Rn)

+ 〈B2(t + h)−B2(t), wλ(t + h)− wλ(t)〉Rm ,

where zt = col(γ0v
λ(t), wλ(t)), zt+h = col(γ0v

λ(t + h), wλ(t + h)), gt ∈ G(zt),
gt+h ∈ G(zt+h).

Using (A2)c, the above inequality, we obtain

1
2

d+

dt
‖yλ(t + h)− yλ(t)‖2

Y + ζ2‖γ0v
λ(t + h)− γ0v

λ(t)‖2
R2n

+ ζ2‖wλ(t + h)− wλ(t)‖2
Rm

≤ 1
ζ0
‖B1(t + h)−B1(t)‖2

R2n + ζ0‖γ0v
λ(t + h)− γ0v

λ(t)‖2
Rn

+
1
ζ0
‖B2(t + h)−B2(t)‖2

Rm + ζ0‖wλ(t + h)− wλ(t)‖2
Rm

+ ‖F0(t + h, ·)− F0(t, ·)‖X · ‖yλ(t + h)− yλ(t)‖Y ,

for 0 ≤ t < t + h < T , λ > 0, where F0(t, ·) = col(f(t, ·), g(t, ·)).
When we choose 0 < ζ0 < ζ2, we obtain

1
2

d+

dt
‖yλ(t + h)− yλ(t)‖2

Y

≤ 1
ζ0
‖B(t + h)−B(t)‖2

R2n+m + ‖F0(t + h, ·)− F0(t, ·)‖X · ‖yλ(t + h)− yλ(t)‖Y ,

for 0 ≤ t < t + h < T , λ > 0. We integrate the above inequality over [0, t] and we
deduce that

1
2
‖yλ(t + h)− yλ(t)‖2

Y
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≤ 1
2

(
‖yλ(h)− yλ(0)‖2

Y +
2
ζ0

∫ T

0

‖B(s + h)−B(s)‖2
R2n+mds

)
+

∫ t

0

‖F0(s + h, ·)− F0(s, ·)‖X · ‖yλ(s + h)− yλ(s)‖Y ds,

for 0 ≤ t < t + h < T , λ > 0. Using a variant of Gronwal’s lemma, we obtain

‖yλ(t + h)− yλ(t)‖Y

≤ ‖yλ(h)− yλ(0)‖Y +
√

2
ζ0

( ∫ T

0

‖B(s + h)−B(s)‖2
R2n+mds

)1/2

+
∫ t

0

‖F0(s + h, ·)− F0(s, ·)‖Xds, 0 ≤ t < t + h < T, λ > 0.

We deduce from the above inequality that

‖d+yλ

dt
(t)‖Y ≤ ‖d+yλ

dt
(0)‖Y +

√
2
ζ0

( ∫ T

0

‖dB

ds
(s)‖2

R2n+mds
)1/2

+
∫ T

0

‖df

ds
(s, ·)‖L2(R+;Rn)ds +

∫ T

0

‖dg

ds
(s, ·)‖L2(R+;Rn)ds,

(3.9)

for 0 ≤ t < T , λ > 0. Because sup
{
‖d+yλ

dt (0)‖Y ;λ > 0
}

is a positive constant
independent of λ, using the assumptions of the theorem, the inequality (3.9) gives
us

sup
{
‖dyλ

dt
(t)‖Y ;λ > 0, 0 < t < T

}
≤ const.

and then sup{‖yλ(t)‖Y ;λ > 0, 0 < t < T} ≤ const. Hence

{uλ;λ > 0}, {vλ;λ > 0} are bounded in L∞(0, T ;L2(R+; Rn)),

{wλ;λ > 0} is bounded in L∞(0, T ; Rm),

and, using the assumption (A1)b, we deduce that

{Bλ(yλ(t));λ > 0} is bounded in L∞(0, T ;Y ). (3.10)

By (3.8), we have

1
2

d

dt
‖yλ(t)− yµ(t)‖2

Y ≤ −〈Bλ(yλ(t))− Bµ(yµ(t)), yλ(t)− yµ(t)〉Y , (3.11)

for 0 < t < T , λ > 0. Using now the relations (3.10) and (3.11), we obtain

‖yλ(t)− yµ(t)‖Y ≤ const.(λ + µ)1/2, 0 ≤ t ≤ T, λ, µ > 0.

Therefore, the sequence {yλ;λ > 0} converges to some function y = col(u, v, w)
in C([0, T ];Y ) as λ → 0. Using Lebesgue’s Dominated Convergence Theorem, we
obtain Bλ(yλ) → B(y), as λ → 0, strongly in L2(0, T ;Y ). By letting λ → 0 in (3.8),
A and G being demi-closed operators, we obtain that y is a strong solution of the
problem (1.1), (1.2), (1.3).

In the third stage (general case), we approximate f, g ∈ W 1,1(0, T ;L2(R+; Rn))
by {f j}j≥1, {gj}j≥1 ⊂ W 1,∞(0, T ;L2(R+; Rn)) in W 1,1(0, T ;L2(R+; Rn)), and bk ∈
W 1,2(0, T ) by {bj

k}j≥1 ⊂ W 2,∞(0, T ), k = 1, 2n, bi ∈ W 1,2(0, T ) by {bj
i}j≥1 ⊂

W 1,∞(0, T ), i = 2n + 1, 2n + m, in W 1,2(0, T ).
Fixing y0 = col(u0, v0, w0) ∈ Y with ỹ0 = col(ũ0, v0, w0) ∈ D(A), we deduce

after some considerations (see also Luca [9]) that the sequence of the corresponding
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strong solutions {yj = col(uj , vj , wj)}j≥1 converges as j → ∞ to y = col(u, v, w),
which is a strong solution of our problem.

By system (1.1), we deduce uxx, vxx ∈ L∞(0, T ;L2(R+; Rn)) and, using the
inequality

‖z′‖L2(R+) ≤ C(‖z′′‖L2(R+) + ‖z‖L2(R+)), for z ∈ H2(R+),

(see Adams [1]), we get that ux, vx ∈ L∞(0, T ;L2(R+; Rn)). So we obtain u, v ∈
L∞(0, T ; H2(R+; Rn)). �

Theorem 3.2. Assume that (A1)ab, (A2)ac hold. If f, g ∈ L1(0, T ;L2(R+; Rn))
where T is fixed positive value, bk ∈ L2(0, T ), k = 1, 2n + m, u0, v0 ∈ L2(R+; Rn),
w0 ∈ D(G12) ∩D(G22), then problem (1.1), (1.2), (1.3) has a unique weak solution
col(u, v, w) ∈ C([0, T ];Y ).

Proof. By the assumptions of the theorem, it follows that y0 = col(u0, v0, w0) ∈
D(A). We consider {yj

0}j≥1 ⊂ Y such that ỹj
0 ∈ D(A) and yj

0 → y0, as j → ∞,
in Y . Also let the sequences {f j}j≥1, {gj}j≥1 ⊂ W 1,1(0, T ;L2(R+; Rn)) be such
that f j → f , gj → g, as j → ∞, in L1(0, T ;L2(R+; Rn)) and the sequences
{bj

k}j≥1 ⊂ W 1,2(0, T ) be such that bj
k → bk, as j →∞, in L2(0, T ), k = 1, 2n + m.

Then the corresponding strong solutions yj = col(uj , vj , wj) ∈ W 1,∞(0, T ;Y ) of
problem (1.1), (1.2), (1.3), given by Theorem 3.1, satisfy the inequality

‖yj(t)− yl(t)‖Y ≤ ‖yj
0 − yl

0‖Y +
√

2
ζ0

( ∫ T

0

‖Bj(s)−Bl(s)‖2
R2n+mds

)1/2

+
∫ t

0

‖F j
0 (s, ·)− F l

0(s, ·)‖2
Xds, 0 ≤ t ≤ T, ∀j, l ∈ N,

where F j
0 = col(f j , gj), j ≥ 1, which leads us to the conclusion. �

Theorem 3.3. Assume that (A1)abc, (A2)ac hold. If f, g ∈ L1
loc(R+;L2(R+; Rn)),

bk ∈ L2(R+), k = 1, 2n + m such that limt→∞ f(t) = f0, limt→∞ g(t) = g0,
strongly in L2(R+; Rn) and δ = col(p, q, r) is the unique solution of (2.2). Then
limt→∞ y(t) = δ, strongly in Y , where y(t) = col(u(t), v(t), w(t)), t ≥ 0 is an
arbitrary weak solution of (3.4).

Proof. By Lemma 2.7, the operator A+B is strongly monotone and equation (2.2)
has a unique solution δ = col(p, q, r) ∈ D(A). We define for any l ∈ N the function

Bl(t) =

{
B(t), for 0 ≤ t ≤ l

0, for t > l.

Let y0 = col(u0, v0, w0) ∈ D(A); we denote by y(t), yl(t), t ≥ 0 the weak solu-
tions of problem (1.1), (1.2), (1.3) corresponding to data {B, f, g, y0}, respectively
{Bl, f, g, y0}, given by Theorem 3.2. Then we have

‖yl(t)− y(t)‖Y ≤ const.
( ∫ ∞

l

‖B(s)‖2
R2n+mds

)1/2

, t > l. (3.12)

Because for t > l, yl is the weak solution corresponding to B(t) ≡ 0, by Lemma
2.8, we deduce that yl(t) → δ, as t → ∞ in Y , (l ∈ N). Hence this last conclusion
with (3.12) and the inequality

‖y(t)− δ‖Y ≤ ‖y(t)− yl(t)‖Y + ‖yl(t)− δ‖Y
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give us that y(t) → δ, as t →∞, in Y . �
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