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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A
SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

RODICA LUCA

ABSTRACT. We study the existence, uniqueness and asymptotic behaviour of
solutions to a second-order nonlinear hyperbolic system of equations. The
spatial variable is in the positive half-axis.

1. INTRODUCTION

We study the second-order nonlinear hyperbolic system
0 0?
5 (L) + 55 (ta) +ale,w) = f(t,),
ot Ox?
) (1.1)

dv U
E(t,l’)—@(t,I)%—ﬂ(l‘,’U)—g(t,l‘), t>0a l‘>0,

with the boundary condition

(COI (- gg(w),u(t,()))) c-G (COI (“(t’oi’téz(t’o))) L B(t), t>0, (12)

w'(t) w
and the initial condition
u(0,2) = up(x), v(0,2) =vo(z), x>0, 13
w(0) = wo. (13)

The unknowns u, v and f and g are the vectorial functions depending on (¢, z) €
R4 x Ry with values in R™, the unknown w is a vectorial function depending on
t € Ry with values in R™. In the system (|1.1)), the functions « and 3 are of the
form a(z,u) = col(ay (z,u1), ..., an(x,uy)), Blx,v) = col(B1(x,v1), ..., Bn(z,vn)),
G is an operator in R?"*™ and B(t) = col(bi(t),...,banim(t)) € RZF™ for all
t>0.

This problem is a generalization of the case studied by Luca [§], where B(t) = 0.
The methods we shall use to prove the main results in this article are different
from that used in Luca [8]. We also mention the articles [6l [} 0], where we have
investigated a n-order hyperbolic system, for spatial variable € (0,1) and ¢ > 0,
subject to some nonlinear boundary conditions.
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In the present work, we shall prove the existence, uniqueness, some regularity
properties and the asymptotic behaviour of the strong and weak solutions for the
problem , , . For the basic notation, concepts and results in the
theory of monotone operators and nonlinear evolution equations of monotone type
in Hilbert spaces we refer the reader to Barbu [2], Brezis [3], Lakshmikantham et
al [5].

Now we introduce the assumptions to be used in this article.

(Al) (a) The functions x — ag(z,p) and x — B(z,p) are measurable on R,

for any fixed p € R. Besides, the functions p — ai(x,p) and p — Br(z,p)
are continuous and nondecreasing from R into R, for a.a. z e Ry, k=1 n.

(b) There exist a > 0, by > 0, k = 1,n and the functions c},c; €
L?(R,) such that

(2, p)| < arlpl + i (@), |Br(z,p)| < bilpl + i (),

fora.a. z€Ry, forallpe R, k=1,n.
(c) There exist x1 > 0, x2 > 0 such that

(ar(z,p1) — ar(z,p2))(p1 — P2) = X1(P1 — P2)°,
(Br(x,p1) — Br(x,p2))(p1 — p2) = x2(p1 — p2)?,

fora.a. € Ry, forall py, p2 €R, k=1,n.
(A2) (a) G : D(G) C R**t™ — R2"+™ ig a maximal monotone operator (possi-

bly multivalued). Moreover, G = Gu Gz with
Ga1 G2

Gy D(Gll) C RQn — R2n, Gia: D(Glg) CR™ — RQH,
Goy : D(Ggl) C RQn — Rm7 Gao : D(GQQ) CR™ — Rm,

where

_ (Gui(uny - u20)”) + Gra((uznsns - Uz2pm) ")
G21((ula cee vu2n)T) + G22((u2n+1a ce au2n+m)T) .

(b) There exists ¢; > 0 such that for all z,y € D(G), x = col(x?, z%),
y = col(y®, y*) € R?™ x R™ and for all w; € G(z), wa € G(y) we have

G((ul, ce ,Uf2n+m)T)

(w1 = wa, & — Ygentm > Gl|2” = y°|[f
(¢) There exists (o > 0 such that for all z,y € D(G) and for all w; €
G(z), wy € G(y) we have
(w1 — wa, & — Y)panim > Gl — Yl[Gensm-
The operator G is a generalization of the matrix case. It also covers some
general boundary conditions for (L.1]). For example, if G12 = 0 and G231 = 0,
then the boundary condition (|1.2)) becomes
col(—u,(t,0),u(t,0)) € —Gr1(col(v(t,0),v.(¢,0))) + By (t), (1.4)
w'(t) € —Gaa(w(t)) + Ba(t), (1.5)
where B(t) = col(By(t), Ba(t)).

The condition (1.5)) with (1.3]) give us, by integration, the function w. For (|1.4)),
by making suitable choices of G171, we deduce many classical boundary conditions.
Here are some examples in the case G1; = OI, the subdifferential of [ : R?" —
(700, +OO]:
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l(u)— 0, fu=a, v=>

v) 400, otherwise.
then (1.4)) becomes v(t,0) = a, v,(t,0) = b.

(b) For n = 1 and [ <Z> =

v(t,0) = a.

(a) If

b if u =
U BE TS e obtain u(t,0) = Ba(t) — b,

oo, otherwise,

ifv==>0
(¢) Forn=1 and ! (u) — e By . we obtain u,(t,0) = —B1(t) + a,
v oo, otherwise,

vz (t,0) = b.
(d) Forn=1and Z = au + bv, then (1.4)) becomes uy(t,0) = —By(t) + a,
u(t,0) = Ba(t) — b.

2. PRELIMINARY RESULTS

Firstly we consider the case B(t) = by (a constant vector). In this situation, we
can replace G by é, defined by Guw = Gw — by, which is under the assumption
(A2)a, a maximal monotone operator. So, we suppose without loss of generality
that B(t) = 0. In what follows, we shall recall some results from Luca [§] relat-
ing to the existence and uniqueness of the solutions of our problem , ,
(L:3). We consider the spaces X = (L*(R;;R"))?, R™ and Y = X x R™ with the
corresponding scalar products

(Lra)x = (f,9) 2@ me) + (f2, 92) L2y immy, [ = (2) , 9= (i;) € X,

m
<x’y>Rm - leylv z,y S Rma
=1

< (£> ) (Z) >y ={f,9)x + {z,y)rm, <£) , (Z) cY.

We define the operator A: D(A) CY — Y,
D(A) = {y € Y,y = col(u,v,w); u,v € H*(R,;R"), w € R™,
col(yov,w) € D(G), 1u € —G11(7v) — Gia(w)},
,0'(0)), mu = col(—u'(0),u(0)),

1"

=

where v = col(v(0

u v u
Alv | = —u” ) v | € D(A).
w Ggl(’}/ov) -+ Ggg(w) w

We also define the operator B: D(B) CY =Y,
B(y) = COl(Oé(',’U,),ﬁ(',U),O), D(B) = {y € K Y= col(u,v,w); B(y) € Y}

Under assumption (A2)a, we have D(A) # 0, D(A) = X x D(G12) N D(G22) and,
under the assumptions (Al)ab, we obtain D(B) =Y.

Lemma 2.1. If (A2)a holds, then the operator A is mazimal monotone.

Lemma 2.2. If (Al)ab hold, then the operator B is mazimal monotone.
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Remark 2.3. By Lemma Lemma [2.2] and Rockafellar’s theorem (see Barbu
[2, Theorem 1.7, Chapter II]), it follows that, under the assumptions (Al)ab and
(A2)a, the operator A+ B: D(A) CY — Y is maximal monotone in the space Y.

Using the operators .4 and B, our problem (|L.1]), (1.2)), (L.3]) can be equivalently
expressed as the following Cauchy problem in the space Y

W A(t) + B((y(®) 3 F(t. ), >0,

dt (2.1)

y(0) = vo,
where y(t) = col(u(t),v(t),w(t)), F(t7 ) = COl(f(tv ')ag(tv ')v 0)» Yo = COI(“Ov”Ov wO)'
Lemma 2.4. Assume that (Al)ab, (A2)a hold. If f,g € WH1(0,T; L*>(R;R"))
(with T > 0 fized), ug,vo € H*(R4;R™), col(yovo,wo) € D(G), yrug belongs to
—G11(Yovo) — G12(wy), then problem (1.1)), (1.2), (1.3) has a unique strong solution
col(u,v,w) € WHe(0,T;Y). Moreover u,v € L>(0,T; H*(R,;R™)).

Remark 2.5. For all ¢ € [0,T), the above functions u(¢,-), v(t, -) satisfy the system
for a.a. x € Ry (with T u/dt, T v /0t instead of Ou/dt, Jv/0t), and together
with w(t) verify the boundary condition (with dtw/dt instead of dw/dt) and

the initial data (1.3]).

Lemma 2.6. Assume that (Al)ab, (A2)a hold. If f,g € L*(0,T; L?>(Ry;R™)) (with
T > 0 fized), ug,vo € L2(R4;R™), wo € D(G12) N D(Gaa) then the problem (1.1]),
(1.2), (L.3) has a unique weak solution col(u,v,w) € C([0,T];Y).

For the proofs of Lemmas see Luca [g].
In what follows we shall present an existence result for the stationary problem

associated to ([2.1)).
Lemma 2.7. If (Al)abc, (A2)ab hold, then the stationary problem
A(y) +B(y) 20 (2.2)

has a unique solution y = col(u,v,w) € D(A).

Proof. By Remark[2.3] the operator A+ B is maximal monotone in Y. In addition,
it is strongly monotone. Indeed, for all y = col(u,v,w), ¥ = col(u,v,w) € D(A),
he (A+B)(y), h € (A+ B)(y) we have

<h_ﬁvy_§>Y

— (g =Gz = D+ [ o (@ us(2)) — T (0) e () — T ()]
k=170
+30 [ Brloon(e)) = o @) on(o) — Tl
k=170

n n
> Gllw = @l + Y xallue = @lZa e,y + D xellok = el e,
k=1 k=1

> xolly — 9%
where z = col(yov, w), Z = col(vy0,w), g € G(z), g € G(Z) and

Xo = min{x1, x2,C1/8i,,7 = 1,m}.
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Therefore, this operator is coercive and then R(A+ B) =Y. So we deduce that
equation ([2.2)) has a unique solution y = col(u, v, w) € D(A). O

Now using Remark Lemma Lemma [2.7 and Brezis [3, Theorem 3.9], we
deduce the following result.

Lemma 2.8. Assume that (Al)abc, (A2)ab hold, f,g 6 Li (Ry; L*(R; R™)) ver-
ify the conditions lim;_ . f(t) = f°, limy . g(t) = ¢°, strongly in L?(R,;R"),
and 0 = col(p, q,r) is the unique solution of equation . Then lim;_, y(t) = 0,
strongly in'Y, where y(t) = col(u(t),v(t), w(t)), t > 0 is an arbitrary weak solution
of equation 1. More precisely

t
ly(®) = dlly < e™"[|y(0) —dlly +/ G| F(s) = FOllyds, >0,
0

where F° = col(f°,¢Y,0).
If “£ ¢ LY(R;;Y) and y(0) € D(A) then limy_. ||%(t)||y = 0 strongly in' Y
and

/0 1L @t < A+ B)(w(0) - ||Y+—/°° Byt

3. EXISTENCE, UNIQUENESS AND ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

In the general case B(t) is not constant, we make a change of variables uy =
Uy + Uy, where

U(t,2) = (1+ 2)e “buik(t) — ze “bp(t), k=T1,n.

Our problem (1.1)), (1.2)), (1.3)) can be written as

~ 2 . .
O 1)+ 0 a(t.2) + ala, @ + i) = Ft,2),
Ov 0%u .
E(t,x} 82(tx)+ﬂ(1’ v) =g(t,z), t>0,z>0,
with the boundary condition
—95(¢,0) v(t,0) 0
u(t,0) | e-G|2¢0o|+| 0 |, t>0, (3.2)
w'(t) w(t) By(t)
and the initial data
u(0,z) = ug(x), v(0,x2) =vo(xz), x>0,
(0,2) = uo(z), v(0,2) =wvo(x) (3.3)

where

Fult.) = Fult.) = 2% (1) = fult) = (14 2)e By u0) + e~ By (1),

ult ) = gult. )+ () = 1 (4) + (&~ e s (8)— (5 D).

x>0, t>0, k=1,n,
Uko(z) = uko(z) — (1 + 2)e” “bpyx(0) + 2z~ “b(0), x>0, k=1,n,
B2 (t) = COl(b2n+1(t), ey b2n+m (t))
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Using the operators A and B, the problem (3.1]), (3.2)), (3.3]) can be equivalently

formulated as a time dependent Cauchy problem in the space Y,

d [t U u+ u(t) [(t,-)
7Y +Alv | +B v > | 9, )
w w w Bs(t) (3.4)
u(0) Uo
v(0) | =1 v |,
w(0) wo

where f = col(fi,..., fn), §=col(G1,-- .. Gn), o = col(Tro, - - . , Tino)-

Theorem 3.1. Assume that (Al)ab, (A2)ac hold, f,g € W11(0,T; L*(Ry; R™))
(T > 0 fired), b € WH2(0,T), k = 1,2n+m, up,vy € H2(R+,R"), wy € R™,
col(vOUO,wo) € D(G) and B1(0 ) E 1u0 + Gn(’yovo) + Gia(wg). Then prob-
lem ) (equivalently problem (3.1] , , ) has a unique strong solution
Col(u,v,w) € Whe(0,T;Y). Moreover u,v € L°°(O T; HX(R;R™)), (Bi(t) =
col(by(t),...,ban(t))).

Proof. We shall use some similar techniques as those used in Luca [9]. We assume
in a first stage that f,g € W1°°(0,T; L3(R;R"™)), by € W2>(0,T), k = 1,2n,
b; € WH>(0,T), j = 2n+1,2n+ m, and the functions ag(xz,-), k¥ = 1,n are

Lipschitz continuous with Lipschitz constant L independent of z. We con51der the
operators C(t), t € [0,T1], defined by D(C(t)) = D(A) and
ara) (1)
+B v -1 9(t,")
w BQ (t)

C(t) —A € D(A).

)

g ¢ X
g ¢ X
g ¢ X

Using Remark we deduce that the operators C(t), ¢ € [0,7T] are maximal
monotone in Y. By the above assumption on the functions ay, kK = 1,n, we have

vk (2, g + g (t, @) — g (@, T + (s, 7))
< Lfii(t, 2) — ik (s, )|
S LI(L+ z)e™ |bnyr(t) = btk (s)] + ze™[be(t) — br(s)]];
for all ¢, s € [0,T] for almost all = > 0, k = 1,n. Therefore, we deduce
llevk (-, Tk + i (t, -)) — (-, Ty, + (s, N2y
< 2L p(t) — brsn(s)[? /0 T4 2)2e 2 da 4+ 2020 (t) — bi(s) 2 /O " ey

512 , L2 )
= len+k(t) - bn+k(3)‘ + 7|bk(t) — bk(8)| , Vt,se€ [07T]7 k=1,n.

(3.5)
On the other hand for the functions fy, k = I, n we obtain the inequality

|Fu(t ) = Fi(s, @) < [fult,w) = fuls,0) + (14 2)e [0, 44 (8) = by (5)]
+ae | (t) = bi(s)l, Vt,s€[0,T], >0, k=T1,n,
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and so
1F(t ) = Fils, M ey < 3ka( )= (s )2y
ek (6) — B + S0 — ()1
for all t,s € [0,T], k = 1,n. For the functions g, k = 1,n we deduce

9% (8, ) — gi(s, 2)| < |gr(t, ) — gr(s, )| + [ — 1™ [bnik(t) — burr(s)]
+ |z —2]e™|bg(t) — bi(s)], ¥t s€[0,T], x>0, k=1,n,

(3.6)

and so
- - 3
1G5 (ts ) = (s, 2@,y < 3llgrt, ) — grls, 2@,y + Z|bn+k(t) — bk (s)?

15
-l—Zlbk(t)—bk(s)\g, Vt,s € [0,T], k =1,n.

(3.7)
Therefore, we obtain the following inequality for the operators C(t),
([ = hally

<l u+ut-) —alu+u(s,)lrz@omy + 1) = F(s)lL2@y mn
+1g(t, ) — g(s, 2@y gn) + [ B2(t) — Ba(s)|[rm,
for all t,s € [0,T], all ¥ = col(w, v, w) € D(A), all hy € C(t)(y), all hs € C(s)(¥).
Using now the relations (3.5)—(3.7) and the assumptions on the functions f, g, b,

k = 1,2n+ m, from the last inequality we deduce that there exists L; > 0 such
that

Ihe — holly < Lalt —s|, Vt,s € [0,T], V5 € D(A), Yhe € C(t)(H), hs € C(5)(T).

Therefore, the operator family {C(t);t € [0,T]} verifies the conditions of Kato’s
Theorem (see Kato [4]). By the assumptions of our theorem, we deduce that gy =
col(tg,vo, wy) € D(A). It follows that the problem has a unique strong
solution y = col(ﬂ v,w) € WH(0,T;Y), col(u(t),v(t), w(t )) D(A), for all t €
[0,T]. Moreover ¥ is everywhere differentiable from rlght on [0,T) and

() i(t) () it
s v(t) | + A v(®) | +B v > | g(t,-)
w(t) w(t) By(t)
u(0) Uo
v(0) | = | vo
w(0) wo
Hence y(t) = col(u(t),v(t), w(t)) solves the problem
dty

5 O FAW®) +By() > Fat, ), 0<t<T, Y
T1u(t) € =Gii(yv(t)) — Grz(w ( )+ Bi(t), 0<t<T
Yy

(0) =
where Fi(t,-) = col(f(t,-) t,-), B2(t)). We deduce that y = col(u,v,w) is a
solution of the problem l} (1.3)).

In a second stage, we suppose that ay(x,-), k = 1,n are not Lipschitz continuous
and we replace the functions ag(z,-) by the Yosida approximations ap(z, ), k =
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1,n, A > 0. Using the above reasoning, we deduce that the problem (3.4) with o}

instead of a has a unique strong solution col(u*, v*, w*) € WH°(0,7;Y). Then

y* = col(u?,v*, w?) solves the problem

TV 1)+ AW 0) B ) 3 Fi), 050<T, iy
M (1) € G (o (1) — Gra(w (@) + Bi(t), 0<t<T (38)
¥*(0) = v,
with
U col(ay (-, u1), .., an (- up))
Balv | =1 col(Bi(,v1),...,Bn(5vn)) |, A>0.
w 0

We write the first relation in (3.8)) for t + h and ¢, we subtract the relations and we
multiply the obtained relation by y* (¢ +h) — y*(t) in the space Y. We obtain after
some computations

ld* Ay (2

gally (t+h) =y Oy + (gt+n — G, Zt4n — 2t)R2n+m

— <Bl (t + h) — By (t), ')/QUA(IJ; + h) — ’)/QUA(t)>]Rn

< (f(E+hyo) = f(t),ur(E+h) — (b)) 2 ry mm
+ <g(t + h, ) - g(tv ')7 ’U)\(t + h) - U)\(t)>L2(R+;IR")
+ (By(t + h) — By (t), w(t + h) — w(t))gm,

where z; = col(vov (), w*(t)), zexn = col(yov (t + h),w*(t + h)), g+ € G(z),
Gt+h € G(2t4n)-
Using (A2)c, the above inequality, we obtain

1dt
§E||9A(t +h) =y )|} + Gllvov E + h) — v (t)][Ren

+ GallwA(t + h) — w* (D)3

RmM

1
< allBl(t +h) = Bi(1)[[Ren + Collov (¢ + h) —v00* (1) |

4 C—lonBz(t 1) = By(t)][2m + Collw? (¢ + ) — w (6) 2

| Eo(t+hy) = Fo(t)llx - [yt +h) — 9 (@)ly,

for0<t<t4+h<T,A>0, where Fy(t,-) = col(f(¢,-),9(t,")).
When we choose 0 < (y < (2, we obtain
LA
2 dt
1
< gHB(t +h) = B(O)||Rensm + [ Fo(t + hy-) = Folt,)lx - [y + 7)) =y (0l

1y (8 +R) =y @)

for 0 <t <t+h<T,X>0. We integrate the above inequality over [0,¢] and we
deduce that

1
Sl E+ 1) =y )l
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< %(llyk(h) —MNO)2 + C%/o |B(s + h) — B(s)||§2n+mds)

t
+ / [Fo(s +h. ) = Fo(s,)llx - 97 (s + h) =y (s)llyds,
0
for0<t<t+h<T,>0. Using a variant of Gronwal’s lemma, we obtain
™t +h) =y (O)lly

A0 g Ol 4\ 2 ([ 1B+ = B arnts)

t
+/ ||F0(S+h,')7F0(S,')||Xd5, 0§t<t+h<T,>\>0
0

1/2

We deduce from the above inequality that

dty? dty? 2/ (T dB, ., 1/2
—=(t <||—— — — —
| i Oy <l 7 Oy + Co(/o | Is ()l gan+ S)

3.9
T A AT A 1O -2 v
0 ds L2(R4;R™) 0 ds L2(R4;Rn) @S,

for 0 <t < T, A > 0. Because sup{HOﬁd@t’A (0)[ly; A > 0} is a positive constant

independent of A, using the assumptions of the theorem, the inequality (3.9) gives
us

sup{H%(t)Hy; A>0,0<t<T} < const.
and then sup{|ly*(#)||y; A > 0, 0 < t < T} < const. Hence
{u*; X > 0}, {v*; X > 0} are bounded in L>(0,T; L*(R; R™)),
{w*; X > 0} is bounded in L>(0,T;R™),
and, using the assumption (A1)b, we deduce that

{Bx(y*(t)); A > 0} is bounded in L>°(0,T;Y). (3.10)
By (3.8), we have
%%Hy*(t) O} < —Ba () = Buly" (1), v () — "))y, (3.11)

for 0 <t < T, A > 0. Using now the relations (3.10) and (3.11]), we obtain
() — y*(t)|ly < const.(A+p)/2, 0<t<T, A\, u>0.

Therefore, the sequence {y)‘;)\ > 0} converges to some function y = col(u,v,w)
in C([0,T);Y) as A\ — 0. Using Lebesgue’s Dominated Convergence Theorem, we
obtain By (y*) — B(y), as A — 0, strongly in L(0,T;Y). By letting A — 0 in (3.8),
A and G being demi-closed operators, we obtain that y is a strong solution of the
problem , 7 .

In the third stage (general case), we approximate f,g € WH(0,T; L2(Ry; R"))
by {fj}th {gj}jzl - W1’°°(0, T LQ(R+; Rn)) in lel(O, T; L2(R+; Rn)), and by, €
Wh2(0,T) by {b]}j51 € W2%(0,T), k = 1,2n, b; € W"2(0,T) by {bl};>1 C
Wtee(0,T), i =2n+1,2n +m, in W12(0,T).

Fixing yo = col(ug, vp,wp) € Y with gy = col(wg,vo,wg) € D(A), we deduce
after some considerations (see also Luca [9]) that the sequence of the corresponding



10 R. LUCA EJDE-2011/78

strong solutions {y/ = col(u?,v7,w?)};>1 converges as j — oo to y = col(u, v, w),
which is a strong solution of our problem.

By system 7 we deduce gy, vzr € L¥(0,T; L?(Ry;R™)) and, using the
inequality

1222y < CUIZ" L2y + I2llz2myy),  for 2 € H*(R4),
(see Adams [1]), we get that u,, v, € L>(0,T; L?(Ry;R")). So we obtain u, v €
L>(0,T; H2(Ry;R™)). O
Theorem 3.2. Assume that (Al)ab, (A2)ac hold. If f,g € L*(0,T; L*(Ry;R™))
where T is fived positive value, by, € L*(0,T), k = 1,2n +m, ug,vo € L?(R,;R"),

wo € D(G12) N D(Ga2), then problem (1.1)), (1.2)), (1.3) has a unique weak solution
col(u,v,w) € C([0,T];Y).

Proof. By the assumptions of the theorem, it follows that yo = col(ug,vo,wp) €
D(A). We consider {y}};>1 C Y such that 7, € D(A) and g} — yo, as j — oo,
in Y. Also let the sequences {f7};>1, {¢g’};>1 € WH(0,T; L?(R;R™)) be such
that f/ — f, ¢/ — g, as j — oo, in LY(0,T;L?(R,;R")) and the sequences
{bi}jzl C WH2(0,T) be such that bi — b, as j — oo, in L2(0,T), k =1,2n + m.
Then the corresponding strong solutions 3/ = col(u?,v?,w’) € W1>(0,T;Y) of

problem (1.1)), (1.2, (1.3)), given by Theorem satisfy the inequality
, , 2 T 1/2
10 =5 Ol < =l + /([ 157(5) = B(s) )

t .
+/H%@J*%@Jﬁ@,0§t§ﬂ VileN,
0

where FJ = col(f7,¢7), 7 > 1, which leads us to the conclusion. O
Theorem 3.3. Assume that (Al)abc, (A2)ac hold. If f,g € L (Ry; L?(Ry;R™)),

loc
b € L2(Ry), k = 1,2n+m such that limy_.o f(t) = f°, limy_.oog(t) = ¢°,
strongly in L*(R;R™) and § = col(p, q,r) is the unique solution of (2.2). Then
lim; oo y(t) = 6§, strongly in Y, where y(t) = col(u(t),v(t),w(t)), t > 0 is an

arbitrary weak solution of (3.4)).

Proof. By Lemma the operator A+ B is strongly monotone and equation (2.2
has a unique solution § = col(p, q,r) € D(A). We define for any I € N the function

~

B(t), for0<t<lI

B'(t) =
0, for t > I.

—

Let yo = col(ug,vo, wg) € D(A); we denote by y(t), y'(t), t > 0 the weak solu-

tions of problem (1.1)), (1.2)), (1.3) corresponding to data {B, f, g, yo}, respectively
{B!, f, 9,90}, given by Theorem Then we have

o0 1/2
|ww—mwyswm(¢|w@mmw® CtslL (312)

Because for t > [, y' is the weak solution corresponding to B(t) = 0, by Lemma
we deduce that y!(t) — 6, as t — oo in Y, (I € N). Hence this last conclusion
with (3.12)) and the inequality

ly(®) = dlly < lly(t) = y' @)lly + lly' () = $lly
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give us that y(t) — §, as t — oo, in Y. O
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