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EXISTENCE OF CONTINUOUS POSITIVE SOLUTIONS FOR
SOME NONLINEAR POLYHARMONIC SYSTEMS OUTSIDE

THE UNIT BALL

SAMEH TURKI

Abstract. We study the existence of continuous positive solutions of the m-
polyharmonic nonlinear elliptic system

(−∆)mu + λp(x)g(v) = 0,

(−∆)mv + µq(x)f(u) = 0

in the complement of the unit closed ball in Rn (n > 2m and m ≥ 1). Here the
constants λ, µ are nonnegative, the functions f, g are nonnegative, continuous
and monotone. We prove two existence results for the above system subject to
some boundary conditions, where the nonnegative functions p, q satisfy some
appropriate conditions related to a Kato class of functions.

1. Introduction

In this article, we discuss the existence of positive continuous solutions (in the
sense of distributions) for the m-polyharmonic nonlinear elliptic system

(−∆)mu+ λp(x)g(v) = 0, x ∈ D,
(−∆)mv + µq(x)f(u) = 0, x ∈ D,

lim
x→ξ∈∂D

u(x)
(|x|2 − 1)m−1

= aϕ(ξ), lim
x→ξ∈∂D

v(x)
(|x|2 − 1)m−1

= bψ(ξ),

lim
|x|→∞

u(x)
(|x|2 − 1)m−1

= α, lim
|x|→∞

v(x)
(|x|2 − 1)m−1

= β,

(1.1)

where D is the complementary of the unit ball in Rn (n > 2m) and m is a positive
integer. The constants λ, µ are nonnegative, f, g : (0,∞) → [0,∞) are monotone
and continuous and p, q : D → [0,∞) are measurable functions. Also we fix two
nontrivial nonnegative continuous functions ϕ and ψ on ∂D and the constants
a, b, α, β are nonnegative and satisfy a+ α > 0, b+ β > 0.

Since our tools are based on potential theory approach, we denote by GB
m,n the

Green function of (−∆)m on the unit ball B in Rn (n ≥ 2) with Dirichlet boundary
conditions ( ∂

∂ν )ju = 0, 0 ≤ j ≤ m − 1 and where ∂
∂ν is the outward normal

derivative.
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Boggio [5] obtained an explicit expression for GB
m,n given by

GB
m,n(x, y) = km,n|x− y|2m−n

∫ [x,y]
|x−y|

1

(r2 − 1)m−1

rn−1
dr, (1.2)

where km,n is a positive constant and [x, y]2 = |x − y|2 + (1 − |x|2)(1 − |y|2), for
x, y ∈ B.

It is obvious that the positivity of GB
m,n holds in B but this does not hold in an

arbitrary bounded domain (see for example [8]). For m = 1, we do not have this
restriction. Putting

[x, y]2 = |x− y|2 + (|x|2 − 1)(|y|2 − 1),

for x, y ∈ D and denote by GD
m,n the Green function of (−∆)m in D with Dirichlet

boundary conditions ( ∂
∂ν )ju = 0, 0 ≤ j ≤ m−1, then GD

m,n has the same expression
defined by (1.2). That is,

GD
m,n(x, y) = km,n|x− y|2m−n

∫ [x,y]
|x−y|

1

(r2 − 1)m−1

rn−1
dr, for x, y ∈ D.

In [4], the authors proved some estimates for GD
m,n. In particular, they showed that

there exists C0 > 0 such that for each x, y, z ∈ D, we have

GD
m,n(x, z)GD

m,n(z, y)
GD

m,n(x, y)
≤ C0

[
(
ρ(z)
ρ(x)

)mGD
m,n(x, z) + (

ρ(z)
ρ(y)

)mGD
m,n(y, z)

]
,

where throughout this paper, ρ(x) = 1 − 1
|x| , for all x ∈ D. This form is called

the 3G-inequality and has been exploited to introduce the polyharmonic Kato class
K∞

m,n(D) which is defined as follows

Definition 1.1 ([4]). A Borel measurable function q in D belongs to the Kato class
K∞

m,n(D) if q satisfies

lim
α→0

(
sup
x∈D

∫
D∩B(x,α)

(
ρ(y)
ρ(x)

)mGD
m,n(x, y)|q(y)|dy

)
= 0,

lim
M→∞

(
sup
x∈D

∫
(|y|≥M)

(
ρ(y)
ρ(x)

)mGD
m,n(x, y)|q(y)|dy

)
= 0.

This class is well studied when m = 1 in [3]. As a typical example of functions
belonging to the class K∞

m,n(D), we quote an example from [4]: Let γ, ν ∈ R and q
be the function defined in D by q(x) = 1

|y|ν−γ(|y|−1)γ . Then

q ∈ K∞
m,n(D) ⇔ γ < 2m < ν.

Our main purpose in this paper is to study problem (1.1) when p and q satisfy
an appropriate condition related to the Kato class K∞

m,n(D) and to investigate the
existence and the asymptotic behavior of such positive solutions. For this aim we
shall refer to the bounded continuous solution HDϕ of the Dirichlet problem (see
[1])

∆u = 0 in D,

lim
x→ξ∈∂D

u(x) = ϕ(ξ), lim
|x|→∞

u(x) = 0,
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where ϕ is a nonnegative nontrivial continuous function on ∂D. Also, we refer to
the potential of a measurable nonnegative function f , defined in D by

Vm,nf(x) =
∫

D

GD
m,n(x, y)f(y)dy.

The outline of our article is as follows. In Section 2, we recapitulate some
properties of functions belonging to K∞

m,n(D) developed in [4] and adopted to our
interest. In Section 3, we aim at proving a first existence result for (1.1). In fact,
let a, b, α, β be nonnegative real numbers with a + α > 0, b + β > 0 and ϕ,ψ are
nontrivial nonnegative continuous functions on ∂D. Let h be the harmonic function
defined in D by h(x) = 1− 1

|x|n−2 . Let θ and ω be the functions defined in D by

θ(x) = γ(x)(αh(x) + aHDϕ(x)),

ω(x) = γ(x)(β h(x) + bHDψ(x)),

where γ(x) = (|x|2 − 1)m−1.
The functions f, g, p and q are required to satisfy the following hypotheses.
(H1) f , g : (0,∞) → [0,∞) are nondecreasing and continuous;
(H2)

λ0 := inf
x∈D

θ(x)
Vm,n(pg(ω))(x)

> 0,

µ0 := inf
x∈D

ω(x)
Vm,n(qf(θ))(x)

> 0;

(H3) The functions p and q are measurable nonnegative and satisfy

x→ p̃(x) =
p(x) g(ω(x))

γ(x)
and x→ q̃(x) =

q(x) f(θ(x))
γ(x)

belong to the Kato class K∞
m,n(D).

Then we prove the following result.

Theorem 1.2. Assume (H1)–(H3). Then for each λ ∈ [0, λ0) and each µ ∈ [0, µ0),
problem (1.1) has a positive continuous solution (u, v) that for each x ∈ D satisfies

(1− λ

λ0
)θ(x) ≤ u(x) ≤ θ(x),

(1− µ

µ0
)ω(x) ≤ v(x) ≤ ω(x).

Next, we establish a second existence result for problem (1.1) where a = b = λ =
µ = 1. Namely, we study the system

(−∆)mu+ p(x)g(v) = 0, x ∈ D (in the sense of distributions),

(−∆)mv + q(x)f(u) = 0, x ∈ D,

lim
x→ξ∈∂D

u(x)
(|x|2 − 1)m−1

= ϕ(ξ), lim
x→ξ∈∂D

v(x)
(|x|2 − 1)m−1

= ψ(ξ),

lim
|x|→∞

u(x)
(|x|2 − 1)m−1

= α, lim
|x|→∞

v(x)
(|x|2 − 1)m−1

= β.

(1.3)

To study this problem, we fix a positive continuous function φ on ∂D. We put
ρ0 = γh0, where h0 = HDφ and we assume the following hypotheses:

(H4) The functions f, g : (0,∞) → [0,∞) are nonincreasing and continuous;
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(H5) The functions p1 := p g(ρ0)
ρ0

and q1 := q f(ρ0)
ρ0

belong to the Kato class
K∞

m,n(D).
Here, we mention that the method used to prove Theorem 1.3 stated below is
different from that in Theorem 1.2. In fact, with loss of λ and µ, the boundary ∂D
will play a capital role to construct a positive and continuous solution for (1.3) by
means of a fixed point argument.

Our second existence result is the following.

Theorem 1.3. Assume (H4)–(H5). Then there exists a constant c > 1 such that
if ϕ ≥ cφ and ψ ≥ cφ on ∂D, then problem (1.3) has a positive continuous solution
(u, v) that for each x ∈ D satisfies

(|x|2 − 1)m−1(αh(x) + h0(x)) ≤ u(x) ≤ (|x|2 − 1)m−1(αh(x) +HDϕ(x)),

(|x|2 − 1)m−1(β h(x) + h0(x)) ≤ v(x) ≤ (|x|2 − 1)m−1(β h(x) +HDψ(x)).

This result is a follow up to the one obtained by Athreya [2].
For m = 1, the existence of solutions for nonlinear elliptic systems has been

extensively studied for both bounded and unbounded C1,1-domains in Rn (n ≥ 3)
(see for example [6, 7, 9, 10, 11, 12, 13, 14, 15]). The motivation for our study
comes from the results proved in [10] and which correspond to the case m = 1 in
this article. Section 4 gives some examples where hypotheses (H2) and (H3) are
satisfied and to illustrate Theorem 1.3.

In the sequel and in order to simplify our statements we denote by C a generic
positive constant which may vary from line to line and for two nonnegative functions
f and g on a set S, we write f(x) � g(x), for x ∈ S, if there exists a constant C > 0
such that g(x)/C ≤ f(x) ≤ Cg(x) for all x ∈ S. Let

C0(D) := {f ∈ C(D) : lim
|x|→1

f(x) = lim
|x|→∞

f(x) = 0}.

2. Preliminary results

In this section, we are concerned with some results related to the Kato class
K∞

m,n(D) which are useful for the proof of our main results stated in Theorems 1.2
and 1.3.

Proposition 2.1 ([4]). Let q be a function in K∞
m,n(D), then

‖q‖D := sup
x∈D

∫
D

(
ρ(y)
ρ(x)

)mGD
m,n(x, y)|q(y)|dy <∞.

To present the following Proposition, we need to denote by H the set of nonneg-
ative harmonic functions h defined in D by

h(x) =
∫

∂D

P (x, ξ)ν(dξ),

where ν is a nonnegative measure on ∂D and P (x, ξ) = |x|2−1
|x−ξ|n is the Poisson kernel

in D. From the 3G-inequality, we derive the following result.

Proposition 2.2. Let q be a nonnegative function in K∞
m,n(D). Then we have

(i)

αq := sup
x,y∈D

∫
D

GD
m,n(x, z)GD

m,n(z, y)
GD

m,n(x, y)
q(z)dz <∞;
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(ii) For any function h ∈ H and each x ∈ D, we have∫
D

GD
m,n(x, z)(|z|2 − 1)m−1h(z)q(z)dz ≤ αq(|x|2 − 1)m−1h(x).

Proof. From the 3G-inequality, there exists C0 > 0 such that for each x, y, z ∈ D,
we have

GD
m,n(x, z)GD

m,n(z, y)
GD

m,n(x, y)
≤ C0

[
(
ρ(z)
ρ(x)

)mGD
m,n(x, z) + (

ρ(z)
ρ(y)

)mGD
m,n(y, z)

]
.

This implies that αq ≤ 2C0 ‖q‖D. Then the assertion (i) holds from Proposition
2.1.

Now, we shall prove (ii). Let h ∈ H, then there exists a nonnegative measure ν
on ∂D such that

h(x) =
∫

∂D

P (x, ξ)ν(dξ). (2.1)

On the other hand, by using the transformation r2 = 1 + %(x,y)
|x−y|2 (1 − t) in (1.2),

where %(x, y) = [x, y]2 − |x− y|2 = (|x|2 − 1)(|y|2 − 1), we obtain

GD
m,n(x, y) =

km,n

2
(%(x, y))m

[x, y]n

∫ 1

0

(1− t)m−1

(1− t%(x,y)
[x,y]2 )n/2

dt.

This implies for each x, z ∈ D and ξ ∈ ∂D that

lim
y→ξ

GD
m,n(z, y)

GD
m,n(x, y)

=
(|z|2 − 1)m−1P (z, ξ)
(|x|2 − 1)m−1P (x, ξ)

.

So, it follows from Fatou’s lemma that∫
D

GD
m,n(x, z)

(|z|2 − 1)m−1P (z, ξ)
(|x|2 − 1)m−1P (x, ξ)

q(z)dz

≤ lim inf
y→ξ

∫
D

GD
m,n(x, z)GD

m,n(z, y)
GD

m,n(x, y)
q(z)dz ≤ αq.

This, together with (2.1), completes the proof. �

Proposition 2.3 ([4]). Let q ∈ K∞
m,n(D). Then the function z → (|z|−1)2m−1

|z|n−1 q(z)
is in L1(D).

Proposition 2.4. [4] Let q ∈ K∞
m,n(D) and h be a bounded function in H. Then

the function

x→
∫

D

( |y|2 − 1
|x|2 − 1

)m−1
GD

m,n(x, y)h(y) |q(y)|dy

lies in C0(D).

For a nonnegative function q ∈ K∞
m,n(D), we denote

Fq = {p ∈ K∞
m,n(D) : |p| ≤ q in D}.

Proposition 2.5 ([4]). For any nonnegative function q ∈ K∞
m,n(D), the family of

functions { ∫
D

( |y|2 − 1
|x|2 − 1

)m−1
GD

m,n(x, y)h0(y)p(y)dy, p ∈ Fq

}
is uniformly bounded and equicontinuous in D ∪ {∞}. Consequently it is relatively
compact in C(D ∪ {∞}).
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3. Proofs of main results

Proof of Theorem 1.2. Let λ ∈ [0, λ0) and µ ∈ [0, µ0). We define the sequences
(uk)k≥0 and (vk)k≥0 by

v0 = ω,

uk = θ − λVm,n(pg(vk)),

vk+1 = ω − µVm,n(qf(uk)).

We intend to prove that for all k ∈ N,

0 < (1− λ

λ0
)θ ≤ uk ≤ uk+1 ≤ θ, (3.1)

0 < (1− µ

µ0
)ω ≤ vk+1 ≤ vk ≤ ω. (3.2)

Note that from the definition of λ0 and µ0 we have

λ0Vm,n(pg(ω)) ≤ θ, (3.3)

µ0Vm,n(qf(θ)) ≤ ω. (3.4)

From (3.3) we have

u0 = θ − λVm,n(pg(v0)) ≥ (1− λ

λ0
)θ > 0.

Then v1 − v0 = −µVm,n(qf(u0)) ≤ 0. Since g is nondecreasing we obtain

u1 − u0 = λVm,n(p(g(v0)− g(v1))) ≥ 0.

Now, since v0 is positive and f is nondecreasing,

v1 ≥ ω − µVm,n(q f(θ)).

We deduce from (3.4) that

v1 ≥ (1− µ

µ0
)ω > 0.

This implies that u1 ≤ θ. Finally, we obtain that

0 < (1− λ

λ0
)θ ≤ u0 ≤ u1 ≤ θ,

0 < (1− µ

µ0
)ω ≤ v1 ≤ v0 ≤ ω.

By induction, we suppose that (3.1) and (3.2) hold for k. Since f is nondecreasing
and uk+1 ≤ θ, we have

vk+2 − vk+1 = µVm,n(q(f(uk)− f(uk+1))) ≤ 0,

and

vk+2 = ω − µVm,n(q f(uk+1))

≥ ω − µVm,n(qf(θ))

≥ (1− µ

µ0
)ω.
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To reach the last inequality, we use (3.4). Then

0 < (1− µ

µ0
)ω ≤ vk+2 ≤ vk+1 ≤ ω.

Now, using that g is nondecreasing we have

uk+2 − uk+1 = λVm,n(p(g(vk+1)− g(vk+2)) ≥ 0.

Since vk+2 > 0, we obtain

0 < (1− λ

λ0
)θ ≤ uk+1 ≤ uk+2 ≤ θ.

Therefore, the sequences (uk)k≥0 and (vk)k≥0 converge respectively to two functions
u and v satisfying

(1− λ

λ0
)θ ≤ u ≤ θ,

(1− µ

µ0
)ω ≤ v ≤ ω.

We claim that

u = θ − λVm,n(p g(v)), (3.5)

v = ω − µVm,n(q f(u)). (3.6)

Since vk ≤ ω for all k ∈ N, using hypothesis (H3) and the fact that g is nondecreas-
ing, there exists p̃ ∈ K∞

m,n(D) such that

pg(v) ≤ pg(ω) ≤ p̃ γ, (3.7)

and so p|g(vk)− g(v)| ≤ 2p̃γ for all k ∈ N. From Proposition 2.4, we obtain

Vm,n(p̃ γ) ∈ C(D), (3.8)

and by Lebesgue’s theorem we deduce that

lim
k→∞

Vm,n(pg(vk)) = Vm,n(pg(v)).

So, letting k → ∞ in the equation uk = θ − λVm,n(pg(vk)), we obtain (3.5).
Similarly, we obtain (3.6).

Next, we claim that (u, v) satisfies

(−∆)mu+ λpg(v) = 0,

(−∆)mv + µqf(u) = 0.
(3.9)

Indeed, using (3.7) and Proposition 2.3, we obtain pg(v) ∈ L1
loc(D). Using again

(3.7), it follows from (3.8) that

Vm,n(pg(v)) ∈ C(D).

Which implies that
Vm,n(pg(v)) ∈ L1

loc(D).

Similarly
qf(u), Vm,n(qf(u)) ∈ L1

loc(D).

Now, applying the operator (−∆)m in both (3.5) and (3.6), we deduce that (u, v)
is a positive solution (in the sense of distributions) of (3.9).
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On the other hand, using Proposition 2.4 and (3.7), we deduce that

x→ Vm,n(pg(v))(x)
(|x|2 − 1)m−1

∈ C0(D)

and

x→ Vm,n(qf(u))(x)
(|x|2 − 1)m−1

∈ C0(D).

Thus, we deduce from (3.5) and (3.6) that

lim
x→ξ∈∂D

u(x)
(|x|2 − 1)m−1

= aϕ(ξ), lim
x→ξ∈∂D

v(x)
(|x|2 − 1)m−1

= bψ(ξ),

lim
|x|→∞

u(x)
(|x|2 − 1)m−1

= α, lim
|x|→∞

v(x)
(|x|2 − 1)m−1

= β.

Furthermore, the continuity of θ, ω, Vm,n(pg(v)) and Vm,n(qf(u)) imply that (u, v) ∈
(C(D))2. This completes the proof. �

Proof of Theorem 1.3. Put c = 1 +αp1 +αq1 , where αp1 and αq1 are the constants
given in Proposition 2.2 and associated respectively to the functions p1 and q1 given
in hypothesis (H5). Suppose that ϕ ≥ cφ and ψ ≥ cφ. Then it follows from the
maximum principle that for each x ∈ D, we have

HDϕ(x) ≥ c h0(x), (3.10)

HDψ(x) ≥ c h0(x). (3.11)

We consider the non-empty closed convex set

Λ = {w ∈ C(D ∪ {∞}) : h0 ≤ w ≤ HDϕ}.
We define the operator T defined on Λ as

Tw = HDϕ−
Vm,n(pg[γ(βh+HDψ)− Vm,n(qf(w̃))])

γ
,

where w̃(x) = γ(x)(w(x) + αh(x)) = (|x|2 − 1)m−1(w(x) + αh(x)). We need to
check that the operator T has a fixed point w in Λ.

First, we prove that TΛ is relatively compact in C(D ∪ {∞}). Let w ∈ Λ, then
we have w + αh ≥ h0.
Since f is nonincreasing, it follows from Proposition 2.2 that

Vm,n(qf(w̃)) ≤ Vm,n(qf(γ h0)) = Vm,n(qf(ρ0)) ≤ αq1 ρ0.

Which implies

γ(βh+HDψ)− Vm,n(qf(w̃)) ≥ γ(βh+HDψ − αq1 h0). (3.12)

According to (3.11), we obtain

γ(βh+HDψ)− Vm,n(qf(w̃)) ≥ γ(βh+ h0) ≥ ρ0. (3.13)

Hence
Tw ≤ HDϕ. (3.14)

Also, since g is nonincreasing, we obtain

pg(γ(βh+HDψ)− Vm,n(qf(w̃))) ≤ pg(ρ0). (3.15)

So it follows that for each y ∈ D, we have
p(y)g[γ(y)(βh(y) +HDψ(y))− Vm,n(qf(w̃))(y)]

γ(y)
≤ p1(y)h0(y). (3.16)
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Therefore, we deduce from (H5) and Proposition 2.5 that the family of functions{
x→ Vm,n(pg[γ(βh+HDψ)− Vm,n(qf(w̃))])(x)

γ(x)
, w ∈ Λ

}
is relatively compact in C(D ∪ {∞}). Moreover, since HDϕ ∈ C(D ∪ {∞}), we
have the set TΛ is relatively compact in C(D ∪ {∞}).

Next, we claim that TΛ ⊂ Λ. Indeed, let ω ∈ Λ, by using (3.15), (H5) and
Proposition 2.2, we have

Vm,n(pg[γ(βh+HDψ)− Vm,n(qf(w̃))])(x)
γ(x)

≤ αp1 h0(x),

for each x ∈ D. According to (3.10), we obtain

Tw(x) ≥ (1 + αq1)h0(x) ≥ h0(x), for each x ∈ D.

This, together with (3.14), proves that Tω ∈ Λ.
Now, we prove the continuity of the operator T in Λ with respect to the supre-

mum norm. Let (wk)k∈N be a sequence in Λ which converges uniformly to a function
w ∈ Λ. Then, for each x ∈ D, we have

|Twk(x)− Tw(x)| ≤ Vm,n(p|g(sk)− g(s)|)(x)
γ(x)

, (3.17)

where sk = γ(βh + HDψ) − Vm,n(qf(γ(wk + αh))) and s = γ(βh + HDψ) −
Vm,n(qf(γ(w + αh))). Using the fact that g is nonincreasing and (3.12) , we have

p(g(sk) + g(s)) ≤ 2pg(γ(βh+HDψ − αq1h0))

≤ 2pg(ρ0) = 2p1ρ0.

To reach the last inequality we use (3.11).
Since from (H5) and Proposition 2.4, the function

x→
∫

D

(
|y|2 − 1
|x|2 − 1

)m−1GD
m,n(x, y)h0(y) p1(y)dy

is in C0(D), also using the fact that

p|g(sk)− g(s)| ≤ p(g(sk) + g(s)),

it follows from (3.17) and the dominated convergence theorem that for each x ∈ D,
the sequence (Twk(x)) converges to Tw(x) as k → ∞. Since TΛ is relatively
compact in C(D ∪ {∞}), we deduce that the pointwise convergence implies the
uniform convergence; that is,

‖Twk − Tw‖∞ → 0 as k →∞.

This shows that T is a continuous mapping from Λ into itself. Then by using
Schauder fixed point theorem, there exists w ∈ Λ such that Tw = w. Now, for each
x ∈ D, put

u(x) = (|x|2 − 1)m−1(w(x) + αh(x)), (3.18)

v(x) = (|x|2 − 1)m−1(βh(x) +HDψ(x))− Vm,n(qf(u))(x). (3.19)

Then

u(x)− α(|x|2 − 1)m−1h(x) = (|x|2 − 1)m−1HDϕ(x)− Vm,n(pg(v))(x). (3.20)
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As the remainder of the proof, we aim to show that (u, v) is the desired solution of
problem (1.3). By using respectively (3.18), (3.19) and (3.13), clearly (u, v) satisfies
for each x ∈ D,

h0(x) + αh(x) ≤ u(x)
(|x|2 − 1)m−1

≤ HDϕ(x) + αh(x) (3.21)

and

h0(x) + βh(x) ≤ v(x)
(|x|2 − 1)m−1

≤ HDψ(x) + βh(x).

On the other hand, from (3.18), we have u(x) ≥ ρ0(x) for each x ∈ D. Since f is
nonincreasing, this implies

qf(u) ≤ qf(ρ0) = q1ρ0.

Note that from (H5) we have q1 is in the Kato class K∞
m,n(D), so it follows from

Proposition 2.3 that qf(u) ∈ L1
loc(D) and from Proposition 2.2 that Vm,n(q f(u)) ∈

L1
loc(D).
Similarly, we obtain pg(v) ∈ L1

loc(D) and Vm,n(pg(v)) ∈ L1
loc(D). Then applying

the elliptic operator (−∆)m in both (3.18) and (3.19), we obtain clearly that (u, v)
is a positive continuous solution (in the distributional sense) of

(−∆)mu+ p(x)g(v) = 0, x ∈ D,
(−∆)mv + q(x)f(u) = 0, x ∈ D.

Finally, from (3.20), (3.16), Proposition 2.4 and the fact that HDϕ = ϕ on ∂D, we
conclude that

lim
x→ξ∈∂D

u(x)
(|x|2 − 1)m−1

= ϕ(ξ).

Also, since lim|x|→∞HDϕ(x) = lim|x|→∞ h0(x) = 0, it follows from (3.21) that

lim
|x|→∞

u(x)
(|x|2 − 1)m−1

= α.

The proof is complete by using the same arguments for v. �

4. Examples

In this Section, we give some examples where hypotheses (H2) and (H3) are
satisfied.

Example 4.1. Let α = 1, a = 0, β = 1 and b = 0. Let f and g be two nonnegative
nondecreasing bounded continuous functions on (0,∞). Assume that p and q are
two nonnegative measurable functions on D satisfying

p(x) ≤ 1
|x|ν−κ(|x| − 1)κ

, q(x) ≤ 1
|x|ν−κ(|x| − 1)κ

,

with κ < m and ν > 2.

Since |x|+ 1 � |x|, for each x ∈ D, then we have

p(x) g(ω(x))
(|x|2 − 1)m−1

≤ C

|x|ν−κ+m−1(|x| − 1)m−1+κ
,

q(x) f(θ(x))
(|x|2 − 1)m−1

≤ C

|x|ν−κ+m−1(|x| − 1)m−1+κ
.
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Using the fact that κ < m and ν > 2, it follows that the functions

x→ p(x) g(ω(x))
(|x|2 − 1)m−1

and x→ q(x) f(θ(x))
(|x|2 − 1)m−1

are in K∞
m,n(D). Now, since for each x ∈ D, we have

h(x) = 1− 1
|x|n−2

� |x| − 1
|x|

, (4.1)

θ(x) = (|x|2 − 1)m−1h(x) = ω(x),

then there exists C > 0 such that

p(x)g(ω(x)) ≤ C

|x|ν−κ+m−2(|x| − 1)m+κ
ω(x), for each x ∈ D.

So, we deduce from the choice of ν, κ that there exists p0 ∈ K∞
m,n(D) such that

p(x)g(ω(x)) ≤ p0(x)ω(x).

Which implies from Proposition 2.2 that Vm,n(p g(ω)) ≤ C ω. Hence λ0 > 0.
Similarly, we have µ0 > 0.

Example 4.2. Let α = 1, a = 0, β = 0 and b = 1. Assume that ψ ≥ c0 > 0 on ∂D.
Let f and g be two continuous and nondecreasing functions on (0,∞) satisfying for
t ∈ (0,∞)

0 ≤ g(t) ≤ η t and 0 ≤ f(t) ≤ ξ t, (4.2)
where η and ξ are positive constants. Suppose furthermore that p and q are non-
negative measurable functions on D such that

p(x) ≤ 1
|x|δ−σ(|x| − 1)σ

, q(x) ≤ 1
|x|s−r(|x| − 1)r

,

where

σ + 1 < 2m < δ + n− 2, (4.3)

r − 1 < 2m < 2− n+ s. (4.4)

Here θ(x) = (|x|2 − 1)m−1h(x) and ω(x) = (|x|2 − 1)m−1HDψ(x).

Since ψ ≥ c0 > 0, it follows that

HDψ(x) � HD1(x) =
1

|x|n−2
, for each x ∈ D. (4.5)

Then, from (4.2), we have

p(x) g(ω(x))
(|x|2 − 1)m−1

≤ ηp(x)HDψ(x) ≤ C

|x|n−2+δ−σ(|x| − 1)σ
. (4.6)

Also, using (4.1), we have

q(x)f(θ(x))
(|x|2 − 1)m−1

≤ ξq(x)h(x) ≤ C

|x|1+s−r(|x| − 1)r−1
.

This, together with (4.3), (4.4) and (4.6), implies that (H3) is satisfied.
Now, using (4.1), (4.2) and (4.5), for each x ∈ D, we have

p(x)g(ω(x)) ≤ ηp(x)ω(x) ≤ C p(x)(|x|2− 1)m−1HD1(x) ≤ C(|x|2 − 1)m−1 h(x)
|x|n−3+δ−σ(|x| − 1)σ+1

.
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So it follows from (4.3) that there exists p2 ∈ K∞
m,n(D) such that p g(ω) ≤ p2 θ.

Hence, it follows from Proposition 2.2 that Vm,n(p g(ω)) ≤ Cθ, which implies that
λ0 > 0.

Using again (4.1), we obtain, for each x ∈ D,

q(x)h(x) ≤ C

|x|1+s−r(|x| − 1)r−1
.

According to (4.2) and (4.4), there exists q2 ∈ K∞
m,n(D) satisfying

qf(θ) ≤ Cγq2HD1.

Finally, we deduce from (4.5) and Proposition 2.2 that Vm,n(q f(θ)) ≤ Cω. This
implies that µ0 > 0.

We end this section by giving an example as an application of Theorem 1.3.

Example 4.3. Let τ > 0, ε > 0, g(t) = t−τ and f(t) = t−ε. Let p and q be two
nonnegative measurable functions in D satisfying

p(x) ≤ 1
(|x| − 1)l−(1+τ)m|x|ϑ−l+(1+τ)(n−m)

,

q(x) ≤ 1
(|x| − 1)k−(1+ε)m|x|ζ−k+(1+ε)(n−m)

,

where l < 2m < ϑ and k < 2m < ζ. Let φ be a nonnegative nontrivial continuous
function on ∂D and put ρ0(x) = (|x|2 − 1)m−1HDφ(x) for x ∈ D.

Since for x ∈ D, we have

HDφ(x) ≥ C
|x| − 1

(|x|+ 1)n−1
.

Then we obtain for each x ∈ D that

p1(x) = p(x)ρ−τ−1
0 (x) ≤ C

(|x| − 1)l|x|ϑ−l
.

Similarly, we have

q1(x) ≤
C

(|x| − 1)k|x|ζ−k
, x ∈ D.

Hence, hypothesis (H5) is satisfied. So there exists c > 1 such that if ϕ and ψ
are two nonnegative nontrivial continuous functions on ∂D satisfying ϕ ≥ cφ and
ψ ≥ cφ on ∂D, then for each α ≥ 0 and β ≥ 0, problem

(−∆)mu+ p(x) v−τ = 0, x ∈ D, (in the sense of distributions),

(−∆)mv + q(x)u−ε = 0, x ∈ D,

lim
x→s∈∂D

u(x)
(|x|2 − 1)m−1

= ϕ(s), lim
x→s∈∂D

v(x)
(|x|2 − 1)m−1

= ψ(s),

lim
|x|→∞

u(x)
(|x|2 − 1)m−1

= α, lim
|x|→∞

v(x)
(|x|2 − 1)m−1

= β,

has a positive continuous solution (u, v) satisfying for each x ∈ D,

(|x|2 − 1)m−1(αh(x) + h0(x)) ≤ u(x) ≤ (|x|2 − 1)m−1(αh(x) +HDϕ(x)),

(|x|2 − 1)m−1(β h(x) + h0(x)) ≤ v(x) ≤ (|x|2 − 1)m−1(β h(x) +HDψ(x)).
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