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FUNDAMENTAL SOLUTIONS TO THE p-LAPLACE EQUATION
IN A CLASS OF GRUSHIN VECTOR FIELDS

THOMAS BIESKE

Abstract. We find the fundamental solution to the p-Laplace equation in a
class of Grushin-type spaces. The singularity occurs at the sub-Riemannian
points, which naturally corresponds to finding the fundamental solution of a
generalized Grushin operator in Euclidean space. We then use this solution to
find an infinite harmonic function with specific boundary data and to compute
the capacity of annuli centered at the singularity.

1. Motivation

The p-Laplace equation is the model equation for nonlinear potential theory.
The Euclidean results of [9] can be extended into a class of sub-Riemannian spaces
possessing an algebraic group law, called Carnot groups [8]. Fundamental solu-
tions to the p-Laplace equation in a subclass of Carnot groups called groups of
Heisenberg-type have been found in [6, 8]. The exploration of the p-Laplace equa-
tion in sub-Riemannian spaces without an algebraic group law is currently a topic
of interest. In this paper, we will find the fundamental solution to the p-Laplace
equation for 1 < p <∞ in a class of Grushin-type spaces. The singularity occurs at
the sub-Riemannian points, which naturally corresponds to finding the fundamental
solution of a generalized Grushin operator in Euclidean space.

2. Grushin-type spaces

Before presenting the main theorem, we recall the construction of such spaces and
their main properties. We begin with Rn, possessing coordinates (x1, x2, . . . , xn)
and vector fields

Xi = ρi(x1, x2, . . . , xi−1)
∂

∂xi

for i = 2, 3, . . . , n where ρi(x1, x2, . . . , xi−1) is a (possibly constant) real-valued
function. We decree that ρ1 ≡ 1 so that

X1 =
∂

∂x1
.
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A quick calculation shows that when i < j and ρj(x1, x2, . . . , xj−1) is differentiable,
the Lie bracket is given by

Xij ≡ [Xi, Xj ] = ρi(x1, x2, . . . , xi−1)
∂ρj(x1, x2, . . . , xj−1)

∂xi

∂

∂xj
. (2.1)

If the ρi’s are polynomials, at each point there is a finite number of iterations of
the Lie bracket so that ∂

∂xi
has a non-zero coefficient. This is easily seen for X1

and X2, and the result is obtained inductively for Xi. (It is noted that the number
of iterations necessary is a function of the point.) It follows that Hörmander’s
condition is satisfied by such vector fields.

We may further endow Rn with an inner product (singular where the polynomials
vanish) so that the collection {Xi} forms an orthonormal basis. This produces a
sub-Riemannian manifold that we shall call gn, which is also the tangent space
to a generalized Grushin-type space Gn. Points in Gn will also be denoted by
x = (x1, x2, . . . , xn).

Though Gn is not a Lie group, it is a metric space with the natural metric being
the Carnot-Carathéodory distance, which is defined for points x and y as follows:

dC(x, y) = inf
Γ

∫ 1

0

‖γ′(t)‖ dt .

Here Γ is the set of all curves γ such that γ(0) = x, γ(1) = y and

γ′(t) ∈ span{{Xi(γ(t))}ni=1}.

In the case of polynomials, Chow’s theorem (see, for example, [1]) states any two
points can be joined by such a curve. In the non-polynomial case, one can explic-
itly construct horizontal curves of finite length connecting any two points. This
means dC(x, y) is an honest metric. Using this metric, we can define a Carnot-
Carathéodory ball of radius r centered at a point x0 by

BC(x0, r) = {p ∈ Gn : dC(x, x0) < r}

and similarly, we shall denote a bounded domain in Gn by Ω. The Carnot-
Carathéodory metric behaves differently at points where the functions ρi vanish.
Fixing a point x0 where the ρi are sufficiently differentiable, consider the n-tuple
rx0 = (r1x0

, r2x0
, . . . , rnx0

) where rix0
is the minimal number of Lie bracket iterations

required to produce

[Xj1 , [Xj2 , [· · · [Xjri
x0
, Xi] · · · ](x0) 6= 0 .

Note that though the minimal length is unique, the iteration used to obtain that
minimum is not. Note also that

ρi(x0) 6= 0 ↔ rix0
= 0 .

Using [1, Theorem 7.34] we obtain the local estimate at x0

dC(x0, x) ∼
n∑
i=1

|xi − x0
i |

1
1+ri

x0 . (2.2)

Given a smooth function f on Gn, we define the horizontal gradient of f as

∇0f(x) = (X1f(x), X2f(x), . . . , Xnf(x))
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and the symmetrized second order (horizontal) derivative matrix by

((D2f(x))?)ij =
1
2
(XiXjf(x) +XjXif(x))

for i, j = 1, 2, . . . n.

Definition 2.1. The function f : Gn → R is said to be C1
sub if Xif is continuous

for all i = 1, 2, . . . , n. Similarly, the function f is C2
sub if XiXjf is continuous for

all i, j = 1, 2, . . . , n.

Remark 2.2. We note that Euclidean C1 functions are C1
sub functions, but the

class of C1
sub functions is larger than the class of Euclidean C1 functions. For

example, when n = 2 and ρ2(x1) = x1, we have
√
x2 is C1

sub at the origin, but is
clearly not Euclidean C1 at the origin. The interested reader is directed to [1] for
a more complete discussion.

Using these derivatives, we consider two main operators on C2
sub functions called

the p-Laplacian

∆pf = div(‖∇0f‖p−2∇0f) =
n∑
i=1

Xi(‖∇0f‖p−2Xif)

defined for 1 < p <∞ and the infinite Laplacian

∆∞f =
n∑

i,j=1

XifXjfXiXjf = 〈∇0f, (D2f)?∇0f〉.

For a more in-depth study of Grushin-type spaces, the reader is directed to
[1, 2, 3] and the references therein.

3. The co-area formula and measure theory

We begin by fixing m,n ∈ N and k, c ∈ R so that m < n, c 6= 0, and k ≥ 0. We
also fix a vector a = (a1, a2, . . . , am) ∈ Rm and then consider the following vector
fields:

Xi =
∂

∂xi
for i = 1 to m

Xj = c
( m∑
i=1

(xi − ai)2
)k/2 ∂

∂xj
for j = m+ 1 to n.

(3.1)

Note that this choice corresponds to ρi(x1, x2, . . . , xi−1) = 1 for 1 ≤ i ≤ m and
ρj(x1, x2, . . . , xj−1) = c(

∑m
i=1(xi−ai)2)k/2 form+1 ≤ j ≤ n. Additionally, if k = 0

and c = 1, we have the Euclidean space Rn. Note also that in local coordinates,
the 2-Laplacian operator is given by

∆2 =
m∑
i=1

∂2

∂x2
i

+
n∑

j=m+1

c2
( m∑
i=1

(xi − ai)2
)k ∂2

∂x2
j

.

In place of Fubini’s Theorem for iterated integrals, we will make use of the following
Co-Area Formula in the Euclidean context [7], which was extended to the Grushin
case via [10, Theorem 4.2].
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Theorem 3.1. Let Ω ⊂ Gn be a bounded domain, and let ψ ∈ C1
sub(Ω) be a smooth,

real-valued function which extends continuously to ∂Ω. For convenience, we write
∇ for the Euclidean gradient on Gn = Rn. Then for any function g ∈ L1(Ω)∫∫

Ω

g‖∇ψ‖ dLn =
∫ ∞

0

∫
ψ−1{r}

g dHdr, (3.2)

where dLn denotes Lebesgue n-measure on Ω, and dH denotes Hausdorff (n − 1)-
measure on ψ−1({r}).

Corollary 3.2. As above, the theorem also holds for continuous functions ψ which
are smooth everywhere except at isolated points.

We now consider a point x0 ∈ Gn with coordinates x0 = (a1, . . . , am, bm+1, . . . , bn)
and a non-negative, continuous radial function ψ : Rn → R that is smooth when
x0 6= x and with ψ(x0) = 0. The following notation is suggestive for the inverse
images of ψ.

BR(x0) = ψ−1([0, R)) = {x ∈ Ω : ψ(x) < R},
∂BR(x0) = ψ−1({R}) = {x ∈ Ω : ψ(x) = R}.

The x0 is omitted when it is clear from the context. Since ‖∇0ψ‖ . ‖∇ψ‖ and
p > 1, we may apply the Co-Area Formula to the well-defined function

g =

{
(‖∇0ψ‖p/‖∇ψ‖) · ‖∇ψ‖ ‖∇ψ‖ 6= 0
0 ‖∇ψ‖ = 0

to obtain the following result.

Proposition 3.3. With the hypotheses as above, let V be an absolutely continuous
measure to Ln with Radon-Nikodym derivative ‖∇0ψ‖p = [dV/dLn]. Then for
sufficiently small R > 0,

V(BR) =
∫
BR

dV =
∫ R

0

∫
∂Br

‖∇0ψ‖p

‖∇ψ‖
dHdr (3.3)

In light of the equality in (3.3), we see that the measure space (Gn,V) is globally
Ahlfors Q-regular with respect to balls centered at x0. In particular, for R > 0,

V(BR) = σpR
Q (3.4)

where Q = m+ (k + 1)(n−m) = k(n−m) + n and σp = V(B1) is a fixed positive
constant.

For technical purposes we proceed to study the boundary behavior of precompact
domains Ω. This now motivates the following definition.

Definition 3.4. For small values R > 0, define a measure S on ∂BR as

S(∂BR) =
∫
∂BR

dS =
∫
∂BR

‖∇0ψ‖p

‖∇ψ‖
dH.

In particular, S is absolutely continuous with respect to the Hausdorff (n − 1)-
measure H. Using previous results, in particular, the fact that ψ is smooth away
from x0, we now conclude:

Corollary 3.5. (1) S is locally Ahlfors (Q− 1)-regular and

S(∂BR) = QσpR
Q−1. (3.5)
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(2) Let ϕ be a continuous and integrable function on BR. Then as R→ 0,

R1−Q

Qσp

∫
∂BR

ϕdS → ϕ(x0) (3.6)

Sketch of Proof. Equation (3.5) follows immediately from differentiating both Equa-
tions (3.3) and (3.4). Since S is absolutely continuous with respect to Hausdorff
(n− 1)-measure H, it follows that S is Borel regular. As a result, Equation (3.6) is
the analogue of the Lebesgue Density Theorem. �

4. The p-Laplace equation

In this section, we compute the fundamental solution of the p-Laplacian for
the previously-defined vector fields (3.1) and for 1 < p < ∞. We then use these
formulas to find the explicit formula for a solution to the Dirichlet problem with
specific boundary data. The following theorem generalizes [4] and is the Grushin
analog of results in the class of Carnot groups known as groups of Heisenberg-type
[6, 8].

Theorem 4.1. Let x0 = (a1, a2, . . . , am, bm+1, bm+2, . . . , bn) be an arbitrary fixed
point. Consider the following quantities, for 1 < p <∞:

w =
Q− p

(2k + 2)(1− p)
α =

Q− p

1− p

h(x1, x2, . . . , xn) = c2
( m∑
i=1

(xi − ai)2
)k+1

+ (k + 1)2
n∑

j=m+1

(xj − bj)2

f(x1, x2, . . . , xn) = [h(x1, x2, . . . , xn)]w

ψ(x1, x2, . . . , xn) = [h(x1, x2, . . . , xn)]
1

2k+2

σp =
∫
B1

‖∇0ψ‖p dLn

C1 = α−1(Qσp)
1

1−p C2 = (QσQ)
1

1−Q .

Then, for the constants C1 and C2 as above,
∆pC1f(x1, x2, . . . , xn) = δx0 when p 6= Q

∆p(C2 logψ(x1, x2, . . . , xn)) = δx0 when p = Q
(4.1)

in the sense of distributions.

Proof. We first comment that for the sake of rigor, we should invoke the regular-
ization of h given by

hε(x1, x2, . . . , xn) = c2
( m∑
i=1

(xi − ai)2 + ε2
)k+1

+ (k + 1)2
n∑

j=m+1

(xj − bj)2

for ε > 0 and letting ε → 0. However, we shall proceed formally. Suppressing the
variables (x1, x2, . . . , xn), and letting

Σ =
m∑
i=1

(xi − ai)2

we compute for p 6= Q:

Xif = αhw−1c2(xi − ai)Σk for i = 1, 2, . . . ,m
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Xjf = cαhw−1Σ
k
2 (k + 1)(xj − bj) for j = m+ 1, . . . , n

‖∇0f‖2 = c2α2h2w−1Σk

‖∇0f‖p−2 = |cα|p−2hw(p−2)− p−2
2 Σ

k(p−2)
2 .

We then are able to compute, for i = 1, 2, . . . ,m,

‖∇0f‖p−2Xif = α|α|p−2|c|phw(p−1)− p
2 Σ

kp
2 (xi − ai)

and for j = m+ 1,m+ 2, . . . , n,

‖∇0f‖p−2Xjf = α|α|p−2c|c|p−2hw(p−1)− p
2 Σ

kp
2 −

k
2 (k + 1)(xj − bj).

Setting

Dp ≡
∆pf

α|α|p−2|c|p
and Υ = w(p− 1)− p

2
we can then compute

Dp =
m∑
i=1

hΥΣ
kp
2 +

m∑
i=1

hΥ(kp)Σ
kp−2

2 (xi − ai)2

+
m∑
i=1

ΥhΥ−12c2(k + 1)Σ
kp
2 +k(xi − ai)2

+
n∑

j=m+1

hΥ(k + 1)Σ
kp
2 +

n∑
j=m+1

2ΥhΥ−1Σ
kp
2 (k + 1)3(xj − bj)2

= hΥ−1Σ
kp
2

(
mh+ (kp)h+ (k + 1)(n−m)h

+
(
α(p− 1)− p(k + 1)

)(
c2Σk+1 + (k + 1)2

n∑
j=m+1

(xj − bj)2
))

= hΥΣ
kp
2

(
α(p− 1)− p(k + 1) +m+ (kp) + (k + 1)(n−m)

)
= hΥΣ

kp
2 ((p−Q)− p+Q) = 0.

Note that these computations are valid wherever the function f is smooth and
in particular, these are valid away from the point x0. We next note that

‖∇0f‖p−1 ∼ ψ1−Q

and so we conclude that ‖∇0f‖p−1 is locally integrable on Gn with respect to
Lebegue measure. We then consider φ ∈ C∞0 with compact support in the ball

BR = {x : ψ(x) < R}.

Let 0 < r < R be given so that Br ⊂ BR. In the annulus A := BR \ Br we have,
via the Leibniz rule,

div(φ‖∇0f‖p−2∇0f) = φdiv(‖∇0f‖p−2∇0f) + ‖∇0f‖p−2〈∇0f,∇0φ〉
= 0 + ‖∇0f‖p−2〈∇0f,∇0φ〉.

Let Ln and H be the measures from (3.2) and recall

Σ ≡
m∑
j=1

(xi − ai)2.
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Applying Stokes’ Theorem,∫
A
‖∇0f‖p−2〈∇0f,∇0φ〉dLn

=
∫
A

div(φ‖∇0f‖p−2∇0f)dLn

=
∫
A

( m∑
i=1

Xi[φ‖∇0f‖p−2Xif ] + cΣ
k
2

n∑
j=m+1

∂

∂xj

(
φ‖∇0f‖p−2Xjf

))
dLn

=
∫
A

( m∑
i=1

Xi[φ‖∇0f‖p−2Xif ] +
n∑

j=m+1

∂

∂xj

(
cΣ

k
2 φ‖∇0f‖p−2Xjf

))
dLn

=
∫
A

diveucl



φ‖∇0f‖p−2X1f
...

φ‖∇0f‖p−2Xmf

cΣ
k
2 φ‖∇0f‖p−2Xm+1f

...
cΣ

k
2 φ‖∇0f‖p−2Xnf


dLn

=
∫
∂A

1
‖ν‖

(
φ‖∇0f‖p−2

m∑
i=1

Xifνi + cΣ
k
2 φ‖∇0f‖p−2

n∑
j=m+1

Xjfνj

)
dH

= −
∫
∂Br

1
‖ν‖

(
φ‖∇0f‖p−2

m∑
i=1

Xifνi + cΣ
k
2 φ‖∇0f‖p−2

n∑
j=m+1

Xjfνj

)
dH

where ν is the outward Euclidean normal of A. Recalling that

ψ(x1, x2, . . . , xn) = [h(x1, x2, . . . , xn)]1/(2k+2),

and that νj = ∂ψ
∂xj

, we may proceed with the computation,∫
A
‖∇0f‖p−2〈∇0f,∇0φ〉dLn

= −
∫
∂Br

αψα−1

‖ν‖
φ‖∇0ψ

α‖p−2
( m∑
i=1

(
∂ψ

∂xi
)2 + c2Σk

n∑
j=m+1

(
∂ψ

∂xj
)2

)
dH

= −
∫
∂Br

αψα−1

‖ν‖
φ‖∇0ψ‖p−2|α|p−2ψ(p−2)(α−1)

(
‖∇0ψ‖2

)
dH

= −
∫
∂Br

|α|p−2αψ(p−1)(α−1)

‖ν‖
φ‖∇0ψ‖pdH.

Recall that by definition, ψ ≡ r on ∂Br. We then have∫
A
‖∇0f‖p−2〈∇0f,∇0φ〉dLn = −|α|p−2αr1−Q

∫
∂Br

φ‖∇0ψ‖p

‖ν‖
dH.

Letting r → 0, we apply (3.6) and obtain∫
A
‖∇0f‖p−2〈∇0f,∇0φ〉dLn → −|α|p−2α(Qσp)φ(x0). (4.2)

We then obtain the case for p 6= Q. The case of p = Q is similar and left to the
reader. �
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It was shown in [2] and [3] that in Grushin-type spaces, viscosity infinite har-
monic functions are limits of weak p-harmonic functions as p tends to infinity. This
motivates the following corollary.

Corollary 4.2. The function ψ, as defined above, is infinite harmonic in the space
Gn \ {x0}.

Proof. We use the formula that for a smooth function u,

∆∞u =
1
2
∇0u · ∇0‖∇0u‖2.

Computing as in the proof of the Theorem, we have

‖∇0ψ‖2 = c2Σkh
−2k
2k+2 .

Thus we obtain for i = 1, 2, . . . ,m,

Xi‖∇0ψ‖2 = 2kc2h
−2k
2k+2−1Σk−1(xi − ai)

(
h− c2Σk+1

)
and for j = m+ 1,m+ 2, . . . , n,

Xj‖∇0ψ‖2 = −2kc3h
−2k
2k+2−1Σ

3k
2 (k + 1)(xj − bj)

so that using the derivatives as in the proof of the Theorem,

∆∞ψ =
m∑
i=1

2kc4h
−4k−1
2k+2 −1Σ2k−1(xi − ai)2

(
h− c2Σk+1

)
− 2kc4h

−4k−1
2k+2 −1(k + 1)2Σ2k

n∑
j=m+1

(xj − bj)2

= 2kc4h
−4k−1
2k+2 −1Σ2k

(
h− c2Σk+1 − (k + 1)2

n∑
j=m+1

(xj − bj)2
)

= 2kc4h
−4k−1
2k+2 −1Σ2k × (0).

�

Using the existence-uniqueness of viscosity infinite harmonic functions [2, 3] and
the fact that absolute minimizers in Grushin spaces are viscosity infinite harmonic
functions and enjoy comparison with cones [5], we conclude the following corollary.

Corollary 4.3. Let 0 < s ∈ R. Define the function Ψs : ∂Bs(x0) ∪ {x0} → R by

Ψs(x1, x2, . . . , xn) =

{
s on ∂Bs(x0)
0 at x0

Then s · ψ is the unique absolute minimizer of Ψ into the ball Bs(x0). In addition,
s · ψ enjoys comparison with Grushin cones.

5. Spherical capacity

In this section, we will use previous results to compute the capacity of spherical
rings centered at the point x0 = (a1, a2, . . . , am, bm+1, bm+2, . . . , bn). We first recall
the definition of p-capacity.
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Definition 5.1. Let Ω ⊂ Gn be a bounded, open set, and K ⊂ Ω a compact
subset. For 1 ≤ p <∞ we define the p-capacity as

capp(K,Ω) = inf
{∫

Ω

‖∇0u‖p dLn : u ∈ C∞0 (Ω), u|K = 1
}
.

We note that although the definition is valid for p = 1, we will consider only 1 <
p < ∞, as in the previous sections. Because p-harmonic functions are minimizers
to the energy integral ∫

Gn

‖∇0f‖p dLn

it is natural to consider p-harmonic functions when computing the capacity. In
particular, an easy calculation similar to the previous section shows

u(x) =


ψ(x)α−Rα

rα−Rα when p 6= Q

logψ(x)−logR
log r−logR when p = Q

is a smooth solution to the Dirichlet problem

∆pu = 0 in BR(x0) \ Br(x0)

u = 1 on ∂Br(x0)

u = 0 on ∂BR(x0)

for 1 < p <∞.
We state the following theorem, which follows from the computations of the

previous section.

Theorem 5.2. Let 0 < r < R and 1 < p <∞. Then we have

capp
(
Br(x0),BR(x0)

)
=


αp−1Qσp

(
rα −Rα

)1−p when 1 < p < Q

QσQ[logR− log r]1−Q when p = Q

αp−1Qσp
(
Rα − rα

)1−p when p > Q.
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