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CONTROLLABILITY OF NEUTRAL IMPULSIVE STOCHASTIC
QUASILINEAR INTEGRODIFFERENTIAL SYSTEMS WITH

NONLOCAL CONDITIONS

KRISHNAN BALACHANDRAN, RAVIKUMAR SATHYA

Abstract. We establish sufficient conditions for controllability of neutral im-
pulsive stochastic quasilinear integrodifferential systems with nonlocal condi-
tions in Hilbert spaces. The results are obtained by using semigroup theory,
evolution operator and a fixed point technique. An example is provided to
illustrate the obtained results.

1. Introduction

Abstract differential systems in infinite-dimensional spaces appear in many bran-
ches of science and engineering, such as heat flow in materials with memory, vis-
coelasticity and other physical phenomena. In these fields many stochastic differen-
tial equations are obtained by including random fluctuations in ordinary differential
equations which have been deduced from phenomological or physical laws. Quasi-
linear evolution equations forms a very important class of evolution equations as
many time dependent phenomena in physics, chemistry and biology can be repre-
sented by such evolution equations. Some examples of quasi-stochastic systems are
the system of price fluctuations in financial markets, earth climate or the seismic
activity of the earth crust and a dice game. Of particular interest the following
integrodifferential equation arises in the theory of one-dimensional viscoelasticity
[18, 30] and also a special model for one-dimensional heat flow in materials with
memory.

ut(t, x) =
∫ t

0

k(t− s)(σ(ux))x(s, x)ds+ f(t, x), t ≥ 0, x ∈ (0, 1),

u(0, x) = u0(x), x ∈ [0, 1], u(t, 0) = u(t, 1) = 0, t > 0.
(1.1)

In many of the papers, the mathematical model for certain problems in nonlinear
viscoelasticity is discussed in the form

utt(t, x) = φ(ux(t, x))x +
∫ t

0

a(t− s)ψ(ux(s, x))xds+ g(t, x), t ≥ 0,

u(0, x) = u0(x), x ∈ R.
(1.2)
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which is the same as (1.1) if φ = ψ = σ, k(0) = 1 and a = k′ (see [13]). In [14], the
following equation occurred during the study of the nonlinear behavior of elastic
strings [21].

utt(t, x) + c(t)ut(t, x)−M
( ∫ ∞

−∞
|ux(t, s)|2ds

)
uxx(t, x) + u(t, x) = h(t, x, u(t, x)),

0 ≤ t <∞,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R.
(1.3)

The above equations take the abstract form as

du(t)
dt

= A(u)u(t) + f(t, u(t)), u(0) = u0. (1.4)

where A is a linear operator in a Hilbert space H and f is a real function. Hence
the natural generalization of (1.4) is the following quasilinear integrodifferential
equation

u′(t) = A(t, u)u(t) + f(t, u(t)) +
∫ t

0

g(t, s, u(s))ds,

u(0) = u0.

(1.5)

Systems with short-term perturbations are often naturally described by impul-
sive differential equations. The theory of impulsive differential equations is much
richer than the corresponding theory of differential equations without impulse ef-
fects [19, 27]. For instance, impulsive interruptions are observed in mechanics,
radio engineering, communication security, control theory, optimal control, biology,
mechanics, medicine, bio-technologies, electronics, neural networks and economics.
The introduction of non-local conditions can improve the qualitative and quantita-
tive characteristics of the problem which lead to good results concerning existence,
uniqueness [8] and regularity of the solution. Problems related to non local condi-
tions have applications such as in the theory of heat conduction, thermoelasticity,
plasma physics, control theory etc. Many real systems are quite sensitive to sudden
changes. This fact may suggest that proper mathematical models of systems should
consist of some neutral equations. Indeed, we may find that neutral term effects can
be quite significant in real mathematical models. The neutral equations find numer-
ous applications in applied mathematics, natural sciences, biological and physical
systems. For this reason these type of equations have received much attention in
recent years.

Several authors have studied the existence of solutions of abstract quasilinear
evolution equations in Banach spaces [1, 2, 4, 9, 12, 16, 22, 23]. Park et al. [25], Bal-
achandran and Paul Samuel [3] studied the regularity of solutions and the existence
of solutions of quasilinear delay integrodifferential equations respectively. Control-
lability of quasilinear systems has gained renewed interests and few papers appeared
[5, 6, 7]. The controllability of nonlinear stochastic systems in finite and infinite-
dimensional spaces have been extensively studied by many authors [11, 17, 20]. Park
et al. [24] discussed the controllability of neutral stochastic functional integrodif-
ferential infinite delay systems in abstract spaces. Karthikeyan and Balachandran
[15] studied the controllability of nonlinear stochastic neutral impulsive systems.
Subalakshmi and Balachandran [28, 29] investigated the approximate controllabil-
ity of neutral and impulsive stochastic integrodifferential systems in Hilbert spaces.
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Moreover, the controllability of neutral impulsive stochastic quasilinear integrod-
ifferential systems is an untreated topic in the literature so far. Motivated by
this fact, in this paper we study the controllability of neutral impulsive stochastic
quasilinear integrodifferential systems with nonlocal conditions. For that, we im-
pose neutral, impulse and nonlocal condition with random perturbations in (1.5)
which gives the form

d
[
x(t)− q(t, x(t))

]
=

[
A(t, x)x(t) +Bu(t) + f(t, x(t)) +

∫ t

0

g(t, s, x(s))ds
]
dt

+ σ(t, x(t))dw(t), t ∈ J := [0, a], t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) + h(x) = x0.

(1.6)

Here, the state variable x(·) takes values in a real separable Hilbert space H with
inner product (·, ·) and norm ‖ · ‖ and the control function u(·) takes values in
L2(J, U), a Banach space of admissible control functions for a separable Hilbert
space U . Also, A(t, x) is the infinitesimal generator of a C0-semigroup in H and B
is a bounded linear operator from U into H. Let K be another separable Hilbert
space with inner product (·, ·)K and the norm ‖ · ‖K . We employ the same notation
‖ · ‖ for the norm L(K,H), where L(K,H) denotes the space of all bounded linear
operators from K into H. Further, q : J×H → H, f : J×H → H, g : Λ×H → H,
σ : J ×H → LQ(K,H) are measurable mappings in H-norm and LQ(K,H) norm
respectively, where LQ(K,H) denotes the space of all Q-Hilbert-Schmidt operators
from K into H which will be defined in Section 2 and Λ = {(t, s) ∈ J × J : s ≤ t}.
Here, the nonlocal function h : PC[J : H] → H and impulsive function Ik ∈
C(H,H) (k = 1, 2, . . . ,m) are bounded functions. Furthermore, the fixed times tk
satisfies 0 = t0 < t1 < t2 < · · · < tm < a, x(t+k ) and x(t−k ) denote the right and left
limits of x(t) at t = tk. And ∆x(tk) = x(t+k ) − x(t−k ) represents the jump in the
state x at time tk, where Ik determines the size of the jump.

2. Preliminaries

Let (Ω,F , P ;F){F = {Ft}t≥0} be a complete filtered probability space sat-
isfying that F0 contains all P -null sets of F . An H-valued random variable is
an F-measurable function x(t) : Ω → H and the collection of random variables
S = {x(t, ω) : Ω → H \ t ∈ J} is called a stochastic process. Generally, we just
write x(t) instead of x(t, ω) and x(t) : J → H in the space of S. Let {ei}∞i=1 be
a complete orthonormal basis of K. Suppose that {w(t) : t ≥ 0} is a cylindrical
K-valued wiener process with a finite trace nuclear covariance operator Q ≥ 0,
denote Tr(Q) =

∑∞
i=1 λi = λ < ∞, which satisfies that Qei = λiei. So, ac-

tually, ω(t) =
∑∞

i=1

√
λiωi(t)ei, where {ωi(t)}∞i=1 are mutually independent one-

dimensional standard Wiener processes. We assume that Ft = σ{ω(s) : 0 ≤ s ≤ t}
is the σ-algebra generated by ω and Fa = F . Let Ψ ∈ L(K,H) and define

‖Ψ‖2Q = Tr(ΨQΨ∗) =
∞∑

n=1

‖
√
λnΨen‖2.

If ‖Ψ‖Q < ∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H)
denote the space of all Q-Hilbert-Schmidt operators Ψ : K → H. The completion
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LQ(K,H) of L(K,H) with respect to the topology induced by the norm ‖ · ‖Q

where ‖Ψ‖2Q = 〈Ψ,Ψ〉 is a Hilbert space with the above norm topology. For more
details in this section refer [10]. LF2 (J,H) is the space of all Ft - adapted, H-
valued measurable square integrable processes on J × Ω. Denote J0 = [0, t1], Jk =
(tk, tk+1], k = 1, 2, . . . ,m, and define the following class of functions:

PC(J, L2(Ω,F , P ;H))

=
{
x : J → L2 : x(t) is continuous everywhere except for some tk at which

x(t−k ) and x(t+k ) exists and x(t−k ) = x(tk), k = 1, 2, 3, . . . ,m
}

is the Banach space of piecewise continuous maps from J into L2(Ω,F , P ;H) sat-
isfying the condition supt∈J E‖x(t)‖2 < ∞. Let Z ≡ PC(J, L2) be the closed
subspace of PC(J, L2(Ω,F , P ;H)) consisting of measurable, Ft - adapted and H-
valued processes x(t). Then PC(J, L2) is a Banach space endowed with the norm

‖x‖2PC = sup
t∈J

{
E‖x(t)‖2 : x ∈ PC(J, L2)

}
.

Let H and Y be two Hilbert spaces such that Y is densely and continuously
embedded in H. For any Hilbert space Z the norm of Z is denoted by ‖ · ‖PC or
‖ ·‖. The space of all bounded linear operators from H to Y is denoted by B(H,Y )
and B(H,H) is written as B(H). We recall some definitions and known facts from
Pazy [26].

Definition 2.1. Let S be a linear operator in H and let Y be a subspace of H.
The operator S̃ defined by D(S̃) = {x ∈ D(S) ∩ Y : Sx ∈ Y } and S̃x = Sx for
x ∈ D(S̃) is called the part of S in Y .

Definition 2.2. Let Q be a subset of H and for every 0 ≤ t ≤ a and b ∈ Q, let
A(t, b) be the infinitesimal generator of a C0 semigroup St,b(s), s ≥ 0 on H. The
family of operators {A(t, b)}, (t, b) ∈ J ×Q, is stable if there are constants M ≥ 1
and ω such that

ρ(A(t, b)) ⊃ (ω,∞) for (t, b) ∈ J ×Q,

‖
k∏

j=1

R(λ : A(tj , bj))‖ ≤M(λ− ω)−k for λ > ω

and every finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, bj ∈ Q, 1 ≤ j ≤ k. The
stability of {A(t, b)}, (t, b) ∈ J ×Q, implies [26] that

‖
k∏

j=1

Stj ,bj (sj)‖ ≤M exp{ω
k∑

j=1

sj} for sj ≥ 0

and any finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, bj ∈ Q, 1 ≤ j ≤ k. k = 1, 2, . . . .

Definition 2.3. Let St,b(s), s ≥ 0 be the C0 semigroup generated by A(t, b), (t, b) ∈
J ×Q. A subspace Y of H is called A(t, b)-admissible if Y is invariant subspace of
St,b(s) and the restriction of St,b(s) to Y is a C0-semigroup in Y .

Let Q ⊂ H be a subset of H such that for every (t, b) ∈ J × Q, A(t, b) is
the infinitesimal generator of a C0-semigroup St,b(s), s ≥ 0 on H. We make the
following assumptions:
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(E1) The family {A(t, b)}, (t, b) ∈ J ×Q is stable.
(E2) Y is A(t, b)- admissible for (t, b) ∈ J × Q and the family {Ã(t, b)}, (t, b) ∈

J ×Q of parts Ã(t, b) of A(t, b) in Y , is stable in Y .
(E3) For (t, b) ∈ J×Q, D(A(t, b)) ⊃ Y , A(t, b) is a bounded linear operator from

Y to H and t → A(t, b) is continuous in the B(Y,H) norm ‖ · ‖ for every
b ∈ Q.

(E4) There is a constant L > 0 such that

‖A(t, b1)−A(t, b2)‖Y→H ≤ L‖b1 − b2‖H

holds for every b1, b2 ∈ Q and 0 ≤ t ≤ a.
Let Q be a subset of H and let {A(t, b)}, (t, b) ∈ J × Q be a family of operators
satisfying the conditions (E1)− (E4). If x ∈ PC(J, L2) has values in Q then there
is a unique evolution system U(t, s;x), 0 ≤ s ≤ t ≤ a in H satisfying (see [26])

(i) ‖U(t, s;x)‖ ≤ Meω(t−s) for 0 ≤ s ≤ t ≤ a, where M and ω are stability
constants.

(ii) ∂+

∂t U(t, s;x)y = A(s, x(s))U(t, s;x)y for y ∈ Y , 0 ≤ s ≤ t ≤ a.
(iii) ∂

∂sU(t, s;x)y = −U(t, s;x)A(s, x(s))y for y ∈ Y , 0 ≤ s ≤ t ≤ a.
Further we assume that

(E5) For every x ∈ PC(J, L2) satisfying x(t) ∈ Q for 0 ≤ t ≤ a, we have

U(t, s;x)Y ⊂ Y, 0 ≤ s ≤ t ≤ a

and U(t, s;x) is strongly continuous in Y for 0 ≤ s ≤ t ≤ a.
(E6) Closed bounded convex subsets of Y are closed in H.
(E7) For every (t, b) ∈ J × Q, q(t, b) ∈ Y and f(t, b) ∈ Y , ((t, s), b) ∈ Λ ×

Q, g(t, s, b) ∈ Y and (t, b) ∈ J ×Q, σ(t, b) ∈ Y .

Definition 2.4 ([11]). A stochastic process x is said to be a mild solution of (1.6)
if the following conditions are satisfied:

(a) x(t, ω) is a measurable function from J × Ω to H and x(t) is Ft-adapted,
(b) E‖x(t)‖2 <∞ for each t ∈ J ,
(c) ∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m,
(d) For each u ∈ LF2 (J, U), the process x satisfies the following integral equation

x(t) = U(t, 0;x)
[
x0 − h(x)− q(0, x(0))

]
+ q(t, x(t))

+
∫ t

0

U(t, s;x)A(s, x(s))q(s, x(s))ds

+
∫ t

0

U(t, s;x)
[
Bu(s) + f(s, x(s))

]
ds

+
∫ t

0

U(t, s;x)
[ ∫ s

0

g
(
s, τ, x(τ)dτ

)]
ds+

∫ t

0

U(t, s;x)σ(s, x(s))dw(s)

+
∑

0<tk<t

U(t, tk;x)Ik(x(t−k )), for a.e. t ∈ J,

x(0) + h(x) = x0 ∈ H.

(2.1)

Definition 2.5. System (1.6) is said to be controllable on the interval J , if for
every initial condition x0 and x1 ∈ H, there exists a control u ∈ L2(J, U) such that
the solution x(·) of (1.6) satisfies x(a) = x1.
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Further there exists a constant N > 0 such that for every x, y ∈ PC(J, L2) and
every ỹ ∈ Y we have

‖U(t, s;x)ỹ − U(t, s; y)ỹ‖2 ≤ Na2‖ỹ‖2Y ‖x− y‖2PC .

To establish our controllability result we assume the following hypotheses:
(H1) A(t, x) generates a family of evolution operators U(t, s;x) in H and there

exists a constant CU > 0 such that

‖U(t, s;x)‖2 ≤ CU for 0 ≤ s ≤ t ≤ a, x ∈ Z.

(H2) The linear operator W : L2(J, U) → H defined by

Wu =
∫ a

0

U(a, s;x)Bu(s)ds

is invertible with inverse operator W−1 taking values in L2(J, U) \ kerW
and there exists a positive constant CW such that

‖BW−1‖2 ≤ CW .

(H3) (i) The function q : J × Z → Z is continuous and there exist constants
Cq > 0, C̃q > 0 for s, t ∈ J and x, y ∈ Z such that the function A(t, x)q
satisfies the Lipschitz condition:

E‖A(t, x(t))q(t, x)−A(t, y(t))q(t, y)‖2 ≤ Cq‖x− y‖2,

and C̃q = supt∈J ‖A(t, 0)q(t, 0)‖2.
(ii) There exist constants Ck > 0, C1 > 0 and C2 > 0 such that

E‖q(t, x)− q(t, y)‖2 ≤ Ck[|t− s|2 + ‖x− y‖2],
E‖q(t, x)‖2 ≤ C1‖x‖2 + C2,

where C2 = supt∈J ‖q(t, 0)‖2.
(H4) The nonlinear function f : J × Z → Z is continuous and there exist con-

stants Cf > 0, C̃f > 0 for t ∈ J and x, y ∈ Z such that

E‖f(t, x)− f(t, y)‖2 ≤ Cf‖x− y‖2

and C̃f = supt∈J ‖f(t, 0)‖2.
(H5) The nonlinear function g : Λ×Z → Z is continuous and there exist positive

constants Cg, C̃g, for x, y ∈ Z and (t, s) ∈ Λ such that

E
∥∥g(t, s, x)− g(t, s, y)

∥∥2 ≤ Cg‖x− y‖2

and C̃g = sup(t,s)∈Λ ‖g(t, s, 0)‖2.
(H6) The function σ : J×Z → LQ(K,H) is continuous and there exist constants

Cσ > 0, C̃σ > 0 for t ∈ J and x, y ∈ Z such that

E‖σ(t, x)− σ(t, y)‖2Q ≤ Cσ‖x− y‖2

and C̃σ = supt∈J ‖σ(t, 0)‖2.
(H7) The nonlocal function h : PC(J : Z) → Z is continuous and there exist

constants Ch > 0, C̃h > 0 for x, y ∈ Z such that

E‖h(x)− h(y)‖2 ≤ Ch‖x− y‖2, E‖h(x)‖2 ≤ C̃h.
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(H8) Ik : Z → Z is continuous and there exist constants βk > 0, β̃k > 0 for
x, y ∈ Z such that

E‖Ik(x)− Ik(y)‖2 ≤ βk‖x− y‖2, k = 1, 2, . . . ,m

and β̃k = ‖Ik(0)‖2, k = 1, 2, . . . ,m.
(H9) There exists a constant r > 0 such that

10
{
CU (‖x0‖2 + C̃h) + a2CUG + 2CU

[
C1(‖x0‖2 + C̃h) + C2

]
+ C1r + C2

+ 2a2CU (Cqr + C̃q) + 2a2CU (Cfr + C̃f ) + 2a3CU

[
Cgr + C̃g

]
+ 2a CU Tr(Q)

(
Cσr + C̃σ

)
+ 2mCU

[ m∑
k=1

βkr +
m∑

k=1

β̃k

]}
≤ r

and

ν = 10
{

(1 + 18a2CUCW )(N1 +N2 +N3 +N4 +N5 +N6 +N7) + 2a3NG
}

where

N1 = Na2‖x0‖2 + 2(Na2C̃h + CUCh),

N2 = 2
[
2Na2

(
C1(‖x0‖2 + C̃h) + C2

)
+ CUCkCh

]
+ Cq,

N3 = 2a2
[
2Na

(
Cqr + C̃q

)
+ CUCq

]
,

N4 = 2a2
[
2Na

(
Cfr + C̃f

)
+ CUCf

]
,

N5 = 2a3
[
2Na

(
Cgr + C̃g

)
+ CUCg

]
,

N6 = 2a
[
2NaTr(Q)

(
Cσr + C̃σ

)
+ CU Tr(Q)Cσ

]
,

N7 = 2m
[
2Na2

( m∑
k=1

βkr +
m∑

k=1

β̃k

)
+ CU

m∑
k=1

βk

]
.

3. Controllability Result

Theorem 3.1. If the conditions (H1)-(H9) are satisfied and if 0 ≤ ν < 1, then
system (1.6) is controllable on J .

Proof. Using (H2) for an arbitrary function x(·), define the control

u(t) = W−1
[
x1 − U(a, 0;x)

[
x0 − h(x)− q(0, x(0))

]
− q(a, x(a))

−
∫ a

0

U(a, s;x)A(s, x(s))q(s, x(s))ds−
∫ a

0

U(a, s;x)σ(s, x(s))dw(s)

−
∫ a

0

U(a, s;x)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<a

U(a, tk;x)Ik(x(t−k ))
]
(t).

(3.1)

Let Yr be a nonempty closed subset of PC(J, L2) defined by

Yr = {x : x ∈ PC(J, L2)|E‖x(t)‖2 ≤ r}.
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Consider a mapping Φ : Yr → Yr defined by

(Φx)(t)

= U(t, 0;x)
[
x0 − h(x)− q(0, x(0))

]
+ q(t, x(t))

+
∫ t

0

U(t, s;x)A(s, x(s))q(s, x(s))ds

+
∫ t

0

U(t, s;x)BW−1
[
x1 − U(a, 0;x)

[
x0 − h(x)− q(0, x(0))

]
− q(a, x(a))

−
∫ a

0

U(a, s;x)A(s, x(s))q(s, x(s))ds−
∫ a

0

U(a, s;x)σ(s, x(s))dw(s)

−
∫ a

0

U(a, s;x)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<a

U(a, tk;x)Ik(x(t−k ))
]
(s)ds+

∫ t

0

U(t, s;x)f(s, x(s))ds

+
∫ t

0

U(t, s;x)
[ ∫ s

0

g(s, τ, x(τ))dτ
]
ds+

∫ t

0

U(t, s;x)σ(s, x(s))dw(s)

+
∑

0<tk<t

U(t, tk;x)Ik(x(t−k )).

We have to show that by using the above control the operator Φ has a fixed point.
Since all the functions involved in the operator are continuous therefore Φ is con-
tinuous. For convenience let us take

V (µ, x) = BW−1
[
x1 − U(a, 0;x)

[
x0 − h(x)− q(0, x(0))

]
− q(a, x(a))

−
∫ a

0

U(a, s;x)A(s, x(s))q(s, x(s))ds−
∫ a

0

U(a, s;x)σ(s, x(s))dw(s)

−
∫ a

0

U(a, s;x)
[
f(s, x(s)) +

∫ s

0

g(s, τ, x(τ))dτ
]
ds

−
∑

0<tk<a

U(a, tk;x)Ik(x(t−k ))
]
(µ).

From our assumptions we have

E‖V (µ, x)‖2 ≤ 10CW

{
‖x1‖2 + CU (‖x0‖2 + C̃h) + 2CU

[
C1(‖x0‖2 + C̃h) + C2

]
+ C1r

+ C2 + 2a2CU (Cqr + C̃q) + 2a2CU (Cfr + C̃f ) + 2a3CU

[
Cgr + C̃g

]
+ 2a CU Tr(Q)

(
Cσr + C̃σ

)
+ 2mCU

[ m∑
k=1

βkr +
m∑

k=1

β̃k

]}
:= G.

and

E‖V (µ, x)− V (µ, y)‖2

≤ 9CW

{
Na2‖x0‖2 + 2(Na2C̃h + CUCh) + 2

[
2Na2

(
C1(‖x0‖2 + C̃h)

+ C2

)
+ CUCkCh

]
+ Cq + 2a2

[
2Na

(
Cqr + C̃q

)
+ CUCq

]
+ 2a2

[
2Na

(
Cfr + C̃f

)
+ CUCf

]
+ 2a3

[
2Na

(
Cgr + C̃g

)
+ CUCg

]
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+ 2a
[
2Na Tr(Q)

(
Cσr + C̃σ

)
+ CU Tr(Q)Cσ

]
+ 2m

[
2Na2

( m∑
k=1

βkr +
m∑

k=1

β̃k

)
+ CU

m∑
k=1

βk

]}
.

First we show that the operator Φ maps Yr into itself. Now

E‖(Φx)(t)‖2

≤ 10
{
E

∥∥U(t, 0;x)
[
x0 − h(x)− q(0, x(0))

]∥∥2 + E‖q(t, x(t))‖2

+ E‖
∫ t

0

U(t, s;x)A(s, x(s))q(s, x(s))ds‖2 + E
∥∥∫ t

0

U(t, µ;x)V (µ, x)dµ
∥∥2

+ E
∥∥∫ t

0

U(t, s;x)
[
f(s, x(s)) +

∫ s

0

g
(
s, τ, x(τ)

)
dτ

]
ds

∥∥2

+ E
∥∥∫ t

0

U(t, s;x)σ(s, x(s))dw(s)
∥∥2 + E

∥∥ ∑
0<tk<t

U(t, tk;x)Ik(x(t−k ))
∥∥2

}
≤ 10

{
CU (‖x0‖2 + C̃h) + 2CU

[
C1(‖x0‖2 + C̃h) + C2

]
+ C1r + C2

+ 2a2CU (Cqr + C̃q) + a2CUG + 2a2CU (Cfr + C̃f ) + 2a3CU

[
Cgr + C̃g

]
+ 2a CU Tr(Q)

(
Cσr + C̃σ

)
+ 2mCU

[ m∑
k=1

βkr +
m∑

k=1

β̃k

]}
≤ r.

From (H9) we obtain E‖(Φx)(t)‖2 ≤ r. Hence Φ maps Yr into Yr. Let x, y ∈ Yr,
then

E‖(Φx)(t)− (Φy)(t)‖2

≤ 10
{
E

∥∥U(t, 0;x)
[
x0 − h(x)− q(0, x(0))

]
− U(t, 0; y)

[
x0 − h(y)− q(0, y(0))

]∥∥2

+ E
∥∥q(t, x(t))− q(t, y(t))

∥∥2 + E
∥∥∫ t

0

[
U(t, s;x)A(s, x(s))q(s, x(s))

− U(t, s; y)A(s, y(s))q(s, y(s))
]
ds

∥∥2

+ E
∥∥∫ t

0

[
U(t, µ;x)V (µ, x)− U(t, µ; y)V (µ, y)

]
dµ

∥∥2

+ E
∥∥∫ t

0

[
U(t, s;x)f(s, x(s))− U(t, s; y)f(s, y(s))

]
ds

∥∥2

+ E
∥∥∫ t

0

[
U(t, s;x)

[ ∫ s

0

g(s, τ, x(τ))dτ
]
− U(t, s; y)

[ ∫ s

0

g(s, τ, y(τ))dτ
]]
ds

∥∥2

+ E
∥∥∫ t

0

[
U(t, s;x)σ(s, x(s))− U(t, s; y)σ(s, y(s))

]
dw(s)

∥∥2

+ E
∥∥ ∑

0<tk<t

[
U(t, tk;x)Ik(x(t−k ))− U(t, tk; y)Ik(y(t−k ))

]∥∥2
}

≤ 10
{

(1 + 18a2CUCW )(N1 +N2 +N3 +N4 +N5 +N6 +N7) + 2a3NG
}
‖x− y‖2

≤ ν‖x− y‖2.
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Since ν < 1, the mapping Φ is a contraction and hence by Banach fixed point
theorem there exists a unique fixed point x ∈ Yr such that (Φx)(t) = x(t). This
fixed point is then the solution of the system (1.6) and clearly, x(a) = (Φx)(a) = x1

which implies that the system (1.6) is controllable on J . �

Remark 3.2. Consider the neutral impulsive stochastic quasilinear system

d
[
x(t)− q(t, x(t))

]
=

[
A(t, x)

[
x(t)− q(t, x(t))

]
+Bu(t) + f(t, x(t))

+
∫ t

0

g(t, s, x(s))ds
]
dt+ σ(t, x(t))dw(t),

t ∈ J := [0, a], t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) + h(x) = x0.

(3.2)

where A,B, q, f, g, σ are as before. The solution to the above equation is

x(t) = U(t, 0;x)
[
x0 − h(x)− q(0, x(0))

]
+ q(t, x(t)) +

∫ t

0

U(t, s;x)Bu(s)ds

+
∫ t

0

U(t, s;x)
[
f(s, x(s)) +

∫ s

0

g
(
s, τ, x(τ)dτ

)]
ds

+
∫ t

0

U(t, s;x)σ(s, x(s))dw(s) +
∑

0<tk<t

U(t, tk;x)Ik(x(t−k )),

for a.e. t ∈ J . If the functions involved in (3.2) satisfy the lipschitz condition then
the suitable control function will steer the system (3.2) from x0 to x1 provided the
above equation is satisfied.

4. Neutral Stochastic Quasilinear Integrodifferential Systems

Consider the neutral stochastic quasilinear integrodifferential system

d
[
x(t)−Q

(
t, x(t),

∫ t

0

q(t, s, x(s))ds
)]

=
[
A(t, x)x(t) +Bu(t) + F

(
t, x(t),

∫ t

0

f
(
t, s, x(s))ds

)]
dt

+G
(
t, x(t),

∫ t

0

σ
(
t, s, x(s))ds

)
dw(t), t ∈ J, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) + h(x) = x0.

(4.1)

where A,B, Ik, h are defined as before. Further,

Q : J ×H ×H → H, F : J ×H ×H → H, G : J ×H ×H → LQ(K,H),
q : Λ×H → H, f : Λ×H → H, σ : Λ×H → H.
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are measurable mappings in H-norm and LQ(K,H)-norm , respectively. The solu-
tion of the above equation is
x(t)

= U(t, 0;x)
[
x0 − h(x)−Q(0, x(0), 0)

]
+Q

(
t, x(t),

∫ t

0

q(t, s, x(s))ds
)

+
∫ t

0

U(t, s;x)A(s, x(s))Q
(
s, x(s),

∫ s

0

q(s, τ, x(τ))dτ
)
ds

+
∫ t

0

U(t, s;x)Bu(s)ds+
∫ t

0

U(t, s;x)F
(
s, x(s),

∫ s

0

f
(
s, τ, x(τ))dτ

)
ds

+
∫ t

0

U(t, s;x)G
(
s, x(s),

∫ s

0

σ
(
s, τ, x(τ))dτ

)
dw(s)

+
∑

0<tk<t

U(t, tk;x)Ik(x(t−k )), for a.e. t ∈ J.

(4.2)

Concerning the operators Q, q, F, f,G, σ we assume the following hypotheses:
(H10) (i) The functionQ : J×Z×Z → Z is continuous and there exist constants

CQ > 0, C̃Q > 0 for s, t ∈ J and x, y, x1, y1 ∈ Z such that the function
A(t, x)Q satisfies the Lipschitz condition

E‖A(t, x(t))Q(t, x, x1)−A(t, y(t))Q(t, y, y1)‖2 ≤ CQ

(
‖x− y‖2 + ‖x1 − y1‖2

)
,

and C̃Q = supt∈J ‖A(t, 0)Q(t, 0, 0)‖2.
(ii) There exist constants Qk > 0, Q1 > 0 and Q2 > 0 such that

E‖Q(t, x, x1)−Q(t, y, y1)‖2 ≤ Qk

(
|t− s|2 + ‖x− y‖2 + ‖x1 − y1‖2

)
,

E‖Q(t, x, y)‖2 ≤ Q1

(
‖x‖2 + ‖y‖2

)
+Q2,

where Q2 = supt∈J ‖Q(t, 0, 0)‖2.
(H11) The nonlinear function q : Λ×Z → Z is continuous and there exist positive

constants Cq, C̃q, for x, y ∈ Z and (t, s) ∈ Λ such that

E‖
∫ t

0

(
q(t, s, x)− q(t, s, y)

)
ds‖2 ≤ Cq‖x− y‖2

and C̃q = sup(t,s)∈Λ ‖
∫ t

0
q(t, s, 0)ds‖2.

(H12) The nonlinear function F : J × Z × Z → Z is continuous and there exist
constants CF > 0, C̃F > 0 for t ∈ J and x1, x2, y1, y2 ∈ Z such that

E‖F (t, x1, y1)− F (t, x2, y2)‖2 ≤ CF

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
and C̃F = supt∈J ‖F (t, 0, 0)‖2.

(H13) The nonlinear function f : Λ×Z → Z is continuous and there exist positive
constants Cf , C̃f , for x, y ∈ Z and (t, s) ∈ Λ such that

E
∥∥∫ t

0

(
f(t, s, x)− f(t, s, y)

)
ds

∥∥2 ≤ Cf‖x− y‖2

and C̃f = sup(t,s)∈Λ ‖
∫ t

0
f(t, s, 0)ds‖2.

(H14) The nonlinear function G : J ×Z×Z → LQ(K,H) is continuous and there
exist constants CG > 0, C̃G > 0 for t ∈ J and x1, x2, y1, y2 ∈ Z such that

E‖G(t, x1, y1)−G(t, x2, y2)‖2 ≤ CG

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
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and C̃G = supt∈J ‖G(t, 0, 0)‖2.
(H15) The nonlinear function σ : Λ×Z → Z is continuous and there exist positive

constants Cσ, C̃σ, for x, y ∈ Z and (t, s) ∈ Λ such that

E
∥∥∫ t

0

(
σ(t, s, x)− σ(t, s, y)

)
ds

∥∥2 ≤ Cσ‖x− y‖2

and C̃σ = sup(t,s)∈Λ ‖
∫ t

0
σ(t, s, 0)ds‖2.

(H16) There exists a constant r∗ > 0 such that

9
{
CU (‖x0‖2 + C̃h) + a2CUG + 2CU

[
Q1(‖x0‖2 + C̃h) +Q2

]
+Q1

[
(1 + 2Cq)r + 2C̃q

]
+Q2 + 2a2CU

[
CQ

(
(1 + 2Cq)r + 2C̃q

)
+ C̃Q

]
+ 2a2CU

[
CF

(
(1 + 2Cf )r + 2C̃f

)
+ C̃F

]
+ 2aCU Tr(Q)

[
CG

(
(1 + 2Cσ)r + 2C̃σ

)
+ C̃G

]
+ 2mCU

[ m∑
k=1

βkr +
m∑

k=1

β̃k

]}
≤ r∗

and

ν∗ = 9
{

(1 + 16a2CUCW )(N1 +N2 +N3 +N4 +N5 +N6) + 2a3NG
}

where

N1 = Na2‖x0‖2 + 2(Na2C̃h + CUCh)

N2 = 2
[
2Na2

(
Q1(‖x0‖2 + C̃h) +Q2

)
+ CUQkCh

]
+Qk(1 + Cq)

N3 = 2a2
[
2Na

[
CQ

(
(1 + 2Cq)r + 2C̃q

)
+ C̃Q

]
+ CUCQ(1 + Cq)

]
N4 = 2a2

[
2Na

[
CF

(
(1 + 2Cf )r + 2C̃f

)
+ C̃F

]
+ CUCF (1 + Cf )

]
N5 = 2a

[
2NaTr(Q)

[
CG

(
(1 + 2Cσ)r + 2C̃σ

)
+ C̃G

]
+ CU Tr(Q)CG(1 + Cσ)

]
N6 = 2m

[
2Na2

( m∑
k=1

βkr +
m∑

k=1

β̃k

)
+ CU

m∑
k=1

βk

]
.

To apply the contraction mapping, we define the nonlinear operator Φ∗ : Yr → Yr

as

(Φ∗x)(t)

= U(t, 0;x)
[
x0 − h(x)−Q(0, x(0), 0)

]
+Q

(
t, x(t),

∫ t

0

q(t, s, x(s))ds
)

+
∫ t

0

U(t, s;x)A(s, x(s))Q
(
s, x(s),

∫ s

0

q(s, τ, x(τ))dτ
)
ds

+
∫ t

0

U(t, s;x)Bu(s)ds+
∫ t

0

U(t, s;x)F
(
s, x(s),

∫ s

0

f
(
s, τ, x(τ))dτ

)
ds

+
∫ t

0

U(t, s;x)G
(
s, x(s),

∫ s

0

σ
(
s, τ, x(τ))dτ

)
dw(s) +

∑
0<tk<t

U(t, tk;x)Ik(x(t−k )).
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where

u(t) = W−1
[
x1 − U(a, 0;x)

[
x0 − h(x)−Q(0, x(0), 0)

]
−Q

(
a, x(a),

∫ a

0

q(a, s, x(s))ds
)

−
∫ a

0

U(a, s;x)A(s, x(s))Q
(
s, x(s),

∫ s

0

q(s, τ, x(τ))dτ
)
ds

−
∫ a

0

U(a, s;x)F
(
s, x(s),

∫ s

0

f
(
s, τ, x(τ))dτ

)
ds

−
∫ a

0

U(a, s;x)G
(
s, x(s),

∫ s

0

σ
(
s, τ, x(τ))dτ

)
dw(s)

−
∑

0<tk<a

U(a, tk;x)Ik(x(t−k ))
]
(t).

Clearly the above control transfers the system (4.1) from the initial state x0 to
the final state x1 provided that the operator Φ∗x has a fixed point. Hence, if the
operator Φ∗x has a fixed point then the system (4.1) is controllable.

Theorem 4.1. If (H10)–(H16) hold, then system (4.1) is controllable provided that

9
{

(1 + 16a2CUCW )(N1 +N2 +N3 +N4 +N5 +N6) + 2a3NG
}
< 1.

The proof of the above theorem is similar to that of Theorem 3.1 and hence it
is omitted.

5. Example

Consider the partial integrodifferential equation

∂
(
z(t, y)− 1

2
cos z(t, y)

)
=

( ∂3

∂y3
z(t, y) + z(t, y)

∂

∂y
z(t, y) + µ(t, y)

+
1
2
e−t sin z(t, y) +

z(t, y)
t(1 + t2)

[ ∫ t

0

e−z(s,y)ds
])
∂t

+
1
2

cos t z(t, y)dw(t), t ∈ J := [0, 1], t 6= tk,

z(0, y) +
∫ 1

0

m(s) log(1 + |z(s, y)|)ds = z0(y),

∆z|t=tk
= Ik(z(y)) =

∫
Ω

dk(y, s) cos2(z(s, y))ds, k = 1, 2, . . . ,m.

(5.1)
where Ω is a bounded domain in Rn with smooth boundary, m(·) ∈ L1([0, 1]; R)
and dk ∈ C(Ω̄ × Ω̄,R) for k = 1, 2, . . . ,m. For every real s we introduce a Hilbert
space Hs(R) as follows [26]. Let z ∈ L2(R) and set

‖z‖s =
( ∫

R

(1 + ξ2)s|ẑ(ξ)|2dξ
)1/2

,

where ẑ is the Fourier transform of z. The linear space of functions z ∈ L2(R) for
which ‖z‖s is finite is a pre-Hilbert space with the inner product

(z, y)s =
( ∫

R

(1 + ξ2)sẑ(ξ)ŷ(ξ)dξ
)1/2

.
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The completion of this space with respect to the norm ‖·‖s is a Hilbert space which
we denote by Hs(R). It is clear that H0(R) = L2(R).

Take H = U = K = L2(R) = H0(R) and Y = Hs(R), s ≥ 3. Define an operator
A0 by D(A0) = H3(R) and A0z = D3z for z ∈ D(A0) where D = d/dy. Then A0

is the inifinitesimal generator of a C0-group of isometries on H. Next we define for
every v ∈ Y an operator A1(v) by D(A1(v)) = H1(R) and z ∈ D(A1(v)), A1(v)z =
vDz. Then for every v ∈ Y the operator A(v) = A0 + A1(v) is the infinitesimal
generator of C0 semigroup U(t, 0; v) on H satisfying ‖U(t, 0; v)‖ ≤ eβt for every
β ≥ c0‖v‖s, where c0 is a constant independent of v ∈ Y . Let Yr be the ball of
radius r > 0 in Y and it is proved that the family of operators A(v), v ∈ Yr, satisfies
the conditions (E1)–(E4) and (H1) (see [26]). Put x(t) = z(t, ·) and u(t) = µ(t, ·)
where µ : J × R → R is continuous,

f(t, x(t)) =
1
2
e−t sin z(t, y), σ(t, x(t)) =

1
2

cos t z(t, y),

q(t, x(t)) =
1
2

cos z(t, y), h(x) =
∫ 1

0

m(s) log(1 + |z(s, y)|)ds∫ t

0

g(t, s, x(s))ds =
z(t, y)
t(1 + t2)

[ ∫ t

0

e−z(s,y)ds
]
.

With this choice of A(v), Ik, q, f, g, h, σ, B = I, the identity operator and w(t)
denotes a one dimensional standard wiener process, we see that (5.1) is an abstract
formulation of the system (1.6). Further we have∥∥ z(t, y)

t(1 + t2)

[ ∫ t

0

e−z(s,y)ds
]∥∥ ≤ 1

1 + t2
‖z‖.

Assume that the operator W : L2(J, U)/KerW → H defined by

Wu =
∫ 1

0

U(1, s;x)µ(s, ·)ds

has an inverse operator and satisfies (H2) for every x ∈ Yr. Further the other
assumptions (H3)–(H9) are obviously satisfied and it is possible to choose a suitable
control function u(t) in such a way that the constant ν < 1 which will steer the
system from x0 to x1. Hence, by Theorem 4.1, system (5.1) is controllable on J .

Acknowledgements. The second author is thankful to UGC, New Delhi, for pro-
viding a BSR Fellowship during 2010.
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