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SINGULAR EQUILIBRIUM SOLUTIONS FOR A REPLICATOR
DYNAMICS MODEL

CHRISTOS D. KRAVVARITIS, VASSILIS G. PAPANICOLAOU

Abstract. We evaluate explicitly certain classes of singular equilibrium so-
lutions for a specific one-dimensional replicator dynamics equation. These
solutions are linear combinations of Dirac delta functions. Equilibrium solu-
tions are important in the study of equilibrium selection in non-cooperative
games.

1. Introduction–the replicator dynamics model

The replicator dynamics models are popular models in evolutionary game theory.
They have significant applications in economics, population biology and other areas
of science.

Let A = (aij) be an m×m matrix (the payoff matrix ). Then a typical replicator
dynamics equation is

u′
i(t) =

[ m∑
j=1

aijuj(t)−
m∑

i=1

m∑
j=1

aijui(t)uj(t)
]
ui(t), i = 1, . . . ,m.

The set S = {1, . . . ,m} is the strategy space. The term in the square brackets is
a measure of the success of strategy i and it is assumed to be the difference of the
payoff of the players playing strategy i from the average payoff of the population. It
is then assumed that the logarithmic derivative of ui(t), where ui is the percentage
of the population playing i, is equal to this success measure; i.e., that agents update
their strategies proportionally to the success of the strategy i.

The vector
u(t) = (u1(t), . . . , um(t))T ,

is a probability distribution on S, hence

uj(t) ≥ 0, j = 1, . . . ,m;
m∑

j=1

uj(t) = 1.

If these conditions on u(t) are satisfied for t = 0, then it is easy to see that they
are satisfied for all t ≥ 0.
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The replicator dynamics equation can be written in a compact form

ut = (Au)u− (u, Au)u = [Au− (u, Au)]u, (1.1)

where (Au)u denotes the vector whose j-th component is the product of the j-th
components of the vectors (Au) and u.

This model was introduced by Taylor and Jonker [10] and Maynard Smith [9].
See also Imhof [2], where a stochastic version of the model is discussed.

Infinite-dimensional versions of this evolutionary strategy model have been pro-
posed, e.g., Bomze [1] and Oechssler and Riedel [6, 7], in connection to certain
economic applications. However, the abstract form of the proposed equations does
not provide any insight on the form of solutions.

In order to make some progress in this direction, in earlier papers Papanicolaou
et al. [3, 8, 4], had focused on the case where S is a “continuum” (i.e. a region
of Rd, d ≥ 1) and A a differential operator or an integral operator. In this short
note we are only interested in equilibrium solutions to (1.1) in a special infinite-
dimensional case. Smooth (or even continuous) equilibrium solutions do not exist
in the considered case, but there are infinitely many singular solutions. Inspired by
an example of Krugman [5] we take S to be the interval [a, b], with a < b, of the
real line, and choose A to be the (compact) self-adjoint, integral (hence nonlocal)
operator given by

(Av)(x) =
1
2r

∫ b

a

e−r|x−ξ|v(ξ)dξ, (1.2)

where r is a strictly positive constant.
Let us first determine the inverse operator of A. To do that we proceed as

follows: By letting

(Av)(x) = w(x), w(x) =
1
2r

∫ b

a

e−r|x−ξ|v(ξ)dξ, (1.3)

it is straightforward to show that

−w′′(x) + r2w(x) = v(x), (1.4)

w′(a) = rw(a), w′(b) = −rw(b). (1.5)

For the rest of this article, without loss of generality, we assume that a = 0.
Formulas (1.3)–(1.5) tell us that A is the inverse of the self-adjoint (local) dif-

ferential operator L, defined as

L := − d2

dx2
+ r2, (1.6)

and whose domain consists of sufficiently smooth functions v = v(x) satisfying the
boundary conditions

w′(0) = rw(0), w′(b) = −rw(b). (1.7)

Now let (·, ·) be the standard inner product for the Hilbert space L2(0, b), namely

(f, g) =
∫ b

0

f(x)g(x)dx.
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A simple integration by parts yields

(Lw, w) =
∫ b

0

[−w′′(x)w(x) + r2w(x)w(x)]dx

=
∫ b

0

[|w′(x)|2 + r2|w(x)|2]dx− w′(b)w(b) + w′(0)w(0).

The boundary conditions (1.7) imply that

(Lw, w) =
∫ b

0

[|w′(x)|2 + r2|w(x)|2]dx + r[|w(b)|2 + |w(0)|2] ≥ 0;

i.e., L is positive. Therefore, A, the operator in (1.2), which is L−1, is also a positive
operator and the corresponding replicator dynamics equation (1.1) has the form

ut = [Au− (u, Au)]u, t > 0, x ∈ [0, b], (1.8)

with ∫ b

0

u(0, x)dx = 1, u(0, x) ≥ 0, x ∈ [0, b]. (1.9)

Integration of both sides of (1.8) with respect to x gives

∂

∂t

∫ b

0

u(t, x)dx = (u, Au)
[
1−

∫ b

0

u(t, x)dx]. (1.10)

It follows from (1.10) that the set of probability measures on S = [0, b] is invariant
under the flow (1.8) and this is, of course, a desirable feature of the model. This
“conservation of probability” is essential for the applicability of (1.8)–(1.9) in the
context of evolutionary dynamics modelling.

2. Singular equilibrium solutions

The equilibrium solutions to (1.8)–(1.9) are the solutions u which are independent
of t. Equivalently, u is an equilibrium solution if u(t, x) = v(x), where v(x) satisfies

[Av − (v,Av)]v = 0, (2.1)

with ∫ b

0

v(x)dx = 1, v(x) ≥ 0, x ∈ [0, b]. (2.2)

Suppose v(x) is an equilibrium solution such that v(x) > 0 on an open interval
(c1, c2) with c1 < c2. Then, (2.1) implies

(Av)(x) = γ, x ∈ (c1, c2), (2.3)

whereγ := (v,Av). We now apply A−1 , namely L of (1.6), to both sides of (2.1).
Since L is a local operator and we are interested in its effect only on the interval
x ∈ (c1, c2), we do not need to know the value of (Av)(x) when x /∈ (c1, c2):

v(x) = r2γ, for x ∈ (c1, c2);

i.e., v(x) must be constant on (c1, c2). In particular, if v(x) is continuous on [0, b],
thus we must have

v(x) =
1
b
, x ∈ [0, b]. (2.4)

However, with v(x) given in (2.4), the quantity (Av)(x) is not constant, and this
contradicts (2.3). Therefore, there are no continuous equilibrium solutions.
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Motivated by the above observations we try to find equilibrium solutions to (1.8)–
(1.9), namely solutions to (2.1)–(2.2), in the class of singular probability measures.
More precisely, we look for solutions of the form

v(x) =
n∑

j=1

αjδcj
(x) =

n∑
j=1

αjδ(x− cj), (2.5)

where δc(x) := δ(x−c) with δ denoting the Dirac delta function, while the constants
c1 < · · · < cn lie in (0, b), and the positive constants αj satisfy

n∑
j=1

αj = 1. (2.6)

Obviously any such v(x) satisfies (2.2) and we only need to check (2.1); i.e., we
need to find the v(x)’s for which

(Av)(x) = (v,Av), x = c1, . . . , cn. (2.7)

To satisfy (2.7) we apply A given in (1.2) on (2.5). Using

(Aδc)(x) =
1
2r

∫ b

0

e−r|x−ξ|δ(ξ − c)dξ =
e−r|x−c|

2r
,

we obtain

(Av)(x) =
1
2r

n∑
j=1

αje
−r|x−cj |. (2.8)

For the right side of (2.7) we observe that

(v,Av) =
1
2r

∫ b

0

[ n∑
j=1

αjδ(x− cj)
][ n∑

k=1

αke−r|x−ck|
]
dx =

1
2r

n∑
j=1

n∑
k=1

αjαke−rcjk ,

where
cjk := |cj − ck|. (2.9)

Let us view c1, . . . , cn as given and treat α1, . . . , αn as unknowns. Then, we claim
that all we need to do is to find (positive) α1, . . . , αn and λ satisfying (2.6) and

n∑
j=1

αje
−rcjk = λ, k = 1, . . . , n. (2.10)

To justify this claim, we notice that, in view of (2.8), (2.10) can be written in the
form

(Av)(x) =
λ

2r
, x = c1, . . . , cn. (2.11)

Then, (2.6) and (2.11) imply

(v,Av) =
∫ b

0

v(x)
λ

2r
dx =

λ

2r
= (Av)(x), x = c1, . . . , cn. (2.12)

Since the support of v is in {c1, . . . , cn}, we infer from (2.12) that v(x) of (2.5) is an
equilibrium solution. Notice that the special case with n = 1 yields the equilibrium
solution

v(x) = δ(x− c1), (2.13)
where c1 is any point in the interval (0, b).
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From now on we concentrate on the system (2.6) and (2.10) with n ≥ 2. If we
set

b1 := e−rc12 , b2 := e−rc23 , . . . , bn−1 := e−rcn−1,n , (2.14)

then (2.10) takes the form

α1 + b1α2 + (b1b2)α3 + (b1b2b3)α4 + · · ·+ (b1 . . . bn−1)αn = λ

b1α1 + α2 + b2α3 + (b2b3)α4 + · · ·+ (b2 . . . bn−1)αn = λ

(b1b2)α1 + b2α2 + α3 + b3α4 + · · ·+ (b3 . . . bn−1)αn = λ

. . .

(b1 . . . bn−1)α1 + (b2 . . . bn−1)α2 + (b3 . . . bn−1)α3 + · · ·+ αn = λ

(2.15)

or, in matrix notation
Bα = λ1, (2.16)

where B is the n× n symmetric matrix

B :=


1 b1 (b1b2) . . . (b1 . . . bn−1)
b1 1 b2 . . . (b2 . . . bn−1)

(b1b2) b2 1 . . . (b3 . . . bn−1)
...

...
...

. . .
...

(b1 . . . bn−1) (b2 . . . bn−1) (b3 . . . bn−1) . . . 1

 , (2.17)

while the n-vectors α and 1 are given by

α :=


α1

α2

...
αn

 , 1 :=


1
1
...
1

 . (2.18)

From (2.16), we have

αj =
det Bj

det B
λ, j = 1, . . . , n, (2.19)

where Bj is the matrix obtained from B by replacing its j-th column by 1.
We will now evaluate the determinants det B and det Bj , for j = 1, . . . , n. To

make our computations more transparent we introduce ∆ and ∆j defined as

∆(b1, . . . , bn−1) := det B, ∆j(b1, . . . , bn−1) := det Bj . (2.20)

Multiply the second row of B by b1 and subtract the resulting row from the first
we obtain

∆(b1, . . . , bn−1) = (1− b2
1) det


1 b2 . . . (b2 . . . bn−1)
b2 1 . . . (b3 . . . bn−1)
...

...
. . .

...
(b2 . . . bn−1) (b3 . . . bn−1) . . . 1

 .

Hence
∆(b1, . . . , bn−1) = (1− b2

1)∆(b2, . . . , bn−1),

which yields

∆(b1, . . . , bn−1) =
n−1∏
j=1

(1− b2
j . (2.21)
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In a similar way, one computes det B1: Multiply the second row of B1 by b1 and
subtract resulting row from the first we obtain

∆1(b1, . . . , bn−1) = (1− b1)
n−1∏
j=2

(1− b2
j ). (2.22)

To compute det B2 we, again, multiply the second row of B2 by b1 and subtract
resulting row from the first. This yields

∆2(b1, . . . , bn−1) = (1− b2
1)∆1(b2, . . . , bn−1)− (1− b1)b1∆(b2, . . . , bn−1).

Thus, (2.21) and (2.22) give

∆2(b1, . . . , bn−1) = (1− b2
1)(1− b2)

n−1∏
j=3

(1− b2
j )− (1− b1)b1

n−1∏
j=2

(1− b2
j ),

or

∆2(b1, . . . , bn−1) = (1− b1b2)(1− b1)(1− b2)
n−1∏
j=3

(1− b2
j ). (2.23)

The computation of det B3 is simpler: Multiply the second row of B3 by b1 and
subtract resulting row from the first we obtain

∆3(b1, . . . , bn−1)

= (1− b2
1)∆2(b2, . . . , bn−1)

+ (1− b1) det


b1 1 . . . (b2 . . . bn−1)

(b1b2) b2 . . . (b3 . . . bn−1)
...

...
. . .

...
(b1 . . . bn−1) (b2 . . . bn−1) . . . 1

 .

(2.24)

The determinant of the matrix appearing in the second term on the right side of
(2.24) is zero because its first column is b1 times the second column. Hence, (2.24)
simplifies to

∆3(b1, . . . , bn−1) = (1− b2
1)∆2(b2, . . . , bn−1).

Then (2.21) gives

∆3(b1, . . . , bn−1) = (1− b2
1)(1− b2b3)(1− b2)(1− b3)

n−1∏
j=4

(1− b2
j ). (2.25)

We can compute detBk, for k = 4, . . . , n − 1, in a similar way we have computed
det B3. The result is

∆k(b1, . . . , bn−1) =
[ k−2∏

j=1

(1−b2
j )

]
(1−bk−1bk)(1−bk−1)(1−bk)

n−1∏
j=k+1

(1−b2
j ), (2.26)

where k = 4, . . . , n − 1 and the empty product that appears in the case k = n − 1
is taken to be equal to 1.

It remains to compute detBn. Following the same steps as the ones for comput-
ing detB3, we arrive at the equation

∆n(b1, . . . , bn−1) = (1− b2
1)∆n−1(b2, . . . , bn−1).
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Repeating the procedure we get

∆n(b1, . . . , bn−1) = (1− b2
1) . . . (1− b2

n−2)∆2(bn−1)

= (1− b2
1) . . . (1− b2

n−2) det
[

1 1
bn−1 1

]
,

hence

∆n(b1, . . . , bn−1) = (1− bn−1)
n−2∏
j=1

(1− b2
j ). (2.27)

Next, by using (2.21)–(2.27) in (2.19) we obtain

αj =
1− bj−1bj

(1 + bj−1)(1 + bj)
λ, j = 1, . . . , n, (2.28)

where we have set b0 = 0, bn = 0.
Finally, we need to find the value of λ appearing in (2.10). In view of (2.28),

(2.6) gives

λ

n∑
j=1

1− bj−1bj

(1 + bj−1)(1 + bj)
= 1. (2.29)

After some algebra, (2.29) implies

λ =
1

2− n + 2
∑n−1

j=1 (1 + bj)−1
. (2.30)

We summarize our results in the following theorem.

Theorem 2.1. Let A be the operator

(Av)(x) =
1
2r

∫ b

0

e−r|x−ξ|v(ξ)dξ, x ∈ [0, b].

If v(x) is an equilibrium solution to (1.8)–(1.9) of the form (2.5) with n ≥ 2, then
(2.28) holds, where b0 = bn = 0 and bj, for j = 1, . . . , (n − 1), are given by (2.14),
while λ is given by (2.30).

We remark that Theorem 2.1 is true even in the case where S is a semiaxis or
the whole real line.

As an example we notice that in the case n = 2, (2.28) implies that α1 = α2 =
1/2, no matter what c1 and c2 are.
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