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ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTIONS
FOR SUBLINEAR AND SINGULAR NONLINEAR DIRICHLET

PROBLEMS

RYM CHEMMAM, ABDELWAHEB DHIFLI, HABIB MÂAGLI

Abstract. In this article, we are concerned with the asymptotic behavior of
the classical solution to the semilinear boundary-value problem

∆u + a(x)uσ = 0

in Rn, u > 0, lim|x|→∞ u(x) = 0, where σ < 1. The special feature is to

consider the function a in Cα
loc(R

n), 0 < α < 1, such that there exists c > 0
satisfying

1

c

L(|x|+ 1)

(1 + |x|)λ
≤ a(x) ≤ c

L(|x|+ 1)

(1 + |x|)λ
,

where L(t) := exp
` R t

1
z(s)

s
ds

´
, with z ∈ C([1,∞)) such that limt→∞ z(t) = 0.

The comparable asymptotic rate of a(x) determines the asymptotic behavior
of the solution.

1. Introduction

In this article, we are interested in estimates for positive solutions of the semi-
linear problem

−∆u = a(x)g(u), x ∈ Rn, n ≥ 3

u > 0 in Rn,

lim
|x|→∞

u(x) = 0.
(1.1)

The existence of such solutions and their asymptotic behavior have been extensively
studied by many authors when (1.1) has a smooth bounded domain Ω with zero
boundary Dirichlet condition. We refer the reader to [1, 3, 6, 8, 9, 14] and the
references therein.

In recent years, the study of ground state solutions of problem (1.1) received a lot
of interest and numerous existence results have been established (see for instance
[2, 4, 5, 7, 10, 12] and the references therein).

More specifically, Lair and Shaker [7] established the existence and the unique-
ness of positive classical solution, where g is a positive nonincreasing and contin-
uously differentiable function on (0,∞) and a is a nontrivial nonnegative function
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in Cα
loc(Rn), satisfying ∫ ∞

0

tmax
|x|=t

a(x)dt <∞. (1.2)

Moreover, they showed that this condition on a is nearly optimal.
Furthermore, Brezis and Kamin [2] proved the existence of a unique positive

solution to the problem

−∆u = a(x)uσ, x ∈ Rn, n ≥ 3
u > 0,

lim inf
|x|→∞

u(x) = 0,

where 0 < σ < 1 and a is a nonnegative measurable function potentially bounded,
that is the function x 7→

∫
Rn

a(y)
|x−y|n−2 dy is in L∞(Rn).

Throughout this article, we denote K the set of all functions L defined on [1,∞),
by

L(t) := c exp
( ∫ t

1

z(s)
s
ds

)
,

where c is a positive constant and z ∈ C([1,∞)) such that limt→∞ z(t) = 0.

Remark 1.1. It is obvious that L ∈ K if and only if L is a positive function in
C1([1,∞)) such that limt→∞

tL′(t)
L(t) = 0.

Example 1.2. Let m ∈ N∗, (λ1, λ2, . . . , λm) ∈ Rm and ω be a positive real number
sufficiently large such that the function

L(t) =
m∏

k=1

(logk(wt))−λk

is defined and positive on [1,∞), where logk x = log ◦ log ◦ · · ·◦ log x (k times).Then
L ∈ K.

In this paper, we give precise asymptotic behavior of the solution to the problem
−∆u = a(x)uσ, x ∈ Rn, n ≥ 3,

u > 0 in Rn,

lim
|x|→∞

u(x) = 0,
(1.3)

where σ < 1 and a satisfies the hypothesis
(H1) a is a nonnegative function in Cα

loc(Rn), 0 < α < 1, satisfying

a(x) ≈ L(1 + |x|)
(1 + |x|)λ

,

where λ ≥ 2 and L ∈ K such that
∫∞
1
t1−λL(t)dt <∞.

Here and throughout the paper, for two nonnegative functions f and g defined on
a set S, the notation f(x) ≈ g(x), for x ∈ S means that there exists c > 0 such
that 1

cf(x) ≤ g(x) ≤ cf(x), for all x ∈ S.

Remark 1.3. (i) Note that we need to verify the condition
∫∞
1
t1−λL(t)dt <∞ in

hypothesis (H1), only for λ = 2 (see Remark 2.2).
(ii) It is obvious to see that if a satisfies hypothesis (H1), then a is potentially

bounded and a verifies (1.2). This implies from [7] and [2], that problem (1.3) has a
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unique classical positive solution in C2,α(Rn). Thus it becomes interesting to know
the asymptotic behavior of such solution, as t→∞.

Our main result is the following.

Theorem 1.4. Assume (H1). Then the solution u of problem (1.3) satisfies

u(x) ≈ θλ(x), (1.4)

where x ∈ Rn, and θλ is defined on Rn by

θλ(x) :=



( ∫∞
|x|+1

L(t)
t dt

)1/(1−σ)
, for λ = 2,

(L(1+|x|)1/(1−σ)

(1+|x|)(λ−2)/(1−σ) , for 2 < λ < n− (n− 2)σ,
1

(1+|x|)n−2

( ∫ |x|+2

1
L(t)

t dt
)1/(1−σ)

, for λ = n− (n− 2)σ,
1

(1+|x|)n−2 , for λ > n− (n− 2)σ.

(1.5)

To obtain estimates (1.5), we shall adopt a sub-supersolution method. For the
reader’s convenience, we recall the definition.

A positive function v ∈ C2,α(Rn) is called a subsolution of problem (1.3) if

−∆v ≤ a(x)vσ x ∈ Rn,

lim
|x|→∞

v(x) = 0. (1.6)

If the above inequality is reversed, v is called a supersolution of problem (1.3).
The outline of this article is as follows. In Section 2, we state some already

known results on functions in K, useful for our study and we give estimates on
some potential functions. The proof of Theorem 1.4 is given in Section 3. The last
section is reserved to some applications.

We close this section by giving the following notation. For a nonnegative mea-
surable function a in Rn, we denote by V a the potential of a defined on Rn by

V a(x) =
∫

Rn

G(x, y)a(y)dy,

where G(x, y) = cn

|x−y|n−2 is the Green function of the Laplacian ∆ in Rn (n ≥ 3),

and cn = Γ( n
2−1)

4π
n
2

. We point out that for any nonnegative function f in Cα
loc(Rn)

(0 < α < 1) such that V f ∈ L∞(Rn), we have V f ∈ C2,α
loc (Rn) and satisfies

−∆(V f) = f in Rn; see [11, Theorem 6.3].

2. Key estimates

2.1. Technical lemmas. In what follows, we collect some fundamental properties
of functions belonging to the class K. First, we need the following elementary result.

Lemma 2.1 (Karamata’s Theorem). Assume that g ∈ C1([β,∞), (0,∞)) and that
limt→∞ tg′(t)/g(t) = γ. Then we have the following properties:

(i) If γ < −1, then
∫∞

β
g(s)ds converges and∫ ∞

t

g(s)ds ∼ − tg(t)
γ + 1

, as t→∞.
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(ii) If γ > −1, then
∫∞

β
g(s)ds diverges and∫ t

β

g(s)ds ∼ tg(t)
γ + 1

as t→∞.

Remark 2.2. Let γ ∈ R and L be a function in K. Applying Lemma 2.1 to
g(t) = tγL(t), we obtain that

• If γ < −1, then
∫∞
1
sγL(s)ds diverges and

∫∞
t
sγL(s)ds ∼ − t1+γL(t)

γ+1 , as
t→∞;

• If γ > −1, then
∫∞
1
sγL(s)ds converges and

∫ t

1
sγL(s)ds ∼ t1+γL(t)

γ+1 as
t→∞.

Lemma 2.3. (i) Let L1, L2 ∈ K, p ∈ R. Then L1L2 ∈ K and Lp
1 ∈ K.

(ii) Let L be a function in K then there exists m ≥ 0 such that for every η > 0
and t ≥ 1 ,we have

(1 + η)−mL(t) ≤ L(η + t) ≤ (1 + η)mL(t).

Proof. Assertion (i) is due to Remark 1.1. Let us prove (ii). Let z be the function
in C([1,∞)) such that limt→∞ z(t) = 0 and L(t) = exp

( ∫ t

1
z(s)

s ds
)
.

Put m = supt∈[1,∞) |z(t)|, then for each η > 0 and t ≥ 1, we have

m log
t

t+ η
≤

∫ t+η

t

z(s)
s
ds ≤ m log

t+ η

t
.

That is,

(1 +
η

t
)−m ≤ exp

( ∫ t+η

t

z(s)
s
ds

)
≤ (1 +

η

t
)m.

So (ii) holds. �

Lemma 2.4. Let L ∈ K and ε > 0, then we have

lim
t→∞

t−εL(t) = 0, (2.1)

lim
t→∞

L(t)∫ t

1
L(s)/s ds

= 0. (2.2)

If further
∫∞
1
L(s)/s ds converges, then

lim
t→∞

L(t)∫∞
t
L(s)/s ds

= 0. (2.3)

Proof. Let L ∈ K and ε > 0. It is obvious by Remark 1.1 that the function
t→ t−

ε
2L(t) is non-increasing in [ω,∞), for ω large enough. Then

t−
ε
2L(t) ≤ ω−

ε
2L(ω), for t ≥ ω;

That is,

t−εL(t) ≤ L(ω)
(ωt)ε/2

, for t ≥ ω.

This proves (2.1). For the rest of the proof, we distinguish two cases.
Case 1:

∫∞
1

L(s)
s ds < ∞. Since the function t → tL(t) is nondecreasing in

[ω,∞), then

tL(t)
∫ ∞

t

ds

s2
≤

∫ ∞

t

L(s)
s

ds, for t ≥ ω.
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Hence

0 < L(t) ≤
∫ ∞

t

L(s)
s

ds, for t ≥ ω.

Then limt→∞ L(t) = 0, which implies (2.2).
Moreover, put ϕ(t) = L(t)/t, for t ≥ 1. Since ϕ satisfies limt→∞ tϕ′(t)/ϕ(t) =

−1, then it follows that∫ ∞

t

ϕ(s)ds ∼ −
∫ ∞

t

sϕ′(s)ds = tϕ(t) +
∫ ∞

t

ϕ(s)ds,

as t→∞. This implies that∫ ∞

t

L(s)
s

ds ∼ L(t) +
∫ ∞

t

L(s)
s

ds,

as t→∞. So we deduce (2.3).
Case 2:

∫∞
1

L(s)
s ds = ∞. Put ϕ(t) = L(t)/t, for t ≥ 1. Then for ω sufficiently

large and t ≥ ω, we have∫ t

ω

ϕ(s)ds ∼ −tϕ(t) + ωϕ(ω) +
∫ t

ω

ϕ(s)ds,

as t→∞; that is, ∫ t

ω

L(s)
s

ds ∼ −L(t) + ωϕ(ω) +
∫ t

ω

L(s)
s

ds,

as t→∞. Which proves (2.2) and completes the proof. �

Remark 2.5. Let L ∈ K. Using Remark 1.1 and (2.2), we deduce that

t→
∫ t+1

1

L(s)
s

ds ∈ K.

If further
∫∞
1
L(s)/s ds converges, we have by (2.3) that

t 7→
∫ ∞

t

L(s)
s

ds ∈ K.

2.2. Asymptotic behavior of some potential functions. We are going to give
estimates on the potential functions V a and V (aθσ

λ), where θλ is the function given
in (1.5).

Proposition 2.6. Let a be a function satisfying (H1). Then for x ∈ Rn,

V a(x) ≈ ψ(|x|),

where ψ is the function defined in [0,∞) by

ψ(t) =



∫∞
t+1

L(r)/r dr, for λ = 2,
L(1+t)

(1+t)λ−2 , for 2 < λ < n,

1
(1+t)n−2

∫ t+2

1
L(r)/r dr, for λ = n,

1
(1+t)n−2 , for λ > n.

(2.4)
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Proof. First, we recall the following well known result. Let ϕ be a nonnegative
radial measurable function and x ∈ Rn, then we have∫

Rn

ϕ(y)
|x− y|n−2

dy = c

∫ ∞

0

rn−1

max(|x|, r)n−2
ϕ(r)dr.

Now, let λ ≥ 2 and L ∈ K satisfying
∫∞
1
t1−λL(t)dt <∞ and such that

a(x) ≈ L(1 + |x|)
(1 + |x|)λ

.

Thus

V a(x) ≈
∫

Rn

L(1 + |y|)
(1 + |y|)λ

1
|x− y|n−2

dy = cnI(|x|),

where I is the function defined on [0,∞) by

I(t) =
∫ ∞

0

rn−1L(1 + r)
max(t, r)n−2(1 + r)λ

dr.

So to prove the result, it is sufficient to show that I(t) ≈ ψ(t) for t ∈ [0,∞). We
have

I(t) =
1

tn−2

∫ 1

0

rn−1L(1 + r)
(1 + r)λ

dr +
1

tn−2

∫ t

1

rn−1L(1 + r)
(1 + r)λ

dr +
∫ ∞

t

rL(1 + r)
(1 + r)λ

dr

:= I1(t) + I2(t) + I3(t).

It is clear that for t ≥ 2,

I1(t) ≈
1

tn−2
. (2.5)

To estimate I2 and I3, we distinguish two cases.
Case 1: λ > 2. Using Lemma 2.3 (ii) and Remark 2.2, for t ≥ 2 we have

I3(t) ≈
∫ ∞

t

r1−λL(r)dr ≈ L(t)
tλ−2

. (2.6)

• If 2 < λ < n, then applying again Remark 2.2, we have
∫∞
1
rn−1−λL(r)dr = ∞

and
∫ t

1
rn−1−λL(r)dr ∼ t2−λL(t), as t → ∞. So by Lemma 2.3 (ii), for t ≥ 2 we

obtain

I2(t) ≈
1

tn−2

∫ t

1

rn−1−λL(r)dr ≈ L(t)
tλ−2

.

Then by (2.5), (2.6) and (2.1), for t ≥ 2 we have

I(t) ≈ 1
tn−2

+
L(t)
tλ−2

≈ L(t)
tλ−2

.

Now, since the functions t→ I(t) and t→ L(1+t)
(1+t)λ−2 are positive and continuous in

[0,∞), for t ≥ 0 we obtain

I(t) ≈ L(1 + t)
(1 + t)λ−2

.

• If λ > n, then applying Remark 2.2, we have
∫ t

1
rn−1−λL(r)dr < ∞. So by

Lemma 2.3 (ii), for t ≥ 2, we obtain

I2(t) ≈
1

tn−2

∫ t

1

rn−1−λL(r)dr ≈ 1
tn−2

.
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This together with (2.5), (2.6) and (2.1) implies that for t ≥ 2,

I(t) ≈ 1
tn−2

.

Then by the same argument as above, we deduce that for t ≥ 0,

I(t) ≈ 1
(1 + t)n−2

.

• If λ = n, then using (2.5), (2.6) and (2.2), for t ≥ 2, we have

I(t) ≈ 1
tn−2

(1 +
∫ t

1

L(r)
r

dr + L(t)) ≈ 1
tn−2

∫ t

1

L(r)
r

dr.

So for t ≥ 0, we obtain

I(t) ≈ 1
(1 + t)n−2

∫ t+2

1

L(r)
r

dr.

Case 2: λ = 2. By Remark 2.2, for t ≥ 2, we have I2(t) ≈ L(t). So for t ≥ 2,
we have

I(t) ≈ 1
tn−2

+ L(t) +
∫ ∞

t

L(r)
r

dr.

Hence using (2.1) and (2.3), for t ≥ 2, we have

I(t) ≈
∫ ∞

t

L(r)
r

dr.

So for t ≥ 0, we obtain

I(t) ≈
∫ ∞

t+1

L(r)
r

dr.

This completes the proof. �

The following Proposition plays a key role in this paper.

Proposition 2.7. Let a be a function satisfying (H1) and let θλ be the function
given by (1.5). Then for x ∈ Rn,

V (aθσ
λ)(x) ≈ θλ(x).

Proof. Let λ ≥ 2 and L ∈ K satisfying
∫∞
1
t1−λL(t)dt <∞ and such that

a(x) ≈ L(1 + |x|)
(1 + |x|)λ

.

Then for every x ∈ Rn, we have

a(x)θσ
λ(x) ≈ h(x) :=



L(1+|x|)
(1+|x|)2

( ∫∞
|x|+1

L(t)
t dt

)σ/(1−σ)
, λ = 2,

(L(1+|x|)1/(1−σ)

(1+|x|)(λ−2σ)/(1−σ) , 2 < λ < n− (n− 2)σ,
L(1+|x|)
(1+|x|)n

( ∫ |x|+2

1
L(t)

t dt
)σ/(1−σ)

, λ = n− (n− 2)σ,
L(1+|x|)

(1+|x|)λ+(n−2)σ , λ > n− (n− 2)σ.

We point out that h(x) =
eL(1+|x|)
(1+|x|)µ , where µ ≥ 2. Moreover, due to Lemma 2.3

and Remark 2.5, we deduce that L̃ ∈ K and satisfies
∫∞
1
t1−µL̃(t)dt < ∞. Hence,

it follows by Proposition 2.6, that

V (aθσ
λ)(x) ≈ V (h)(x) ≈ ψ̃(|x|), in Rn,
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where ψ̃ is the function defined by (2.4) by replacing L by L̃ and λ by µ. This
completes the proof by a simple calculus. �

3. Proof of Theorem 1.4

Let a be a function satisfying (H1). The main idea is to find a subsolution and
a supersolution of problem (1.3) of the form cV (aφσ), where c > 0 and φ(x) =
L0(1+|x|)
(1+|x|)β , which will satisfy necessarily

V (aφσ) ≈ φ. (3.1)

So, the choice of the real β and the function L0 in K is such that (3.1) is satis-
fied. Setting φ(x) = θλ(x), where θλ is the function given by (1.5), we have by
Proposition 2.7 that the function θλ satisfies (3.1).

Let v := V (aθσ
λ) and let M > 1 be such that

1
M
v ≤ θλ ≤Mv.

Which implies that for σ < 1,
vσ

M |σ| ≤ θσ
λ ≤M |σ|vσ.

Put c := M |σ|/(1−σ), then it is easy to verify that u = 1
cv and u = cv are respectively

a subsolution and a supersolution of problem (1.3).
Now, since c > 1, we get u ≤ u on Rn and thanks to the method of sub and

supersolution, it follows that problem (1.3) has a solution u satisfying u ≤ u ≤ u,
in Rn.

Finally, by using Remark 1.3 (ii) and Proposition 2.7, we deduce that the unique
classical positive solution of problem (1.3) satisfies (1.4). This completes the proof.

4. Applications

4.1. First application. Let σ < 1 and a be a positive function in Cα
loc(Rn) satis-

fying for x ∈ Rn

a(x) ≈ 1
(1 + |x|)λ

m∏
k=1

(logk(w(1 + |x|)))−λk ,

where m ∈ N∗ and w is a positive constant large enough. The real numbers λ and
λk, 1 ≤ k ≤ m, satisfy one of the following two conditions
• λ > 2 and λk ∈ R for 1 ≤ k ≤ m.
• λ = 2 and λ1 = λ2 = · · · = λl−1 = 1, λl > 1, λk ∈ R for l + 1 ≤ k ≤ m.
Using Theorem 1.4, we deduce that problem (1.3) has a unique classical positive

solution u in Rn satisfying
(i) If λ = 2, then for x ∈ Rn

u(x) ≈ (logl w(1 + |x|))(1−λl)/(1−σ)
m∏

k=l+1

(logk w(1 + |x|))−λk/(1−σ).

(ii) If 2 < λ < n− σ(n− 2), then for x ∈ Rn

u(x) ≈ 1
(1 + |x|)(λ−2)/(1−σ)

m∏
k=1

(logk w(1 + |x|))−λk/(1−σ).
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(iii) If λ = n− σ(n− 2) and λ1 = λ2 = · · · = λm = 1, then for x ∈ Rn

u(x) ≈ 1
(1 + |x|)n−2

(logm+1 w(1 + |x|))1/(1−σ).

(iv) If λ = n − σ(n − 2) and λ1 = λ2 = · · · = λl−1 = 1, λl < 1, λk ∈ R, for
l + 1 ≤ k ≤ m, then for x ∈ Rn

u(x) ≈ 1
(1 + |x|)n−2

(logl w(1 + |x|))(1−λl)/(1−σ)
m∏

k=l+1

(logk w(1 + |x|))−λk/(1−σ).

(v) If λ = n − σ(n − 2) and λ1 = λ2 = · · · = λl−1 = 1, λl > 1, λk ∈ R, for
l + 1 ≤ k ≤ m, then for x ∈ Rn

u(x) ≈ 1
(1 + |x|)n−2

.

(vi) If λ > n+ σ(n− 2), then for x ∈ Rn

u(x) ≈ 1
(1 + |x|)n−2

.

4.2. Second application. Let a be a function satisfying (H1) and let σ, β < 1.
We are interested in the problem

−∆u+
β

u
|∇u|2 = a(x)uσ in Rn,

u > 0, in Rn,

lim
|x|→∞

u(x) = 0.

(4.1)

Put v = u1−β , then by a simple calculus, we obtain that v satisfies

−∆v = (1− β)a(x)v
σ−β
1−β in Rn,

v > 0 in Rn,

lim
|x|→∞

v(x) = 0.
(4.2)

Applying Theorem 1.4 to problem (4.2), we obtain that there exists a unique solu-
tion v such that

v(x) ≈ θ̃λ(x) :=



( ∫∞
|x|+1

L(s)
s ds

)(1−β)/(1−σ)
, if λ = 2,

(L(1+|x|))(1−β)/(1−σ)

(1+|x|)(λ−2)/(1−σ) , if 2 < λ < n− (n− 2)σ−β
1−β ,

1
(1+|x|)n−2

( ∫ |x|+2

1
L(s)

s ds
) 1−β

1−σ , if λ = n− (n− 2)σ−β
1−β ,

1
(1+|x|)n−2 , if λ > n− (n− 2)σ−β

1−β .

Consequently, we deduce that (4.1) has a unique positive solution u satisfying

u(x) ≈
(
θ̃λ(x)

)1/(1−β)

=



( ∫∞
|x|+1

L(s)
s ds

)1/(1−σ)

, if λ = 2,

(1 + |x|)
2−λ

(1−σ)(1−β) (L(1 + |x|))1/(1−σ), if 2 < λ < n− (n− 2)σ−β
1−β ,

(1 + |x|)(2−n)/(1−β)
( ∫ |x|+2

1
L(s)

s ds
)1/(1−σ)

, if λ = n− (n− 2)σ−β
1−β ,

(1 + |x|)(2−n)/(1−β), if λ > n− (n− 2)σ−β
1−β .
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4.3. Third application. Let a be a function satisfying (H1) and L be a function
in K such that

a(x) ≈ L(1 + |x|)
(1 + |x|)λ

.

Let b ∈ Cγ
loc(Rn), 0 < γ < 1 satisfying for x ∈ Rn,

b(x) ≈ L1(1 + |x|)
(1 + |x|)µ

,

where µ ∈ R and L1 ∈ K. Let σ, β < 1 and p ∈ R. We are interested in the system

−∆u = a(x)uσ in Rn,

−∆v = b(x)upvβ in Rn,

u, v > 0 in Rn, lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0.
(4.3)

By Theorem 1.4, it follows that there exists a unique classical solution u to (1.3)
satisfying (1.4). So, we distinguish the following cases.

Case 1: λ = 2. By hypothesis (H1), we have
∫∞
1

L(t)
t dt <∞ and using estimates

(1.5), we deduce that

b(x)up(x) ≈ L1(1 + |x|)
(1 + |x|)µ

( ∫ ∞

|x|+1

L(s)
s

ds
)p/(1−σ)

:=
L2(1 + |x|)
(1 + |x|)µ

.

It is obvious to see by Lemma 2.3 and Remark 2.5 that L2 ∈ K. Now suppose that
µ ≥ 2 and

∫∞
1
t1−µL2(t)dt < ∞. Then applying Theorem 1.4, we conclude that

(4.3) has a unique classical solution (u, v) such that u(x) ≈ θλ(x) and

v(x) ≈



( ∫∞
|x|+1

L2(s)
s ds

)1/(1−β)
, if µ = 2,

(L2(1+|x|))1/(1−β)

(1+|x|)(µ−2)/(1−β) , if 2 < µ < n− (n− 2)β,
1

(1+|x|)n−2

( ∫ |x|+2

1
L2(s)

s ds
)1/(1−β)

, if µ = n− (n− 2)β,
1

(1+|x|)n−2 , if µ > n− (n− 2)β.

Case 2: 2 < λ < n− (n− 2)σ. Put γ = µ+ λ−2
1−σp. From the estimates (1.5), we

deduce that

b(x)up(x) ≈ L1(1 + |x|)(L(1 + |x|))p/(1−σ)

(1 + |x|)γ
:=

L2(1 + |x|)
(1 + |x|)γ

.

Obviously by Lemma 2.3 we have that L2 ∈ K. Now suppose that γ ≥ 2 and∫∞
1
t1−γL2(t)dt < ∞. Then applying Theorem 1.4, we conclude that system (4.3)

has a unique classical solution (u, v) such that u(x) ≈ θλ(x) and

v(x) ≈



( ∫∞
|x|+1

L2(s)
s ds

)1/(1−β)
, if γ = 2,

L2((1+|x|))1/(1−β)

(1+|x|)(γ−2)/(1−β) , if 2 < γ < n− (n− 2)β,
1

(1+|x|)n−2

( ∫ |x|+2

1
L2(s)

s ds
)1/(1−β)

, if γ = n− (n− 2)β,
1

(1+|x|)n−2 , if γ > n− (n− 2)β.

Case 3: λ = n− (n− 2)σ. We have

b(x)up(x) ≈ L1(1 + |x|)
(1 + |x|)µ+(n−2)p

( ∫ |x|+2

1

L(s)
s

ds
)p/(1−σ)

:=
L2(1 + |x|)

(1 + |x|)µ+(n−2)p
.
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By Lemma 2.3 and Remark 2.5, obviously we have that L2 ∈ K. Now suppose that
µ + (n − 2)p ≥ 2 and

∫∞
1
t1−µ−(n−2)pL2(t)dt < ∞. Then applying Theorem 1.4,

we conclude that (4.3) has a unique classical solution (u, v) such that u(x) ≈ θλ(x)
and

v(x) ≈



( ∫∞
|x|+1

L2(s)
s ds

)1/(1−β)
, if µ+ (n− 2)p = 2,

(L2(1+|x|))1/(1−β)

(1+|x|)
µ+(n−2)p

1−β

, if 2 < µ+ (n− 2)p < n− (n− 2)β,

1
(1+|x|)n−2

( ∫ |x|+2

1
L2(s)

s ds
)1/(1−β)

, if µ+ (n− 2)p = n− (n− 2)β,
1

(1+|x|)n−2 , if µ+ (n− 2)p > n− (n− 2)β.

Case 4: λ > n− (n− 2)σ. We have

b(x)up(x) ≈ L1(1 + |x|)
(1 + |x|)n−2+µ

.

Suppose that n − 2 + µ ≥ 2 and
∫∞
1
t1−(n−2+µ)L1(t)dt < ∞. Then applying

Theorem 1.4, we conclude that (4.3) has a unique classical solution (u, v) such that
u(x) ≈ θλ(x) and

v(x) ≈



( ∫∞
|x|+1

L1(s)
s ds

)1/(1−β)
, if n− 2 + µ = 2,

(L1(1+|x|))1/(1−β)

(1+|x|)(µ+n−4)/(1−β) , if 2 < n− 2 + µ < n− (n− 2)β,
1

(1+|x|)n−2

( ∫ |x|+2

1
L1(s)

s ds
)1/(1−β)

, if n− 2 + µ = n− (n− 2)β,
1

(1+|x|)n−2 , if n− 2 + µ > n− (n− 2)β.
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