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COMPACT INVERSES OF MULTIPOINT NORMAL
DIFFERENTIAL OPERATORS FOR FIRST ORDER

ZAMEDDIN I. ISMAILOV, ELIF OTKUN ÇEVIK, ERDAL UNLUYOL

Abstract. In this work, we describe all normal extensions of a multipoint
minimal operators generated by linear multipoint differential-operator expres-
sions for first order in the Hilbert space of vector functions, in terms of bound-
ary values at the endpoints of infinitely many separated subintervals. Also we
investigate compactness properties of the inverses of such extensions.

1. Introduction

It is known that the traditional infinite direct sum of Hilbert spaces Hn, n ≥ 1
and infinite direct sum of operators An in Hn, n ≥ 1 are defined as

H = ⊕∞n=1Hn = {u = (un) : un ∈ Hn, n ≥ 1,

∞∑
n=1

‖un‖2
Hn

< +∞},

A = ⊕∞n=1An,

D(A) = {u = (un) ∈ H : un ∈ D(An), n ≥ 1, Au = (Anun) ∈ H}.

Note that H is a Hilbert space with norm induced by the inner product

(u, v)H =
∞∑

n=1

(un, vn)Hn , u, v ∈ H ;

see [2, 9, 10]. The general theory of linear closed operators in Hilbert spaces and
its applications to physical problems have been investigated by many researches
(see for example [2, 11]). Furthermore, many physical problems require studying
the theory of linear operators in direct sums in Hilbert spaces. This is the case
in [3, 5, 7, 12, 13, 14] and their references, which is the motivation for this work.
We note that a detail analysis of normal subspaces and operators in Hilbert spaces
have been studied in [1] and the references there in.

Besides the introduction, this study contains three sections. In section 2, the
multipoint minimal and maximal operators for the first order differential-operator
expression are determined. In section 3, all normal extensions of multipoint formally
normal operators are described in terms of boundary values in the endpoints of the
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infinitely many separated subintervals. Finally in section 4, compactness properties
of the inverses of such extensions have been established.

2. Minimal and maximal operators

Throughout this work (an) and (bn) will be sequences of real numbers such that

−∞ < an < bn < an+1 < · · · < +∞,

Hn is a Hilbert space, ∆n = (an, bn), L2
n = L2(Hn,∆n), L2 = ⊕∞n=1L

2(Hn,∆n),
n ≥ 1, supn≥1(bn− an) < +∞, W 1

2 = ⊕∞n=1W
1
2 (Hn,∆n), W̊ 1

2 = ⊕∞n=1W̊
1
2 (Hn,∆n),

H = ⊕∞n=1Hn, cl(T ) is the closure of the operator T . l(·) is a linear multipoint
differential-operator expression for first order in L2 in the following form:

l(u) = (ln(un)), (2.1)

and for each n ≥ 1,
ln(un) = u′n + Anun, (2.2)

where An : D(An) ⊂ Hn → Hn is a linear positive defined selfadjoint operator in
Hn. It is clear that formally adjoint expression to (2.2) in the Hilbert space L2

n is
in the form

l+n (vn) = −v′n + Anvn, n ≥ 1. (2.3)
We define an operator L′n0 on the dense manifold of vector functions D′

n0 in L2
n as

D′
n0 :=

{
un ∈ L2

n : un =
m∑

k=1

φkfk, φk ∈ C∞
0 (∆n),

fk ∈ D(An), k = 1, 2, . . . ,m;m ∈ N
}

with L′n0un := ln(un), n ≥ 1. Since the operator An > 0, n ≥ 1, then the relation

Re(L′n0un, un)L2
n

= 2(Anun, un)L2
n
≥ 0, un ∈ D′

n0

implies that L′n0 is an accretive in L2
n, n ≥ 1. Hence the operator L′n0 has a

closure in L2
n, n ≥ 1. The closure cl(L′n0) of the operator L′n0 is called the minimal

operator generated by differential-operator expression (2.2) and is denoted by Ln0

in L2
n, n ≥ 1. The operator L0 defined by

D(L0) := {u = (un) : un ∈ D(Ln0), n ≥ 1,

∞∑
n=1

‖Ln0un‖2
L2

n
< +∞}

with L0u := (Ln0un), u ∈ D(L0), L0 : D(L0) ⊂ L2 → L2 is called a minimal
operator (multipoint) generated by differential-operator expression (2.1) in Hilbert
space L2 and denoted by L0 = ⊕∞n=1Ln0. In a similar way the minimal operator for
two points denoted by L+

n0 in L2
n, n ≥ 1 for the formally adjoint linear differential-

operator expression (2.3) can be constructed. In this case the operator L+
0 defined

by

D(L+
0 ) := {v := (vn) : vn ∈ D(L+

n0), n ≥ 1,

∞∑
n=1

‖L+
n0vn‖2

L2
n

< +∞}

with L+
0 v := (L+

n0vn), v ∈ D(L+
0 ), L+

0 : D(L+
0 ) ⊂ L2 → L2 is called a minimal

operator (multipoint) generated by l+(v) = (l+n (vn)) in the Hilbert space L2 and
denoted by L+

0 = ⊕∞n=1L
+
n0.

Now we state the following relevant result.
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Theorem 2.1. The minimal operators L0 and L+
0 are densely defined closed oper-

ators in L2.

Proof. Let w = (wn) be any element in L2 = ⊕∞n=1L
2
n and ε be an arbitrary

positive number. In this case wn ∈ L2
n, n ≥ 1 and

∑∞
n=1 ‖wn‖2

L2
n

< +∞. Since the
linear manifold D(Ln0), n ≥ 1 is densely defined in L2

n, n ≥ 1 , then there exist
wn(ε) ∈ D(Ln0) such that

‖wn − wn(ε)‖L2
n

<
ε

n
, n ≥ 1.

Then for the element w(ε) = (wn(ε)) we have

‖w(ε)‖2
L2 =

∞∑
n=1

‖wn(ε)‖2
L2

n

≤
∞∑

n=1

(‖wn − wn(ε)‖L2
n

+ ‖wn(ε)‖L2
n
)2

≤ 2
∞∑

n=1

‖wn − wn(ε)‖2
L2

n
+ 2

∞∑
n=1

‖wn(ε)‖2
L2

n

≤ 2ε2
∞∑

n=1

1
n2

+ 2
∞∑

n=1

‖wn(ε)‖2
L2

n
< +∞;

that is, w(ε) ∈ L2. On the other hand since

‖w − w(ε)‖2
L2 =

∞∑
n=1

‖wn − wn(ε)‖2
L2

n
≤ ε2

∞∑
n=1

1
n2

< 2ε2,

the linear manifold D(L0) is dense in L2.
Now we show that the minimal operator L0 is closed in L2. Let w(m) ⊂ D(L0)

be any sequence such that for w, z ∈ L2, w(m) → w as m → ∞ and L0w
(m) → z

as m → ∞ in L2. In this situation, in the space L2
n, w

(m)
n → wn as m → ∞ and

Ln0w
(m)
n → zn as m →∞, n ≥ 1, where w = (wn) and z = (zn). Since the operator

Ln0 is closed in L2
n, then wn ∈ D(Ln0) and zn = Ln0wn, n ≥ 1.

The above relations and (wn), (zn) ∈ L2 imply that w = (wn) ∈ D(L0) and
z = L0w. In similar way it could be shown that the minimal operator L+

0 is
densely defined and closed operator in ∈ L2.

The operators in L2 defined by L := (L+
0 )∗ = ⊕∞n=1Ln and L+ := (L0)∗ =

⊕∞n=1L
+
n are called maximal operators (multipoint) for the differential-operator

expression l(·) and l+(·) respectively.It is clear that Lu = (ln(un)), u ∈ D(L),

D(L) := {u = (un) ∈ L2 : un ∈ D(Ln), n ≥ 1,

∞∑
n=1

‖Lnun‖2
L2

n
< ∞},

L+v = (l+n (vn)), v ∈ D(L+),

D(L+) := {v = (vn) ∈ L2 : vn ∈ D(L+
n ), n ≥ 1,

∞∑
n=1

‖L+
n vn‖2

L2
n

< ∞}

and L0 ⊂ L, L+
0 ⊂ L+. �

From [8] and the definition of direct sum of operators, the validity of following
theorem is clear.
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Theorem 2.2. The domain of the operator L consists of u = (un) ∈ L2 such that:
(1) for each n ≥ 1 vector function un ∈ L2

n, un is absolutely continuous in the
interval ∆n; (2) ln(un) ∈ L2

n, n ≥ 1; (3) l(u) = (ln(un)) ∈ L2}; i.e.,

D(L) = {u = (un) ∈ L2 : un ∈ D(Ln), n ≥ 1, l(u) = (ln(un)) ∈ L2}.

The domain of L0 is D(L0) = {u = (un) ∈ D(L) : un(an) = un(bn) = 0, n ≥ 1}.

Remark 2.3. If An ∈ B(H), n ≥ 1 and supn≥1 ‖An‖ ≤ c < +∞, then for any
u = (un) ∈ L2 we have (Au) = (Anun) ∈ L2.

Theorem 2.4. If a minimal operator L0 is formally normal in L2, then D(L0) ⊂
W̊ 1

2 and AD(L0) ⊂ L2.

Proof. In this case for every u = (un) ∈ D(L0) ⊂ D(L+) we have u′+Au ∈ L2 and
−u′ + Au ∈ L2. From this it is obtained that u′ ∈ L2, Au ∈ L2. This means that
D(L0) ⊂ W̊ 1

2 and AD(L0) ⊂ L2. �

Theorem 2.5. If A1/2W 1
2 ⊂ W 1

2 , then minimal operator L0 is formally normal in
L2.

Proof. In this case from the relations

L+
0 u = L0u− 2Au, u ∈ D(L0), L0u = L+

0 u + 2Au, u ∈ D(L+
0 )

imply that D(L0) = D(L+
0 ). Since D(L+

0 ) ⊂ D(L∗0) = D(L+), it is obtained that
D(L0) ⊂ D(L+).

On the other hand for any u ∈ D(L0),

‖L0u‖2
L2 = (u′ + Au, u′ + Au)L2

= ‖u′‖2
L2 + [(u′, Au)L2 + (Au, u′)L2 ] + ‖Au‖2

L2

= ‖u′‖2
L2 + ‖Au‖2

L2

and

‖L+u‖2
L2 = (−u′ + Au,−u′ + Au)L2

= ‖u′‖2
L2 − [(u′, Au)L2 + (Au, u′)L2 ] + ‖Au‖2

L2

= ‖u′‖2
L2 + ‖Au‖2

L2 .

Thus, it is established that operator L0 is formally normal in L2. �

Remark 2.6. If An ∈ B(H), n ≥ 1 and supn≥1 ‖An‖ ≤ c < +∞, then D(L0) =
D(L+

0 ) and D(L) = D(L+).
If AW 1

2 ⊂ L2, then D(L0) = D(L+
0 ) and D(L) = D(L+).

3. Description of normal extensions of the minimal operator

In this section the main purpose is to describe all normal extensions of the
minimal operator L0 in L2 in terms in the boundary values of the endpoints of
the subintervals. Firstly, we will show that there exists normal extension of the
minimal operator L0. Consider the following extension of the minimal operator L0,

L̃u := u′ + Au, AW 1
2 ⊂ W 1

2 ,

D(L̃) = {u = (un) ∈ W 1
2 : un(an) = un(bn), n ≥ 1}.
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Under the condition on the coefficient A, we have

(L̃u, v)L2 = (u′, v)L2 + (Au, v)L2

= (u, v)′L2 + (u,−v′ + Av)L2

=
∞∑

n=1

[(un(bn), vn(bn))Hn − (un(an), vn(an))Hn ] + (u,−v′ + Av)L2

From this it is obtained that

L̃∗v := −v′ + Av,

D(L̃∗) = {v = (vn) ∈ W 1
2 : vn(an) = vn(bn), n ≥ 1}.

In this case it is clear that D(L̃) = D(L̃∗). On the other hand, since for each
u ∈ D(L̃),

‖L̃u‖2
L2 = ‖u′‖2

L2 + [(u′, Au)L2 + (Au, u′)L2 ] + ‖Au‖2
L2 ,

‖L̃∗u‖2
L2 = ‖u′‖2

L2 − [(u′, Au)L2 + (Au, u′)L2 ] + ‖Au‖2
L2

and

(u′, Au)L2 + (Au, u′)L2 = (u, Au)′L2

=
∞∑

n=1

[(un(bn), Anun(bn))Hn − (un(an), Anun(an))Hn ] = 0.

Then ‖L̃u‖L2 = ‖L̃∗u‖L2 for every u ∈ D(L̃). Consequently, L̃ is a normal extension
of the minimal operator L0.

The following result establishes the relationship between normal extensions of
L0 and normal extensions of Ln0, n ≥ 1.

Theorem 3.1. The extension L̃ = ⊕∞n=1L̃n of the minimal operator L0 in L2 is a
normal if and only if for any n ≥ 1, L̃n is so in L2

n.

Proof. Let L̃ = ⊕∞n=1L̃n be a normal extension of the minimal operator L0 =
⊕∞n=1Ln0. In this case it is clear that for each n ≥ 1 an operator L̃n : D(L̃n) ⊂
L2

n → L2
n defined by

L̃nun = Lnun, D(L̃n) = PnD(L̃),

where Pn is an orthogonal projection operator from L2 to L2
n, is a normal extension

of the minimal operator Ln0. On the contrary, assume that L̃n : D(L̃n) ⊂ L2
n → L2

n

is any normal extension of the minimal operator for each n ≥ 1, and L̃ := ⊕∞n=1L̃n.
In this case for any u = (un) ∈ D(L̃) we have ‖L̃u‖L2 =

∑∞
n=1 ‖L̃nun‖2

L2
n

< +∞.

Since for any n ≥ 1, L̃n is a normal extension, it follows that un ∈ D(L̃n), n ≥ 1 and∑∞
n=1 ‖L̃n

∗
un‖2

L2
n

=
∑∞

n=1 ‖L̃nun‖2 < +∞. From this for every u = (un) ∈ D(L̃)

it is obtained that (un) ∈ D(L̃∗); i.e., D(L̃) ⊂ D(L̃∗).
In the similar way it can be shown that D(L̃∗) ⊂ D(L̃). Hence D(L̃) = D(L̃∗).

On the other hand for any n ≥ 1 since L̃n is a normal extension, then for each
u = (un) ∈ D(L̃),

‖L̃u‖2
L2 =

∞∑
n=1

‖L̃nun‖2
L2

n
=

∞∑
n=1

‖L̃n

∗
un‖2

L2
n

= ‖L̃∗u‖2
L2 < +∞.
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This complete the proof. �

Now using Theorem 3.1 and [8] we can formulate the following main result of
this section, where it is given a description of all normal extension of the minimal
operator L0 in L2 in terms of boundary values of vector functions at the endpoints
of subintervals.

Theorem 3.2. Let A1/2W 1
2 ⊂ W 1

2 . If L̃ = ⊕∞n=1L̃n is a normal extension of the
minimal operator L0 in L2, then it is generated by differential-operator expression
(2.1) with boundary conditions

un(bn) = Wnun(an), un ∈ D(Ln), (3.1)

where Wn is a unitary operator in Hn and WnA−1
n = A−1

n Wn, n ≥ 1. The unitary
operator W = ⊕∞n=1Wn in H = ⊕∞n=1Hn is determined uniquely by the extension
L̃; that is, L̃ = LW .

On the contrary, the restriction of the maximal operator L to the linear manifold
u ∈ D(L) satisfying the condition (3.1) with any unitary operator W = ⊕∞n=1Wn

in H with property WA−1 = A−1W is a normal extension of the minimal operator
L0 in L2.

4. Some compactness properties of the normal extensions

In this work Hn,Hn,Hn, n ≥ 1 will denoted Hilbert spaces. First, we prove the
following result.

Theorem 4.1. For the point spectrum of A = ⊕∞n=1An in the direct sum H =
⊕∞n=1Hn of Hilbert spaces Hn, n ≥ 1, it is true that

σp(A ) = ∪∞n=1σp(An)

Proof. Let λ ∈ σp(A ). In this case there exist non zero element u = (un) ∈ D(A )
such that Au = λu, u 6= 0; i.e., Anun = λun, n ≥ 1. Since u 6= 0, then there
exist some m ∈ N such that um 6= 0 and Amum = λum. This means that λ ∈
σp(Am). From this it is obtained that σp(A ) ⊂ ∪∞n=1σp(An). On the contrary, if
for any m ∈ N, λ ∈ σp(Am), then there exist um ∈ D(Am) such that um 6= 0 and
Amum = λum. In this case, if we choose the element u∗ := {0, 0, . . . , um, 0, . . . },
then u∗ ∈ D(A ), u∗ 6= 0 and Au∗ = λu∗. Hence λ ∈ σp(A ). This implies that
∪∞n=1σp(An) ⊂ σp(A ). Therefore, the claim of the theorem is valid. �

Theorem 4.2 ([10]). Let An ∈ B(Hn), n ≥ 1, A = ⊕∞n=1An and H = ⊕∞n=1Hn.
In order to A ∈ B(H ) the necessary and sufficient condition is supn≥1 ‖An‖ <
+∞. In this case ‖A ‖ = supn≥1 ‖An‖.

Let C∞(·) and Cp(·), 1 ≤ p < ∞ denote the class of compact operators and the
Schatten-von Neumann subclasses of compact operators in corresponding spaces
respectively.

Definition 4.3 ([4]). Let T be a linear closed and densely defined operator in any
Hilbert space H . If ρ(T ) 6= ∅ and for λ ∈ ρ(T ) the resolvent operator Rλ(T ) ∈
C∞(H ), then operator T : D(T ) ⊂ H → H is called an operator with discrete
spectrum.

First we note the following result.
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Theorem 4.4. If the operator A = ⊕∞n=1An as an operator with discrete spectrum
in H = ⊕∞n=1Hn, then for every n ≥ 1 the operator An is so in Hn.

Remark 4.5. Unfortunately, the converse of the Theorem 4.4 is not true in general
case. Indeed, consider the sequence of operators Anun = un, 0 < dim Hn = dn <
∞, n ≥ 1. In this case for every n ≥ 1 operator An is an operator with discrete
spectrum. But an inverse of the direct sum operator A = ⊕∞n=1An is not compact
operator in H = ⊕∞n=1Hn, because dim H = ∞ and A is an identity operator in
H .

Theorem 4.6. If A = ⊕∞n=1An,An is an operator with discrete spectrum in Hn,
n ≥ 1, ∩∞n=1ρ(An) 6= ∅ and for any λ ∈ ∩∞n=1ρ(An), limn→∞ ‖Rλ(An)‖ = 0, then
A is an operator with discrete spectrum in H .

Proof. For each λ ∈ ∩∞n=1ρ(An) we have Rλ(An) ∈ C∞(Hn), n ≥ 1. Now define
the operators Km : H → H , m ≥ 1, as

Km := {Rλ(A1)u1, Rλ(A2)u2, . . . , Rλ(Am)um, 0, 0, . . . }, u = (un) ∈ H .

The convergence of the operators Km to the operator K in operator norm will be
investigated. For u = (un) ∈ H , we have

‖Kmu−K u‖2
H =

∞∑
n=m+1

‖Rλ(An)un‖2
Hn

≤
∞∑

n=m+1

‖Rλ(An)‖2‖‖un‖2
Hn

≤
(

sup
n≥m+1

‖Rλ(An)‖
)2 ∞∑

n=1

‖un‖2
Hn

=
(

sup
n≥m+1

‖Rλ(An)‖
)2

‖u‖2
H

thus we get ‖Kmu − K u‖ ≤ supn≥m+1 ‖Rλ(An)‖, m ≥ 1. This implies that
sequence of operators (Km) converges in operator norm to the operator K . Then
by the important theorem of the theory of compact operators it implies that K ∈
C∞(H ) [2], because for any m ≥ 1, Km ∈ C∞(H ). �

Using the Theorem 3.2 and Theorem 4.6 can be proved the following result.

Theorem 4.7. If A−1
n ∈ C∞(Hn), n ≥ 1, supn≥1(bn − an) < ∞ and the sequence

of first minimal eigenvalues λ1(An) of the operators An, n ≥ 1 satisfy the condition

λ1(An) →∞ as n →∞,

then the normal extension L̃ of the minimal operator L0 is an operator with discrete
spectrum in L2.

From the definition of the characteristic numbers µ(.) of any compact operator
in any Hilbert space [2] and Theorem 4.1 it is easy to prove that the validity of the
following result.

Theorem 4.8. (i) If A = ⊕∞n=1An, H = ⊕∞n=1Hn and A ∈ C∞(H ), then
for every n ≥ 1, An ∈ C∞(Hn) and {µm(A ) : m ≥ 1} = ∪∞n=1{µk(An) :
k ≥ 1};
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(ii) If A = ⊕∞n=1An, H = ⊕∞n=1Hn and A ∈ Cp(H ), 1 ≤ p ≤ +∞, then for
every n ≥ 1, An ∈ Cp(Hn).

Theorem 4.9. Let H = ⊕∞n=1Hn, A = ⊕∞n=1An and An ∈ Cp(Hn), n ≥ 1,
1 ≤ p < ∞. In this case A ∈ Cp(H ) if and only if the series

∑∞
n=1

∑∞
k=1µ

p
k(An)

is convergent.

Proof. Let us A ∈ Cp(H ). Then the series
∑∞

m=1 µp
m(A ) is convergent. In this

case by the Theorem 4.8 (i) and important theorem on the convergence of rearrange-
ment series it is obtained that the series

∑∞
n=1

∑∞
k=1µ

p
k(An) is convergent.

On the contrary, if the series
∑∞

n=1

∑∞
k=1µ

p
k(An) is convergent, then the series∑∞

m=1 µp
m(A ) being a rearrangement of the above series, is also convergent. So

A ∈ Cp(H ). �

Now we will present an application the last theorem. For all n ≥ 1, Let Hn be
a Hilbert space, ∆n = (an, bn), −∞ < an < bn < an+1 < · · · < ∞, An : D(An) ⊂
Hn → Hn, An = A∗

n ≥ E,Un : Hn → Hn is unitary operator, A−1
n Un = UnA−1

n ,
LUnun = u′n + Anun, AnW 1

2 (Hn,∆n) ⊂ W 1
2 (Hn,∆n),

Hn = L2(Hn,∆n), D(LUn) = {un ∈ W 1
2 (Hn,∆n) : un(bn) = Unun(an)},

LUn
: Hn → Hn, U = ⊕∞n=1Un, LU = ⊕∞n=1LUn

, H = ⊕∞n=1Hn and h =
supn≥1(bn − an) < ∞.

Since for all n ≥ 1, Un is a unitary operator in Hn, then LUn is normal operator
in Hn [6]. Also for LU : D(LU ) ⊂ H → H, the relation LULU∗ = LU∗LU is true;
i.e., LU is a normal operator in H. It is known that if A−1

n ∈ Cp(Hn) for p > 1, then
L−1

Un
∈ C2p(Hn), p > 1 for all n ≥ 1[6]. On the other hand, if A−1

n ∈ C∞(Hn), n ≥ 1,
then eigenvalues λq(LUn), q ≥ 1 of operator LUn is in the form

λq(LUn
) = λm(An) +

i

an − bn
(arg λm(U∗

ne(−An(bn−an))) + 2kπ),

where m ≥ 1, k ∈ Z, n ≥ 1, q = q(m, k) ∈ N. Therefore, we have the following
result.

Theorem 4.10. If A = ⊕∞n=1An,H = ⊕∞n=1Hn and A−1 ∈ Cp/2(H), 2 < p < ∞,
then L−1

U ∈ Cp(H).

Proof. The operator LU is a normal in H. Consequently, for the characteristic
numbers of normal operator L−1

U an equality µq(L−1
U ) = |λq(L−1

U )|, q ≥ 1 holds [2].
Now we search for convergence of the series

∑∞
q=1 µp

q(L
−1
U ), 2 < p < ∞.

∞∑
n=1

∞∑
q=1

µp
q(L

−1
Un

)

=
∞∑

n=1

∞∑
k=−∞

∞∑
m=1

(
λ2

m(An) +
1

(bn − an)2
(δ(m,n) + 2kπ)2

)−p/2

≤
∞∑

n=1

∞∑
k=−∞

∞∑
m=1

(
λ2

m(An) +
4k2π2

(bn − an)2
)−p/2

≤
∞∑

n=1

∞∑
m=1

(λ2
m(An))−p/2 + 2

∞∑
n=1

∞∑
k=1

∞∑
m=1

(
λ2

m(An) +
4k2π2

(bn − an)2
)−p/2
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where δ(m,n) = argλm(U∗
ne(−An(bn−an))), n ≥ 1, m ≥ 1. Then from the inequality

|ts|
t2+s2 ≤ 1

2 for all t, s ∈ R \ {0} and last equation we have the inequality
∞∑

n=1

∞∑
k=1

∞∑
m=1

(
λ2

m(An) +
4k2π2

(bn − an)2
)−p/2

≤ 2−pπ−p/2hp/2
( ∞∑

n=1

∞∑
m=1

| 1
λm(An)

|p/2
∞∑

k=1

|1
k
|p/2

)
Since A−1 ∈ Cp/2(H), then the series

∑∞
n=1

∑∞
m=1 |λm(An)|−p/2 is convergent.

Thus the series
∞∑

n=1

∞∑
k=1

∞∑
m=1

(
λ2

m(An) +
4k2π2

(bn − an)2
)−p/2

is also convergent. Then from the relation
∞∑

n=1

∞∑
m=1

|λm(An)|−p ≤
∞∑

n=1

∞∑
m=1

|λm(An)|−p/2

and the convergence of the series
∑∞

n=1

∑∞
m=1 |λm(An)|−p/2 we get that the series∑∞

n=1

∑∞
m=1 |λm(An)|−p is convergent too. Consequently the series

∑∞
q=1 µp

q(L
−1
U ),

2 < p < ∞ is convergent and thus L−1
U ∈ Cp(H), 2 < p < ∞. �

Theorems 4.8 and 4.9. can be can generalized as follows.

Corollary 4.11. For n ≥ 1, let An ∈ Cpn(Hn), 1 ≤ pn < ∞ and p = supn≥1 pn <

∞. Then A = ⊕∞n=1An ∈ Cp(H ) if and only if the series
∑∞

n=1

∑∞
k=1 µp

k(An)
converges.

Proof. In this case for each n ≥ 1, An ∈ Cp(Hn). So, by using Theorem 4.8(i), the
validity of the proposition is clear. �

The following result it is obtained from the above claim.

Corollary 4.12. If for any n ≥ 1, A−1
n ∈ Cpn/2(Hn), 2 < p = supn≥1 pn < ∞,

and
∑∞

n=1

∑∞
k=1 µ

p/2
k (A−1

n ) < +∞,
then L−1

U ∈ Cp(H).

Proof. Indeed, by Corollary 4.11 the operator A−1 ∈ Cp/2(H) and A−1 = ⊕∞n=1A
−1
n ,

H = ⊕∞n=1Hn. Consequently, from Theorem 4.10 it follows that L−1
U ∈ Cp(H). �

Corollary 4.11 can be generalized the following sense.

Theorem 4.13. Let H = ⊕∞n=1Hn, A = ⊕∞n=1An ∈ L(H ), for each n ≥
1, 1 ≤ pn < +∞, An ∈ Cpn(Hn) and p = supn≥1pn < +∞. If the series∑∞

n=1

∑∞
k=1 µpn

k (An) is convergent, then A ∈ Cp(H ).

Proof. If for every n ≥ 1, ‖An‖ ≤ 1, then the validity of the above theorem is clear
from Corollary 4.11 and the inequality

∞∑
n=1

∞∑
k=1

µp
k(An) ≤

∞∑
n=1

∞∑
k=1

µpn

k (An) < +∞ .

Now consider the general case. In this case the operator A can be written in form

A = CB, C = ⊕∞n=1((1 + ‖An‖)En), B = ⊕∞n=1(
An

1 + ‖An‖
),
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here supn≥1 ‖(1 + ‖An‖)En‖ = 1 + supn≥1 ‖An‖ < +∞. Then from Theorem 4.2
it is obtained that C ∈ L(H ).

On the other hand, since ‖Bn‖ = ‖An‖
1+‖An‖ ≤ 1, n ≥ 1, and

∞∑
n=1

∞∑
k=1

µpn

k (Bn) =
∞∑

n=1

∞∑
k=1

µpn

k (An)
(1 + ‖An‖)pn

≤
∞∑

n=1

∞∑
k=1

µpn

k (An) < +∞,

then from Theorem 4.13, B ∈ Cp(H ) with p = supn≥1 pn. So, on the important
result of the operator theory A = CB ∈ Cp(H ) [2]. �

The following results give some information in case when supn≥1 pn = +∞.

Theorem 4.14. Let H = ⊕∞n=1Hn, A = ⊕∞n=1An ∈ L(H ), for each n ≥ 1,
An ∈ Cpn(Hn), 1 ≤ pn < +∞, pn = inf{α ∈ [1,+∞) : An ∈ Cα(Hn)} and
supn≥1 pn = +∞. Then for every p, 1 ≤ p < +∞,A /∈ Cp(H ).

Proof. Assume that for some p, 1 ≤ p < +∞, A ∈ Cp(H ). Then by the Theorem
4.8 (ii), for every n ≥ 1, An ∈ Cp(Hn), 1 ≤ p < +∞. Since supn≥1 pn = +∞, then
there exist pm, 1 ≤ pm < +∞ such that p < pm and Am ∈ Cpm(Hm). On the other
hand since Cp ⊂ Cpm and Cp 6= Cpm , pn = inf{α ∈ [1,+∞) : An ∈ Cα(Hn)}, then
Am /∈ Cp(Hm). This contradiction shows that the claim of the theorem is true. �

Corollary 4.15. Let H = ⊕∞n=1Hn, A = ⊕∞n=1An ∈ L(H ), for every n ≥ 1
An ∈ Cpn(Hn), 1 ≤ pn ≤ +∞, pn = inf{α ∈ [1,+∞) : An ∈ Cα(Hn)} and
supn≥1pn = +∞. If for some m ∈ N, Am ∈ C∞(Hm), then for every p, 1 ≤ p <
+∞, A /∈ Cp(H ).
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