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COMPACTNESS RESULTS FOR QUASILINEAR PROBLEMS
WITH VARIABLE EXPONENT ON THE WHOLE SPACE

OLFA ALLEGUE, ASMA KAROUI SOUAYAH

Abstract. In this work we give a compactness result which allows us to prove
the point-wise convergence of the gradients of a sequence of solutions to a quasi-
linear inequality and for an arbitrary open set. This result suggests solutions
to many problems, notably nonlinear elliptic problems with critical exponent.

1. Introduction and preliminary results

In their recent work El Hamidi and Rakotoson [5] gave a compactness result
to prove the point-wise convergence of the gradients of a sequence of solutions to
a general quasilinear inequality and for an arbitrary open set. They proved the
following result.

Lemma 1.1. Let â be a Carathéodory function from RN×R×R into RN satisfying
the usual Leray-Lions growth and monotonicity conditions. Let (un) be a bounded
sequence of W 1,p

loc (RN ) = {v ∈ Lp
loc(RN ), |∇v| ∈ Lp

loc(RN )}, with 1 < p < +∞, (fn)
be a bounded sequence of L1

loc(RN ) and (gn) be a sequence of W−1,p′

loc (RN ) tending
strongly to zero. Assume that (un) satisfies:∫

RN

â(x, un(x),∇un(x)).∇φdx =
∫

RN

fnφdx + 〈gn, φ〉,

for all φ ∈ W 1,p
comp(RN ) = {v ∈ W 1,p(RN ), with compact support}, φ bounded.

Then:
(1) there exists a function u such that un(x) → u(x) a.e. in RN ,
(2) u ∈ W 1,p

loc (RN ),
(3) there exists a subsequence, still denoted (un), such that ∇un(x) → ∇u(x)

a.e. in RN .

In the present work, we generalize Lemma 1.1 for the p(x)-Laplace operator. Our
principal result can be applied to a large class of quasilinear elliptic problems where
there holds a lack of compactness, especially for the critical exponent equations.

In the sequel, we start with some preliminary basic results on the theory of
Lebesgue-Sobolev spaces with variable exponent. We refer to the book by Musielak
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[19], the papers by Kovacik and Rakosnik [13] and by Fan et al. [6, 7, 8]. Set

C+(Ω) = {h ∈ C(Ω) : h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u : u is a Borel real-valued function on Ω,

∫
Ω

|u(x)|p(x) dx < ∞}.

We define on Lp(x), the so-called Luxemburg norm, by the formula

|u|p(x) := inf
{
µ > 0 :

∫
Ω

|u(x)
µ

|p(x) dx ≤ 1
}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
aspects: they are separable and Banach spaces [13, Theorem 2.5; Corollary 2.7] and
the Hölder inequality holds [13, Theorem 2.1]. The inclusions between Lebesgue
spaces are also naturally generalized [13, Theorem 2.8]: if 0 < |Ω| < ∞ and r1, r2

are variable exponents so that r1(x) ≤ r2(x) almost everywhere in Ω then there
exists the continuous embedding Lr2(x)(Ω) ↪→ Lr1(x)(Ω).

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x) =
1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder type inequality∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x), (1.1)

is held.
An important role in manipulating the generalized Lebesgue-Sobolev spaces

is played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) :
Lp(x)(Ω) → R defined by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

The space W 1,p(x)(Ω) is equipped by the norm

‖u‖ = |u|p(x) + |∇u|p(x).

We recall that if (un), u,∈ W 1,p(x)(Ω) and p+ < ∞ then the following relations
hold:

min(|u|p
−

p(x), |u|
p+

p(x)) ≤ ρp(x)(u) ≤ max(|u|p
−

p(x), |u|
p+

p(x)), (1.2)

min(|∇u|p
−

p(x), |∇u|p
+

p(x)) ≤ ρp(x)(|∇u|) ≤ max(|∇u|p
−

p(x), |∇u|p
+

p(x)), (1.3)

|u|p(x) → 0 ⇔ ρp(x)(u) → 0,

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0,

|un|p(x) →∞ ⇔ ρp(x)(un) →∞.

(1.4)

We define also W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖p(x) = |∇u|p(x).

The space (W 1,p(x)
0 (Ω), ‖ · ‖) is a separable and reflexive Banach space.
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Next, we recall some embedding results regarding variable exponent Lebesgue-
Sobolev spaces. We note that if s(x) ∈ C+(Ω) and s(x) < p∗(x) for all x ∈ Ω
then the embedding W

1,p(x)
0 (Ω) ↪→ Ls(x)(Ω) is compact and continuous, where

p∗(x) = Np(x)/(N − p(x)) if p(x) < N or p∗(x) = +∞ if p(x) ≥ N . We refer to
[13] for more properties of Lebesgue and Sobolev spaces with variable exponent.
We also refer to the recent papers [1, 3, 4, 10, 11, 16, 17, 18] for the treatment
of nonlinear boundary value problems in Lebesgue-Sobolev spaces with variable
exponent. For relevant applications and related results we refer to the recent books
by Ghergu and Rădulescu [9] and Kristály, Rădulescu and Varga [12].

2. Notation and compactness result

Let Ω be an arbitrary open set of RN , we shall denote by ω ⊂⊂ Ω any relatively
compact open subset ω of Ω (that is ω ⊂ Ω, where ω is the closure of ω). Let
1 < p(x) < +∞, we set

W
1,p(x)
loc (Ω) = {v ∈ L

p(x)
loc (Ω);∇v ∈ L

p(x)
loc (Ω)}.

For a given q(x) ∈ (1,+∞), we denote by q′(x) := q(x)
q(x)−1 its conjugate exponent.

We shall use the following globally real Lipschitz functions: For ε > 0, σ ∈ R, let

Sε(σ) =

{
σ if |σ| ≤ ε

ε sign(σ) otherwise,

and σk := Sk(σ) for k ≥ 1.
We shall consider a nonlinear map â : Ω×R×RN → RN satisfying the following

conditions:
(L1) â(x, ., .) is a continuous map for almost every x and for all (σ, ξ) ∈ R×RN ,

â(., σ, ξ) is measurable (such a property is called Carathéodory property),
(L2) â maps bounded sets of W

1,p(x)
loc (Ω) into bounded sets of L

p′(x)
loc (Ω), and for

almost all x ∈ Ω, for all (σ, ξ) in R × RN , â(x, σ, ξ) · ξ ≥ 0, for almost
every x ∈ Ω and for all v ∈ W

1,p(x)
loc (Ω), the mapping u 7→ â(x, u,∇v) is

continuous from W 1,p(x)(ω)-weak into Lp′(x)(ω)-strong, for all ω ⊂⊂ Ω,
(L3) for almost every x ∈ Ω, for all (σ, ξi) ∈ R× RN , i = 1, 2,

[â(x, σ, ξ1)− â(x, σ, ξ2)][ξ1 − ξ2] > 0, for ξ1 6= ξ2.

(L4) if for some x ∈ Ω, there is a sequence (σn, ξ1n) ∈ R × RN , ξ2 ∈ RN such
that [â(x, σn, ξ1n)− â(x, σn, ξ2)][ξ1n − ξ2] and σn are bounded as n → +∞
then |ξ1n| remains in a bounded set of R as n → +∞.

As a corollary of our main result, we state the following result.

Lemma 2.1. Let â be a Carathéodory function from RN×R×R into RN satisfying
the usual Leray-Lions growth and monotonicity conditions. Let (un) be a bounded
sequence of

W
1,p(x)
loc (RN ) = {v ∈ L

p(x)
loc (RN ), |∇v| ∈ L

p(x)
loc (RN )},

with 1 < p(x) < +∞, (fn) be a bounded sequence of L1
loc(RN ) and (gn) be a sequence

of W
−1,p′(x)
loc (RN ) tending strongly to zero. Assume that (un) satisfies∫

RN

a(x, un(x),∇un(x)).∇φdx =
∫

RN

fnφdx + 〈gn, φ〉,
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for all φ ∈ W
1,p(x)
comp (RN ) = {W 1,p(x)(RN ) with compact support}, φ bounded. Then:

(1) there exists a function u such that un(x) → u(x) a.e in RN ,
(2) u ∈ W

1,p(x)
loc (RN ),

(3) there exists a subsequence, still denoted (un), such that ∇un(x) → ∇u(x)
a.e. in RN .

This Lemma generalizes the result in [5, Lemma 1], and it will be used for
the critical exponent equation, to show that suitable Palais-Smale sequences are
relatively compact. Our main result is concerned with the convergence almost
everywhere of the gradients.

Theorem 2.2. Let (un) be a bounded sequence of W
1,p(x)
loc (Ω). Then

(i) There is a subsequence still denoted (un) and a function u ∈ W
1,p(x)
loc (Ω)

such that
un(x) → u(x) a.e. in Ω as n → +∞

(ii) If furthermore, we assume (L1)–(L4) and that for all φ ∈ C∞
c (Ω), and all

k ≥ k0 > 0:

lim sup
n→+∞

∫
Ω

â(x, un(x),∇un(x)) · ∇(φSε(un − uk)) ≤ o(1)

as ε → 0 then there exists a subsequence still denoted (un) such that

∇un(x) → ∇u(x) a.e. in Ω as n → +∞.

Remark 2.3. (1) The term o(1) in (ii) might depend on k and φ.
(2) (L2) is satisfied if for all ω ⊂⊂ Ω, there is a constant cω > 0 and a function

a0 ∈ Lp′(x)(ω) such that for almost every x ∈ ω, for all (σ, ξ) ∈ R× RN :

|â(x, σ, ξ)| ≤ cω[|σ|p(x)−1 + |ξ|p(x)−1 + a0(x)].

and (L4) is true if â(x, σ, ξ) · ξ ≥ c1
ω|ξ|p(x) − c2

ω, c1
ω > 0.

(3) Bounded sets in W
1,p(x)
loc (Ω) will be bounded in

W 1,p(x)(ω) = {v ∈ Lp(x)(ω),∇v ∈ Lp(x)(ω)}, for every ω ⊂⊂ Ω.

Proof of theorem 2.2. (i) Let (wj)j≥0 be a sequence of bounded relatively compact
subsets of Ω such that ωj ⊂ ωj+1 and ∪+∞

j=0ωj = Ω. Since (un)n is bounded in
W 1,p(x)(ωj), by the usual embeddings, we deduce that there is a subsequence unj

and a function u in W 1,p(x)(ωj) such that unj (x) → u(x) as n →∞. We conclude
with the usual diagonal Cantor process.

(ii) Let φ ∈ C∞
c (Ω), 0 ≤ φ ≤ 1, φ = 1 on ωj and supp(φ) ⊂ ωj+1, and set

∆(un, u)(x) = [â(x, un(x),∇un(x))− â(x, un(x),∇u(x))]∇(un − u)(x).

Then one has:
(ii.1) ∆(un, u)(x) ≥ 0 a.e. on Ω (due to (L3)).
(ii.2) supn

∫
ωj+1

∆(un, u)dx is finite (since (un) is in a bounded set of W
1,p(x)
loc (Ω)

and the growth condition (L2)).

Let us show that limn

∫
Ω

φ∆(un, u)
1

p(x) dx = 0. On one hand,∫
Ω

φ∆(un, u)
1

p(x) dx =
∫
{|u|>k}

φ∆(un, u)
1

p(x) dx +
∫
{|u|≤k}

φ∆(un, u)
1

p(x) dx. (2.1)
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By the Hölder inequality∫
{|u|>k}

∆(un, u)
1

p(x) φ dx ≤ |∆(un, u)
1

p(x) |p(x)|φ| p(x)
p(x)−1

≤ a1(j)|φ| p(x)
p(x)−1

,

where as(j) are different constants depending on j but independent of n, ε and k.
Noticing that

meas{x ∈ wj+1 : |u| > k} ≤ c1(j)
kp−

,

one deduces that

ρ p(x)
p(x)−1

(φ) =
∫
{|u|>k}

φ
p(x)

p(x)−1 dx ≤ c1(j)
kp−

(2.2)

where cm(j) are different constants depending on j and φ but independent of n, ε
and k. We conclude that

lim sup
n→∞

∫
{|u|>k}

∆(un, u)
1

p(x) φ dx ≤ o(1) as k →∞ (2.3)

While for the second integral, we have∫
{|u|≤k}

∆(un, u)
1

p(x) φdx =
∫
{|u|≤k}∩{|un−u|≤ε|}

∆(un, u)
1

p(x) φdx

+
∫
{|u|≤k}∩{|un−u|>ε}

∆(un, u)
1

p(x) φdx.

(2.4)

Moreover, the second term in the right hand side in the last inequality satisfies∫
{|u|≤k}∩{|un−u|>ε}

∆(un, u)
1

p(x) φ dx ≤ |∆(un, u)
1

p(x) |p(x)|φ| p(x)
p(x)−1

≤ a2(j)|φ| p(x)
p(x)−1

and
ρ p(x)

p(x)−1
(φ) ≤ a2(φ) meas{x ∈ wj+1 : |un − u| > ε}.

Since (un) converges to u in measure, we deduce that, for n sufficiently large,
meas{x ∈ wj+1 : |un − u| > ε} ≤ ε. It follows that

lim sup
n→+∞

∫
{|u|≤k}∩{|un−u|>ε}

∆(un, u)
1

p(x) φdx ≤ o(1) as ε → 0. (2.5)

Setting Aε
n,k = wj+1 ∩ {|u| ≤ k} ∩ {|un − u| ≤ ε}, we obtain from the Hölder

inequality ∫
Aε

n,k

∆(un, u)
1

p(x) φ dx ≤ c2(j)|∆(un, u)
1

p(x) φ
1

p(x) |p(x), (2.6)

and
ρp(x)(∆(un, u)

1
p(x) φ

1
p(x) ) = I1

n,k(ε)− I2
n,k(ε),

with

I1
n,k(ε) =

∫
Aε

n,k

â(x, un,∇un) · ∇(un − u)φdx,

I2
n,k(ε) =

∫
{|u|≤k}

â(x, un,∇u) · ∇Sε(un − u)φdx.

Since â(x, un,∇u) → â(x, u,∇u) strongly in Lp′(x)(wj+1) (by the last statement of
(L2)) and ∇Sε(un − u) ⇀ 0 in Lp(x)(wj+1)-weak, we deduce that

lim
n→+∞

I2
n,k(ε) = 0, (2.7)
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while for the term I1
n,k(ε), we obtain

I1
n,k(ε) ≤

∫
Ω

â(x, un,∇un) ·∇(φSε(un−uk))−
∫

Ω

â(x, un,∇un) ·∇φSε(un−uk)dx.

(2.8)
Since ∣∣ ∫

Ω

â(x, un,∇un) · ∇φSε(un − uk)dx
∣∣ ≤ c3(j)ε; (2.9)

then assumption (ii) implies

lim sup
n→+∞

I1
n,k(ε) ≤ c3(j)ε + ◦(1) as ε → 0. (2.10)

Combining relations (2.6), (2.7) and (2.10), it follows that

lim sup
n→+∞

∫
Aε

n,k

∆(un, u)
1

p(x) φ dx ≤ o(1) as ε → 0. (2.11)

Letting first ε → 0 and then k to infinity, by relations (2.1), (2.3), (2.4), (2.5) and
(2.11), we deduce

lim
n→+∞

∫
Ω

∆(un, u)
1

p(x) φ dx = 0.

We then obtain that for a subsequence (ujn),

∆(ujn
, u)(x) → 0 a.e. on wj .

Arguing as Leray-Lions [14, 15], we deduce from (L4) that ∇ujn(x) → ∇u(x) a.e.
on wj . The proof is achieved by the diagonal process of Cantor. �

Proof of lemma 2.1. Since (un) belongs to a bounded set of W
1,p(x)
loc (RN ), statement

(i) of Theorem 2.2 implies that there is a function u and a subsequence still denoted
by (un) such that

un(x) → u(x) a.e. in RN , as n →∞

and
u ∈ W

1,p(x)
loc (RN ).

Then for all φ ∈ C∞
c (RN ), φSε(un − uk) is an element of W

1,p(x)
comp (RN ) and∣∣ ∫

RN

fnφSε(un − uk)dx
∣∣ ≤ ε|φ|∞|fn|L1(ω) ≤ c(φ)ε, (2.12)

(for every φ such that supp(φ) ⊂ ω, ω is a compact of RN ), and

|〈gn, φSε(un − uk)〉| ≤ |gn|W−1,p′(x)(ω)|φSε(un − uk)|W 1,p(x)(RN ).

Using the fact that |φSε(un − uk)|W 1,p(x)(RN ) is bounded independently of ε, n, k

and that |gn|W−1,p′(x)(ω) → 0, it holds:

lim sup
n

∫
RN

â(x, un,∇un) · ∇(φSε(un − uk))dx ≤ O(ε).

Finally, by Theorem 2.2 we complete the proof. �
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3. Examples of applications

In this section, we are interested in the existence of solutions to the problem

−div
( (
|∇u(x)|p(x)−2

)
∇u(x)

)
= λf(u) + g(u) for x ∈ Ω,

u ≥ 0 for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

(3.1)

where Ω ⊂ RN , (N ≥ 3) is a bounded domain with smooth boundary, λ is a positive
real number and p is a continuous function on Ω with p+ < N .

In the first result, we assume that f and g are continuous and satisfy the following
hypotheses (see [2]):

(F1) There exist positive constants C1, C2 > 0 and q : Ω̄ → R a continuous
function such that

C1t
q(x)−1 ≤ f(t) ≤ C2t

q(x)−1, ∀t ≥ 0.

(G1) There exists a positive constant C3 > 0 such that

|g(t)| ≤ C3|t|p
∗(x)−1, ∀t ∈ R.

(G2) There exists γ ∈ (p+, p∗−] such that

0 < γG(t) ≤ tg(t), ∀t ∈ R,

where G(t) =
∫ t

0
g(s)ds.

We prove the following result.

Theorem 3.1. If 1 < q+ < p∗−, q− < p−, and (F1), (G1).(G2) hold, then there
exists λ∗ such that for all λ ∈ (0, λ∗), problem (3.1) has a non trivial solution.

In the second result, we are concerned with the special case f(u) = −|u|q(x)−2u
and g(u) = |u|p∗(x)−2u. We prove the following result.

Theorem 3.2. For any λ > 0 problem (3.1) has infinitely many weak solutions
provided that p∗− > max(p+, q+).

Proof of Theorem 3.1. Let E denote the generalized Sobolev space W
1,p(x)
0 (Ω).

The energy functional corresponding to (3.1) is Jλ : E → R, defined as

Jλ(u) :=
∫

Ω

1
p(x)

|∇u|p(x)dx− λ

∫
Ω

F (u+)dx−
∫

Ω

G(u+)dx,

where u+(x) = max{u(x), 0} and F is defined by F (t) =
∫ t

0
f(s)ds.

Remark 3.3. Assume that condition (G1) is fulfilled, it is clear that for every
t ≥ 0, we obtain

− C3

p∗−
tp
∗(x) ≤ G(t) ≤ C3

p∗−
tp
∗(x)

Proposition 3.4. The functional Jλ is well-defined on E and Jλ ∈ C1(E, R).

Proof. We have the following continuous embedding (see [13, Theorem 2.8])

W
1,p(x)
0 (Ω) ↪→ Lp∗(x)(Ω)

using the fact that Ω is bounded, we obtain the continuous embedding

W
1,p(x)
0 (Ω) ↪→ Ls(x)(Ω), s ∈ [1, p∗],
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which implies that Jλ is well-defined on E and Jλ ∈ C1(E, R), with the derivative
given by

〈dJλ(u), v〉 =
∫

Ω

(
|∇u|p(x)−2∇u∇v − λf(u)v − g(u)v

)
dx, ∀v ∈ E.

�

The proof of Theorem 3.1 is related to Ekeland’s variational principle. In order
to apply it we need the following lemmas:

Lemma 3.5. Under hypotheses of theorem 3.1, there exists M2 > 0 such that for
all ρ ∈ (0, 1) for all C3 < q−

p+Mp∗−
2

ρp+−q− , there exists λ∗ > 0 and r > 0 such that,

for all u ∈ E with ‖u‖ = ρ, Jλ(u) ≥ r > 0 for all λ ∈ (0, λ∗).

Proof. Since E ↪→ Lq(x)(Ω) and E ↪→ Lp∗(x)(Ω) are continuous, there exists M1 > 0
and M2 > 0 such that

|u|q(x) ≤ M1‖u‖ and |u|p∗(x) ≤ M2‖u‖, ∀u ∈ E. (3.2)

We fix ρ ∈ (0, 1) such that ρ < min(1, 1/M1, 1/M2). Then for all u ∈ E, with
‖u‖ = ρ, we deduce that

|u|q(x) < 1 and |u|p∗(x) < 1.

Furthermore, by (1.2) for all u ∈ E with ‖u‖ = ρ, we have∫
Ω

|u|q(x) dx ≤ |u|q
−

q(x), and
∫

Ω

|u|p
∗(x) dx ≤ |u|p

∗−

p(x).

The above inequality and relation (3.2) imply that for all u ∈ E with ‖u‖ = ρ,∫
Ω

|u|q(x) dx ≤ Mq−

1 ‖u‖q− , and

∫
Ω

|u|p
∗(x) dx ≤ Mp∗−

2 ‖u‖p∗− . (3.3)

Using relation (3.3) we deduce that, for any u ∈ E with ‖u‖ = ρ, the following
inequalities hold:

Jλ(u) ≥ 1
p+
‖u‖p+

− λ

q−
C2M

q−

1 ‖u‖q− − C3

p∗−
Mp∗−

2 ‖u‖p∗− ,

≥ 1
p+

ρp+
− λ

q−
C2M

q−

1 ρq− − C3

p∗−
Mp∗−

2 ρp∗− .

By the above inequality we remark that if we define for all C3 < q−

p+Mp∗−
2

ρp+−q−

λ∗ =
q−

2C2M
q−

1

[ 1
p+

ρp+−q− − C3

q−
Mp∗−

2

]
, (3.4)

then for any λ ∈ (0, λ∗), there exists r > 0 such that Jλ(u) ≥ r > 0 for all u ∈ E
with ‖u‖ = ρ. The proof is complete. �

Lemma 3.6. There exists φ ∈ E such that φ ≥ 0, φ 6= 0 and Jλ(tφ) < 0, for t > 0
small enough.

Proof. Since q− < p−, then let ε0 > 0 be such that q− + ε0 < p−. On the other
hand, since q ∈ C(Ω) it follows that there exists an open set Ω0 ⊂⊂ Ω such that
|q(x)− q−| < ε0 for all x ∈ Ω0. Thus, we conclude that q(x) ≤ q− + ε0 < p− for all



EJDE-2011/90 COMPACTNESS RESULTS 9

x ∈ Ω0. Let φ ∈ C∞
0 (Ω) be such that supp(φ) ⊃ Ω0, φ(x) = 1 for all x ∈ Ω0 and

0 ≤ φ ≤ 1 in Ω. Then using the above information for any t ∈ (0, 1) we have

Jλ(tφ) =
∫

Ω

tp(x)

p(x)
|∇φ|p(x) dx− λ

∫
Ω

F (tφ)dx−
∫

Ω

G(tφ)dx,

≤
∫

Ω

tp(x)

p(x)
|∇φ|p(x) dx− C1λ

∫
Ω

tq(x)

q(x)
|φ|q(x)dx + C3

∫
Ω

tp
∗(x)

p∗(x)
|φ|p

∗(x)dx,

≤ tp
−

p−

∫
Ω

|∇φ|p(x)dx− C1λ

q+

∫
Ω

tq(x)|φ|q(x) + C3
tp
∗−

p∗−

∫
Ω

|φ|p
∗(x) dx,

≤ tp
−

p−
[ ∫

Ω

|∇φ|p(x)dx + C3

∫
Ω

|φ|p
∗(x)dx

]
− λtq

−+ε0

q+

∫
Ω0

|φ|q(x) dx,

=
tp
−

p−
[ ∫

Ω

|∇φ|p(x)dx + C3

∫
Ω

|φ|p
∗(x)dx

]
− λtq

−+ε0

q+
|Ω0|.

Therefore, Jλ(tφ) < 0, for t < δ1/(p−−q−−ε0) with

0 < δ < min{1,
p−λ|Ω0|

q+
[ ∫

Ω
|∇φ|p(x)dx + C3

∫
Ω
|φ|p∗(x)dx

]}.
Finally, we point out that

∫
Ω
|∇φ|p(x)dx + C3

∫
Ω
|φ|p∗(x)dx > 0. In fact if∫

Ω

|∇φ|p(x)dx + C3

∫
Ω

|φ|p
∗(x)dx = 0,

then
∫
Ω
|φ|p∗(x)dx = 0. Using relation (1.2), we deduce that |φ|p∗(x) = 0 and

consequently φ = 0 in Ω which is a contradiction. The proof is complete. �

Proof of theorem 3.1. Let λ∗ be defined as in (3.4) and λ ∈ (0, λ∗). By Lemma
3.5 it follows that on the boundary of the ball centered at the origin and of radius
ρ in E, denoted by Bρ(0), we have

inf
∂Bρ(0)

Jλ > 0. (3.5)

On the other hand, by Lemma 3.6, there exists φ ∈ E such that Jλ(tφ) < 0, for
all t > 0 small enough. Moreover, relations (1.2) and (3.2) imply, that for any
u ∈ Bρ(0), we have

Jλ(u) ≥ 1
p+
‖u‖p+

− λ

q−
Cq−

2 Mq−

1 ‖u‖q− − Cp∗−

3

q−
Mq−

2 ‖u‖p∗− .

It follows that
−∞ < J∞ := inf

Bρ(0)
Jλ < 0.

We let now 0 < ε < inf∂Bρ(0) Jλ − infBρ(0) Jλ. Using the above information, the
functional Jλ : Bρ(0) → R, is lower bounded on Bρ(0) and Jλ ∈ C1(Bρ(0), R).
Then by Ekeland’s variational principle there exists uε ∈ Bρ(0) such that

J∞ ≤ Jλ(uε) ≤ J∞ + ε,

0 < Jλ(u)− Jλ(uε) + ε · ‖u− uε‖, u 6= uε.

Since
Jλ(uε) ≤ inf

Bρ(0)
Jλ + ε ≤ inf

Bρ(0)
Jλ + ε < inf

∂Bρ(0)
Jλ,
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we deduce that uε ∈ Bρ(0).
Now, we define Iλ : Bρ(0) → R by Iλ(u) = Jλ(u) + ε · ‖u− uε‖. It is clear that

uε is a minimum point of Iλ and thus

Iλ(uε + t · v)− Iλ(uε)
t

≥ 0,

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ(uε + t · v)− Jλ(uε)
t

+ ε · ‖v‖ ≥ 0.

Letting t → 0 it follows that 〈dJλ(uε), v〉+ ε · ‖v‖ ≥ 0 we have ‖dJλ(uε)‖ ≤ ε. We
deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

Jλ(un) → J∞ and dJλ(un) → 0E∗ . (3.6)

From where we can conclude that {un} is a bounded (PS)J∞ sequence to Jλ. By
a subsequence still denoted by {un}, we may assume that {un} has a weak limit
uλ ∈ W

1,p(x)
0 (Ω). Moreover, from the definition of the functional Jλ, we can assume

that {un} is a sequence of non negative functions. Now, we need the following
lemma.

Lemma 3.7. The weak limit uλ of {un} is a non negative solution to (3.1) for
λ ∈ (0, λ∗).

Proof. In what follows, we will show dJλ(uλ) = 0 and uλ 6= 0,∀λ ∈ (0, λ∗) which
imply that lemma 3.7 holds true. Firstly note that

Jλ(un) =
∫

Ω

1
p(x)

|∇un|p(x)dx− λ

∫
Ω

F (un+)dx−
∫

Ω

G(un+)dx,

〈dJλ(un), un〉 =
∫

Ω

|∇un|p(x)dx− λ

∫
Ω

f(un)un dx−
∫

Ω

g(un)un dx.

Then Jλ(un) − 1
γ 〈dJλ(un), un〉 = J∞ + on(1). Thus, since uf(u) ≥ 0 for every

u ≥ 0, we obtain∫
Ω

1
p(x)

|∇un|p(x)dx− 1
γ

∫
Ω

|∇un|p(x)dx− λ

∫
Ω

F (un+)dx

+
λ

γ

∫
Ω

f(un)un dx−
∫

Ω

G(un+)dx +
1
γ

∫
Ω

g(un)un dx

≥
( 1
p+

− 1
γ

) ∫
Ω

1
p(x)

|∇un|p(x)dx− λ

∫
Ω

F (un+)dx

+
1
γ

( ∫
Ω

(
g(un)un − γG(un+)

)
dx

)
.

Since γ > p+ and applying (G2) we have

Jλ(un)− 1
γ
〈dJλ(un), un〉 ≥

( 1
p+

− 1
γ

) ∫
Ω

1
p(x)

|∇un|p(x)dx− λ

∫
Ω

F (un+)dx,

≥ −λ

∫
Ω

F (un+)dx,

≥ −λC2

∫
Ω

1
q(x)

uq(x)
n dx.
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Using (1.2) we deduce that −λC2
q+ |un|q

+

q(x) ≤ J∞ + on(1). Moreover W
1,p(x)
0 (Ω) ↪→

Lq(x)(Ω) is compact and passing to the limit as n →∞, we obtain

−λC2

q+
|uλ|q

+

q(x) ≤ J∞ < 0.

We deduce that uλ 6= 0. To conclude that uλ is a solution to (3.1), we use Theorem
2.2, which implies ∇un(x) → ∇uλ(x) a.e. in Ω as n →∞. �

Proof of Theorem 3.2. Now, we are concerned with the special case of problem
(3.1),

−div
((
|∇u(x)|p(x)−2

)
∇u(x)

)
= −λ|u|q(x)−2u + |u|p

∗(x)−2u for x ∈ Ω,

u ≥ 0 for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

(3.7)

where Ω ⊂ RN , (N ≥ 3) is a bounded domain with smooth boundary, λ is a positive
real number and p is a continuous function on Ω. The proof of Theorem 3.2 is based
on a Z2-symmetric version for even functionals of the Mountain pass Theorem (see
[20, Theorem 9.12]).

The energy functional corresponding to the problem (3.7) is Jλ : E → R, defined
as

Jλ(u) :=
∫

Ω

1
p(x)

|∇u|p(x)dx + λ

∫
Ω

1
q(x)

|u|q(x)dx−
∫

Ω

1
p∗(x)

|u|p
∗(x)dx,

It is clear that the functional Jλ is well-defined on E and Jλ ∈ C1(E, R), with the
derivative given by

〈dJλ(u), v〉 =
∫

Ω

(
|∇u|p(x)−2∇u∇v + λ|u|q(x)−2uv − |u|p

∗(x)−2uv
)
dx, ∀v ∈ E.

To use the mountain pass theorem, we need the following lemmas:

Lemma 3.8. For any λ > 0 there exists r, a > 0 such that Jλ(u) ≥ a > 0 for any
u ∈ E with ‖u‖ = r.

Proof. Recall that E is continuously embedded in Lp∗(x)(Ω). So there exists a
positive constant C4 such that, for all u ∈ E,

|u|p∗(x) ≤ C4‖u‖. (3.8)

Suppose that ‖u‖ < min(1, 1
C4

), then for all u ∈ E with ‖u‖ = ρ we have |u|p∗(x) <

1. Furthermore, relation (1.2) yields for all u ∈ E with ‖u‖ = ρ we have∫
Ω

|u|p
∗(x) dx ≤ |u|p

∗−

p∗(x).

The above inequality and relation (3.8) imply that for all u ∈ E with ‖u‖ = ρ, we
have ∫

Ω

|u|p
∗(x) dx ≤ Cp∗−

4 ‖u‖p∗− . (3.9)

Then using relation (3.9), we deduce that, for any u ∈ E with ‖u‖ = ρ, the following
inequalities hold

Jλ(u) ≥ 1
p+

∫
Ω

|∇u|p(x)dx− 1
p∗−

∫
Ω

|u|p
∗(x) dx,
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≥ 1
p+
‖u‖p+

− 1
p∗−

Cp∗−

4 ‖u‖p∗− .

Let h(t) = 1
p+ tp

+ − 1
p∗−Cp∗−

4 tp
∗−

, t > 0. It is easy to see that h(t) > 0 for all

t ∈ (0, t1), where t1 <
(

p∗−

p+Cp∗−
4

) 1
p∗−−p+ .

So for any λ > 0, we can choose r, a > 0 such that Jλ(u) ≥ a > 0 for all u ∈ E with
‖u‖ = r. The proof is complete. �

Lemma 3.9. If E1 ⊂ E is a finite dimensional subspace, the set S = {u ∈
E1;Jλ(u) ≥ 0} is bounded in E.

Proof. We have∫
Ω

1
p(x)

|∇u|p(x) dx ≤ K1(‖u‖p− + ‖u‖p+
) ∀u ∈ E, (3.10)

where K1 is a positive constant. Also we have∫
Ω

|u|q(x) dx ≤ |u|q
−

q(x) + |u|q
+

q(x) ∀u ∈ E. (3.11)

The fact that E is continuously embedded in Lq(x)(Ω), assures the existence of a
positive constant C5 such that

|u|q(x) ≤ C5‖u‖ ∀u ∈ E. (3.12)

The last two inequalities show that there exists a positive constant K2(λ) such that

λ

∫
Ω

1
q(x)

|u|q(x) dx ≤ K2(λ)
(
‖u‖q− + ‖u‖q+

)
∀u ∈ E. (3.13)

By inequalities (3.10) and (3.13), we obtain

Jλ(u) ≤ K1(‖u‖p− +‖u‖p+
)+K2(λ)

(
‖u‖q− + ‖u‖q+

)
− 1

p∗+

∫
Ω

|u|p
∗(x) dx, (3.14)

for all u ∈ E.
Let u ∈ E be arbitrary but fixed. We define

Ω< = {x ∈ Ω; |u(x)| < 1}. Ω≥ = Ω\Ω<.

Then we have

Jλ(u) ≤ K1(‖u‖p− + ‖u‖p+
) + K2(λ)

(
‖u‖q− + ‖u‖q+)

− 1
p∗+

∫
Ω

|u|p
∗(x) dx,

≤ K1(‖u‖p− + ‖u‖p+
) + K2(λ)

(
‖u‖q− + ‖u‖q+)

− 1
p∗+

∫
Ω≥

|u|p
∗(x) dx,

≤ K1(‖u‖p− + ‖u‖p+
) + K2(λ)

(
‖u‖q− + ‖u‖q+)

− 1
p∗+

∫
Ω≥

|u|p
∗−

dx,

≤ K1(‖u‖p− + ‖u‖p+
) + K2(λ)

(
‖u‖q− + ‖u‖q+)

− 1
p∗+

∫
Ω

|u|p
∗−

dx

+
1

p∗+

∫
Ω<

|u|p
∗−

dx.

But there exists positive constant K3 such that
1

p∗+

∫
Ω<

|u|p
∗−

dx ≤ K3 ∀u ∈ E.
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The functional |.|p∗− : E → R defined by

|u|p∗− =
( ∫

Ω

|u|p
∗−

dx
)1/p∗−

is a norm in E. In the finite dimensional subspace E1 the norm |u|p∗− and ‖u‖ are
equivalent, so there exists a positive constant K = K(E1) such that

‖u‖ ≤ K|u|p∗− ∀u ∈ E1.

So that there exists a positive constant K4 such that

Jλ(u) ≤ K1(‖u‖p− +‖u‖p+
)+K2(λ)

(
‖u‖q− +‖u‖q+)

+K3−K4‖u‖p∗− , ∀u ∈ E1.

Hence

K1(‖u‖p− + ‖u‖p+
) + K2(λ)

(
‖u‖q− + ‖u‖q+)

+ K3 −K4‖u‖p∗− ≥ 0, ∀u ∈ S.

And since p∗− > max(p+, q+), we conclude that S is bounded in E. �

Lemma 3.10. If {un} ⊂ E is a sequence which satisfies the properties

|Jλ(un)| < C6, (3.15)

dJλ(un) → 0 as n →∞, (3.16)

where C6 is a positive constant, then {un} possesses a convergent subsequence.

Proof. First we show that {un} is bounded in E. If not,we may assume that
‖un‖ → ∞ as n → ∞. Thus we may consider that ‖un‖ > 1 for any integer n.
Using (3.16) it follows that there exists N1 > 0 such that for any n > N1 we have

‖dJλ(un)‖ ≤ 1.

On the other hand, for all n > N1 fixed, the application E 3 v → 〈dJλ(un), v〉 is
linear and continuous. The above information yield that

|〈dJλ(un), v〉| ≤ ‖dJλ(un)‖‖v‖ ≤ ‖v‖ ∀v ∈ E, n > N1.

Setting v = un, we have

−‖un‖ ≤
∫

Ω

|∇un|p(x) dx−
∫

Ω

|un|p
∗(x) dx + λ

∫
Ω

|un|q(x) dx ≤ ‖un‖,

for all n > N1. We obtain

− ‖un‖ −
∫

Ω

|∇un|p(x) dx− λ

∫
Ω

|un|q(x) dx ≤ −
∫

Ω

|un|p
∗(x) dx, (3.17)

for all n > N1. Provided that ‖un‖ > 1 relation (3.15) and (3.17) imply

C6 > Jλ(un)

≥ (
1

p+
− 1

p∗−
)
∫

Ω

|∇un|p(x) dx + λ(
1
q+

− 1
p∗−

)
∫

Ω

|un|q(x) dx− 1
p∗−

‖un‖,

≥ (
1

p+
− 1

p∗−
)‖un|‖p− dx− 1

p∗−
‖un‖.

Letting n → ∞ we obtain a contradiction. It follows that {un} is bounded in
E. And we deduce that there exists a subsequence, again denoted by {un}, and
u ∈ E such that {un} converges weakly to u in E. Now by Theorem 2.2 we have
∇un → ∇u a.e. in RN as n →∞. The proof is complete. �
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Proof of Theorem 3.2. It is clear that the functional Jλ is even and verifies Jλ(0) =
0. Lemma 3.8, lemma 3.9 and Lemma 3.10 implies that Jλ satisfies the the Moun-
tain Pass Theorem condition. Thus we conclude that problem (3.7) has infinitely
many weak solutions in E. The proof is complete. �
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