Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 91, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE BOUNDARY-VALUE PROBLEM

SHAPOUR HEIDARKHANI, GHASEM ALIZADEH AFROUZI, DONAL O'REGAN

$$
\begin{aligned}
& \text { AbSTRACT. In this note, we establish the existence of two intervals of positive } \\
& \text { real parameters } \lambda \text { for which the boundary-value problem of Kirchhoff-type } \\
& \qquad-K\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) u^{\prime \prime}=\lambda f(x, u) \\
& \qquad u(a)=u(b)=0
\end{aligned}
$$

admits three weak solutions whose norms are uniformly bounded with respect to λ belonging to one of the two intervals. Our main tool is a three critical point theorem by Bonanno.

1. Introduction

In the literature many results focus on the existence of multiple solutions to boundary-value problems. For example, certain chemical reactions in tubular reactors can be mathematically described by a nonlinear two-point boundary-value problem and one is interested if multiple steady-states exist. For a recent treatment of chemical reactor theory and multiple solutions see [1, section 7] and the references therein.

Bonanno in [3] established the existence of two intervals of positive real parameters λ for which the functional $\Phi-\lambda \Psi$ has three critical points whose norms are uniformly bounded in respect to λ belonging to one of the two intervals and he obtained multiplicity results for a two point boundary-value problem. In the present paper as an application, we shall illustrate these results for a Kirchhoff-type problem.

Problems of Kirchhoff-type have been widely investigated. We refer the reader to the papers [2, 5, 7, 5, 10, 11, 15] and the references therein. Ricceri [13] established the existence of at least three weak solutions to a class of Kirchhoff-type doubly eigenvalue boundary value problem using [12, Theorem 2].

Consider the Kirchhoff-type problem

$$
\begin{gather*}
-K\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) u^{\prime \prime}=\lambda f(x, u) \tag{1.1}\\
u(a)=u(b)=0
\end{gather*}
$$

[^0]where $K:[0,+\infty[\rightarrow \mathbb{R}$ is a continuous function, $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function and $\lambda>0$.

In the present paper, our approach is based on a three critical points theorem proved in [3, which is recalled in the next section for the reader's convenience (Theorem 2.1). Our main result is Theorem 2.2 which, under suitable assumptions, ensures the existence of two intervals Λ_{1} and Λ_{2} such that, for each $\lambda \in \Lambda_{1} \cup \Lambda_{2}$, the problem (1.1) admits at least three classical solutions whose norms are uniformly bounded in respect to $\lambda \in \Lambda_{2}$.

Let X the the Sobolev space $H_{0}^{1}([a, b])$ with the norm

$$
\|u\|=\left(\int_{a}^{b}\left(\left|u^{\prime}(x)\right|^{2}\right) d x\right)^{1 / 2}
$$

We say that u is a weak solution to 1.1 if $u \in X$ and

$$
K\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) \int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x-\lambda \int_{a}^{b} f(x, u(x)) v(x) d x=0
$$

for every $v \in X$.
For other basic notations and definitions, we refer the reader to [4, 6, 8, 14 .

2. Results

For the reader's convenience, dirst we here recall [3, Theorem 2.1].
Theorem 2.1. Let X be a separable and reflexive real Banach space, $\Phi: X \rightarrow \mathbb{R}$ a nonnegative continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on $X^{*}, J: X \rightarrow \mathbb{R}$ a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that there exists $x_{0} \in X$ such that $\Phi\left(x_{0}\right)=J\left(x_{0}\right)=0$ and that

$$
\lim _{\|x\| \rightarrow+\infty}(\Phi(x)-\lambda J(x))=+\infty \quad \text { for all } \lambda \in[0,+\infty[
$$

Further, assume that there are $r>0, x_{1} \in X$ such that $r<\Phi\left(x_{1}\right)$ and

$$
\sup _{x \in \bar{\Phi}^{-1}(]-\infty, r[)}=10(x)<\frac{r}{r+\Phi\left(x_{1}\right)} J\left(x_{1}\right)
$$

here ${\overline{\Phi^{-1}(]-\infty, r[)}}^{w}$ denotes the closure of $\Phi^{-1}(]-\infty, r[)$ in the weak topology (in particular note $J\left(x_{1}\right) \geq 0$ since $x_{0} \in{\overline{\Phi^{-1}(]-\infty, r[)}}^{w}$ (note $J\left(x_{0}\right)=0$) so $\sup _{\left.x \in{\overline{\Phi^{-1}(]-\infty, r[)}}^{w} J(x) \geq 0\right) \text {. Then, for each }}$

$$
\left.\lambda \in \Lambda_{1}=\right] \frac{\Phi\left(x_{1}\right)}{J\left(x_{1}\right)-\sup _{x \in \bar{\Phi}^{-1}(]-\infty, r[)} w \sqrt{w(x)}}, \frac{r}{\sup _{x \in \bar{\Phi}^{-1}(]-\infty, r[)} w J(x)}[
$$

the equation

$$
\begin{equation*}
\Phi^{\prime}(u)+\lambda J^{\prime}(u)=0 \tag{2.1}
\end{equation*}
$$

has at least three solutions in X and, moreover, for each $\eta>1$, there exist an open interval

$$
\Lambda_{2} \subseteq\left[0, \frac{\eta r}{\left.r \frac{J\left(x_{1}\right)}{\Phi\left(x_{1}\right)}-\sup _{x \in{\overline{\Phi^{-1}(-\infty, r[)}}^{w} J(x)}\right]}\right.
$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}$, the equation 2.2 has at least three solutions in X whose norms are less than σ.

Let $K:[0,+\infty[\rightarrow \mathbb{R}$ be a continuous function such that there exists a positive number m with $K(t) \geq m$ for all $t \geq 0$, and let $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that $\sup _{|\xi| \leq s}|f(., \xi)| \in L^{1}(a, b)$ for all $s>0$. Corresponding to K and f we introduce the functions $\tilde{K}:[0,+\infty[\rightarrow \mathbb{R}$ and $F:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$, respectively as follows

$$
\begin{equation*}
\tilde{K}(t)=\int_{0}^{t} K(s) d s \quad \text { for all } t \geq 0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x, t)=\int_{0}^{t} f(x, s) d s \quad \text { for all }(x, t) \in[a, b] \times \mathbb{R} \tag{2.3}
\end{equation*}
$$

Now, we state our main result.
Theorem 2.2. Assume that there exist positive constants r and θ, and a function $w \in X$ such that:
(i) $\tilde{K}\left(\|w\|^{2}\right)>2 r$,
(ii)

$$
\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x<r \frac{\int_{a}^{b} F(x, w(x)) d x}{r+\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}
$$

(iii) $\frac{(b-a)^{2}}{2 m} \lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}<\frac{1}{\theta}$ uniformly with respect to $x \in[a, b]$.

Further, assume that there exists a continuous function $h:[0,+\infty[\rightarrow \mathbb{R}$ such that $h\left(t K\left(t^{2}\right)\right)=t$ for all $t \geq 0$. Then, for each λ in the interval

$$
\begin{aligned}
\Lambda_{1}= &] \frac{\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}{\left.\int_{a}^{b} F(x, w(x)) d x-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}\right.}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x \\
& \frac{r}{\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x}[
\end{aligned}
$$

problem 1.1 admits at least three weak solutions in X and, moreover, for each $\eta>1$, there exist an open interval

$$
\Lambda_{2} \subseteq\left[0, \frac{\eta r}{2 r \frac{\int_{a}^{b} F(x, w(x)) d x}{\tilde{K}\left(\|w\|^{2}\right)}-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x}\right]
$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}$, problem (1.1) admits at least three weak solutions in X whose norms are less than σ.

Let us first give a particular consequence of Theorem 2.2 for a fixed test function w.

Corollary 2.3. Assume that there exist positive constants c, d, α, β and θ with $\beta-\alpha<b-a$ such that Assumption (ii) in Theorem 2.2 holds, and
(i) $\tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)>\frac{4 m c^{2}}{b-a}$,
(ii) $F(x, t) \geq 0$ for each $(x, t) \in([a, a+\alpha] \cup[b-\beta, b]) \times[0, d]$,
(iii) $\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x<\frac{2 m c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{\frac{2 m c^{2}}{b-a}+\frac{1}{2} \tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}$.

Further, assume that there exists a continuous function $h:[0,+\infty[\rightarrow \mathbb{R}$ such that $h\left(t K\left(t^{2}\right)\right)=t$ for all $t \geq 0$. Then, for each

$$
\left.\lambda \in \Lambda_{1}^{\prime}=\right] \frac{\frac{1}{2} \tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}{\int_{a+\alpha}^{b-\beta} F(x, d) d x-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}, \frac{\frac{2 m c^{2}}{b-a}}{\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}[,
$$

problem (1.1) admits at least three weak solutions in X and, moreover, for each $\eta>1$, there exist an open interval

$$
\begin{aligned}
\Lambda_{2} \subseteq & {\left[0,\left(\frac{2 \eta m c^{2}}{b-a}\right)\right.} \\
& \div\left(\frac{4 m c^{2}}{b-a} \frac{\int_{a}^{a+\alpha} F\left(x, \frac{d}{\alpha}(x-a)\right) d x+\int_{a+\alpha}^{b-\beta} F(x, d) d x+\int_{b-\beta}^{b} F\left(x, \frac{d}{\beta}(b-x)\right) d x}{\tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}\right. \\
& \left.\left.-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x\right)\right]
\end{aligned}
$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}$, problem (1.1) admits at least three weak solutions in X whose norms are less than σ.

Proof. We claim that the all the assumptions of Theorem 2.2 are fulfilled with

$$
w(x)= \begin{cases}\frac{d}{\alpha}(x-a) & \text { if } a \leq x<a+\alpha \tag{2.4}\\ d & \text { if } a+\alpha \leq x \leq b-\beta \\ \frac{d}{\beta}(b-x) & \text { if } b-\beta<x \leq b\end{cases}
$$

and $r=2 m c^{2} /(b-a)$ where constants c, d, α and β are given in the statement of the theorem.

It is clear from 2.4 that $w \in X$ and, in particular, one has

$$
\begin{equation*}
\|w\|^{2}=d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right) \tag{2.5}
\end{equation*}
$$

Moreover with this choice of w and taking into account (2.5), from (i) we get (i) of Theorem 2.2. Since $0 \leq w(x) \leq d$ for each $x \in[a, b]$, condition (ii) ensures that

$$
\int_{a}^{a+\alpha} F(x, w(x)) d x+\int_{b-\beta}^{b} F(x, w(x)) d x \geq 0
$$

so from (iii) we have

$$
\begin{aligned}
\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x & <\frac{2 m c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{\frac{2 m c^{2}}{b-a}+\frac{1}{2} \tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)} \\
& \leq \frac{2 m c^{2}}{b-a} \frac{\int_{a}^{b} F(x, w(x)) d x}{\frac{2 m c^{2}}{b-a}+\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)} \\
& =r \frac{\int_{a}^{b} F(x, w(x)) d x}{r+\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}
\end{aligned}
$$

so (ii) of Theorem 2.2 holds (note $c^{2}=\frac{r(b-a)}{2 m}$). Next notice that

$$
\frac{\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}{\int_{a}^{b} F(x, w(x)) d x-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x}
$$

$$
\leq \frac{\frac{1}{2} \tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}{\int_{a+\alpha}^{b-\beta} F(x, d) d x-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}
$$

and

$$
\frac{r}{\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x}=\frac{\frac{2 m c^{2}}{b-a}}{\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}
$$

In addition note that

$$
\begin{aligned}
& \frac{\frac{1}{2} \tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}{\int_{a+\alpha}^{b-\beta} F(x, d) d x-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x} \\
& <\frac{\frac{1}{2} \tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}{\left(\frac{\frac{2 m c^{2}}{b-a}+\frac{1}{2} \tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}{\frac{2 m c^{2}}{b-a}}-1\right) \int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x} \\
& =\frac{\frac{2 m c^{2}}{b-a}}{\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x} .
\end{aligned}
$$

Finally note that

$$
\begin{aligned}
& \frac{h r}{\left.2 r \frac{\int_{a}^{b} F(x, w(x)) d x}{\tilde{K}\left(\|w\|^{2}\right)}-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}\right.}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x \\
& =\left(\frac{2 h m c^{2}}{b-a}\right) \\
& \quad \div\left(\frac{4 m c^{2}}{b-a} \frac{\int_{a}^{a+\alpha} F\left(x, \frac{d}{\alpha}(x-a)\right) d x+\int_{a+\alpha}^{b-\beta} F(x, d) d x+\int_{b-\beta}^{b} F\left(x, \frac{d}{\beta}(b-x)\right) d x}{\tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}\right. \\
& \left.\quad-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x\right),
\end{aligned}
$$

and taking into account that $\Lambda_{1}^{\prime} \subseteq \Lambda_{1}$ we have the desired conclusion directly from Theorem 2.2.

It is of interest to list some special cases of Corollary 2.3 .
Corollary 2.4. Assume that there exist positive constants $c, d, p_{1}, p_{2}, \alpha, \beta$ and θ with $\beta-\alpha<b-a$ such that Assumption (ii) of Corollary 2.3 holds, and
(i) $p_{1} d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)+\frac{p_{2}}{2} d^{4}\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}>\frac{4 p_{1} c^{2}}{b-a}$,
(ii)

$$
\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x<\frac{2 p_{1} c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{\frac{2 p_{1} c^{2}}{b-a}+\frac{p_{1}}{2} d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)+\frac{p_{2}}{4} d^{4}\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}},
$$

(iii) $\frac{(b-a)^{2}}{2 p_{1}} \lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}<\frac{1}{\theta}$ uniformly with respect to $x \in[a, b]$.

Then, for each

$$
\left.\lambda \in \Lambda_{1}^{\prime \prime}=\right] \frac{\frac{p_{1}}{2} d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)+\frac{p_{2}}{4} d^{4}\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}}{\int_{a+\alpha}^{b-\beta} F(x, d) d x-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}, \frac{\frac{2 p_{1} c^{2}}{b-a}}{\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}[,
$$

the problem

$$
\begin{gather*}
-\left(p_{1}+p_{2} \int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) u^{\prime \prime}=\lambda f(x, u), \tag{2.6}\\
u(a)=u(b)=0
\end{gather*}
$$

admits at least three weak solutions in X and, moreover, for each $\eta>1$, there exist an open interval

$$
\begin{aligned}
\Lambda_{2} \subseteq & {\left[0,\left(\frac{2 \eta p_{1} c^{2}}{b-a}\right)\right.} \\
& \div\left(\frac{4 p_{1} c^{2}}{b-a} \frac{\int_{a}^{a+\alpha} F\left(x, \frac{d}{\alpha}(x-a)\right) d x+\int_{a+\alpha}^{b-\beta} F(x, d) d x+\int_{b-\beta}^{b} F\left(x, \frac{d}{\beta}(b-x)\right) d x}{p_{1} d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)+\frac{p_{2}}{2} d^{4}\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}}\right. \\
& \left.\left.-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x\right)\right]
\end{aligned}
$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}$, problem 2.6) admits at least three weak solutions in X whose norms are less than σ.

Proof. For fixed $p_{1}, p_{2}>0$, set $K(t)=p_{1}+p_{2} t$ for all $t \geq 0$. Bearing in mind that $m=p_{1}$, from (i)-(iii), we see that (i)-(iii) of Corollary 2.4 hold respectively. Also we note that there exists a continuous function $h:[0,+\infty[\rightarrow \mathbb{R}$ such that $h\left(t K\left(t^{2}\right)\right)=t$ for all $t \geq 0$ because the function K is nondecreasing in $[0,+\infty[$ with $K(0)>0$ and $t \rightarrow t K\left(t^{2}\right)(t \geq 0)$ is increasing and onto [$0,+\infty[$. Hence, Corollary 2.3 yields the conclusion.

Corollary 2.5. Assume that there exist positive constants c, d, α, β and θ with $\beta-\alpha<b-a$ such that Assumption (ii) in Corollary 2.3 holds, and
(i) $d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)>\frac{4 c^{2}}{b-a}$,
(ii)

$$
\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x<\frac{2 c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{\frac{2 c^{2}}{b-a}+\frac{d^{2}}{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)}
$$

(iii) $\frac{(b-a)^{2}}{2} \lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}<\frac{1}{\theta}$ uniformly with respect to $x \in[a, b]$.

Then, for each

$$
\left.\lambda \in \Lambda_{1}^{\prime \prime \prime}=\right] \frac{\frac{d^{2}}{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)}{\int_{a+\alpha}^{b-\beta} F(x, d) d x-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}, \frac{\frac{2 c^{2}}{b-a}}{\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}[,
$$

the problem

$$
\begin{align*}
& -u^{\prime \prime}=\lambda f(x, u), \\
& u(a)=u(b)=0 \tag{2.7}
\end{align*}
$$

admits at least three weak solutions in X and, moreover, for each $\eta>1$, there exist an open interval

$$
\begin{aligned}
\Lambda_{2} \subseteq & {\left[0,\left(\frac{2 \eta c^{2}}{b-a}\right)\right.} \\
& \div\left(\frac{4 c^{2}}{b-a} \frac{\int_{a}^{a+\alpha} F\left(x, \frac{d}{\alpha}(x-a)\right) d x+\int_{a+\alpha}^{b-\beta} F(x, d) d x+\int_{b-\beta}^{b} F\left(x, \frac{d}{\beta}(b-x)\right) d x}{d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)}\right.
\end{aligned}
$$

$$
\left.\left.-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x\right)\right]
$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}$, the problem (2.7) admits at least three weak solutions in X whose norms are less than σ.

We conclude this section by giving an example to illustrate our results applying by Corollary 2.4 .
Example 2.6. Consider the problem

$$
\begin{align*}
-\left(\frac{1}{128}+\frac{1}{64} \int_{0}^{1}\left|u^{\prime}(x)\right|^{2} d x\right) u^{\prime \prime} & =\lambda\left(e^{-u} u^{11}(12-u)\right), \tag{2.8}\\
u(0)=u(1) & =0
\end{align*}
$$

where $\lambda>0$. Set $p_{1}=\frac{1}{128}, p_{2}=\frac{1}{64}$ and $f(x, t)=e^{-t} t^{11}(12-t)$ for all $(x, t) \in$ $[0,1] \times \mathbb{R}$. A direct calculation yields $F(x, t)=e^{-t} t^{12}$ for all $(x, t) \in[0,1] \times \mathbb{R}$. Assumptions (i) and (ii) of Corollary 2.4 are satisfied by choosing, for example $d=2, c=1,[a, b]=[0,1]$ and $\alpha=\beta=1 / 4$. Also, since $\lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}=0$, Assumption (iii) of Corollary 2.4 is fulfilled. Now we can apply Corollary 2.4 . Then, for each

$$
\left.\lambda \in \Lambda_{1}^{\prime \prime}=\right] \frac{33}{2^{14} e^{-2}-8 e}, \frac{1}{64 e}[
$$

problem (2.8) admits at least three weak solutions in $H_{0}^{1}([0,1])$ and, moreover, for each $\eta>1$, there exist an open interval

$$
\Lambda_{2} \subseteq\left[0, \frac{\eta}{\frac{8}{33}\left(8^{12} \int_{0}^{\frac{1}{4}} e^{-8 t} t^{12} d t+2^{11} e^{-2}+8^{12} \int_{\frac{3}{4}}^{1} e^{-8(1-t)}(1-t)^{12} d t\right)-64 e}\right]
$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}$, problem (2.8) admits at least three weak solutions in $H_{0}^{1}([0,1])$ whose norms are less than σ.

3. Proof of Theorem 2.2

We begin by setting

$$
\begin{gather*}
\Phi(u)=\frac{1}{2} \tilde{K}\left(\|u\|^{2}\right), \tag{3.1}\\
J(u)=\int_{a}^{b} F(x, u(x)) d x \tag{3.2}
\end{gather*}
$$

for each $u \in X$, where \tilde{K} and F are given in (2.2) and $(2.3$, respectively. It is well known that J is a Gâteaux differentiable functional whose Gâteaux derivative at the point $u \in X$ is the functional $J^{\prime}(u) \in X^{*}$, given by

$$
J^{\prime}(u) v=\int_{a}^{b} f(x, u(x)) v(x) d x
$$

for every $v \in X$, and that $J^{\prime}: X \rightarrow X^{*}$ is a continuous and compact operator. Moreover, Φ is a continuously Gâteaux differentiable and sequentially weakly lower semi continuous functional whose Gâteaux derivative at the point $u \in X$ is the functional $\Phi^{\prime}(u) \in X^{*}$, given by

$$
\Phi^{\prime}(u) v=K\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) \int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x
$$

for every $v \in X$. We claim that Φ^{\prime} admits a continuous inverse on X (we identity X with $\left.X^{*}\right)$. To prove this fact, arguing as in [13] we need to find a continuous operator $T: X \rightarrow X$ such that $T\left(\Phi^{\prime}(u)\right)=u$ for all $u \in X$. Let $T: X \rightarrow X$ be the operator defined by

$$
T(v)= \begin{cases}\frac{h(\|v\|)}{\|v\|} v & \text { if } v \neq 0 \\ 0 & \text { if } v=0\end{cases}
$$

where h is defined in the statement of Theorem 2.2. Since, h is continuous and $h(0)=0$, we have that the operator T is continuous in X. For every $u \in X$, taking into account that $\inf _{t \geq 0} K(t) \geq m>0$, we have since $h\left(t K\left(t^{2}\right)\right)=t$ for all $t \geq 0$ that

$$
\begin{aligned}
T\left(\Phi^{\prime}(u)\right) & =T\left(K\left(\|u\|^{2}\right) u\right) \\
& =\frac{h\left(K\left(\|u\|^{2}\right)\|u\|\right)}{K\left(\|u\|^{2}\right)\|u\|} K\left(\|u\|^{2}\right) u \\
& =\frac{\|u\|}{K\left(\|u\|^{2}\right)\|u\|} K\left(\|u\|^{2}\right) u=u
\end{aligned}
$$

so our claim is true. Moreover, since $m \leq K(s)$ for all $s \in[0,+\infty[$, from (3.1) we have

$$
\begin{equation*}
\Phi(u) \geq \frac{m}{2}\|u\|^{2} \quad \text { for all } u \in X \tag{3.3}
\end{equation*}
$$

Furthermore from (iii), there exist two constants $\gamma, \tau \in \mathbb{R}$ with $0<\gamma<1 / \theta$ such that

$$
\frac{(b-a)^{2}}{2 m} F(x, t) \leq \gamma t^{2}+\tau \quad \text { for all } x \in(a, b) \text { and all } t \in \mathbb{R}
$$

Fix $u \in X$. Then

$$
\begin{equation*}
F(x, u(x)) \leq \frac{2 m}{(b-a)^{2}}\left(\gamma|u(x)|^{2}+\tau\right) \quad \text { for all } x \in(a, b) \tag{3.4}
\end{equation*}
$$

Fix $\lambda \in] 0,+\infty[$. Then there exists $\theta>0$ with $\lambda \in] 0, \theta]$. Now since

$$
\begin{equation*}
\max _{x \in[a, b]}|u(x)| \leq \frac{(b-a)^{1 / 2}}{2}\|u\| \tag{3.5}
\end{equation*}
$$

from (3.3), (3.4) and (3.5), we have

$$
\begin{aligned}
\Phi(u)-\lambda J(u) & =\frac{1}{2} \tilde{K}\left(\|u\|^{2}\right)-\lambda \int_{a}^{b} F(x, u(x)) d x \\
& \geq \frac{m}{2}\|u\|^{2}-\frac{2 \theta m}{(b-a)^{2}}\left(\gamma \int_{a}^{b}|u(x)|^{2}+\tau(b-a)\right) \\
& \geq \frac{m}{2}\|u\|^{2}-\frac{2 \theta m}{(b-a)^{2}}\left(\gamma \frac{(b-a)^{2}}{4}\|u\|^{2}+\tau(b-a)\right) \\
& =\frac{m}{2}(1-\gamma \theta)\|u\|^{2}-\frac{2 \theta \tau m}{b-a},
\end{aligned}
$$

and so

$$
\lim _{\|u\| \rightarrow+\infty}(\Phi(u)-\lambda J(u))=+\infty
$$

Also from (3.1) and (i) we have $\Phi(w)>r$. Using (3.3) and (3.5), we obtain

$$
\begin{aligned}
\Phi^{-1}(]-\infty, r[) & =\{u \in X ; \Phi(u)<r\} \\
& \subseteq\{u \in X ;\|u\|<\sqrt{2 r / m}\}
\end{aligned}
$$

$$
\subseteq\{u \in X ;|u(x)| \leq \sqrt{r(b-a) /(2 m)}, \text { for all } x \in[a, b]\}
$$

so, we have

$$
\sup _{\overline{u \in \Phi^{-1}(]-\infty, r[)}}=1 J(u) \leq \int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x
$$

Therefore, from (ii), we have

$$
\begin{aligned}
\sup _{\overline{u \in \Phi^{-1}(]-\infty, r[)}} w(u) & \leq \int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}\right.}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]} \\
& <\frac{r}{r+\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)} \int_{a}^{b} F(x, w(x)) d x \\
& =\frac{r}{r+\Phi(w)} J(w)
\end{aligned}
$$

Now, we can apply Theorem 2.1. Note for each $x \in[a, b]$,

$$
\frac{r}{\sup _{u \in \bar{\Phi}^{-1}(]-\infty, r[)}^{w} J(u)} \geq \frac{r}{\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x}
$$

and

$$
\begin{aligned}
& \frac{\Phi(w)}{J(w)-\sup _{u \in \Phi^{-1}(]-\infty, r[)} w(u)} \\
& \leq \frac{\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}{\int_{a}^{b} F(x, w(x)) d x-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x}
\end{aligned}
$$

Note also that (ii) immediately implies

$$
\begin{aligned}
& \frac{\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}{\left.\int_{a}^{b} F(x, w(x)) d x-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}\right.} \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x \\
& <\frac{\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}{\left.\left(\frac{r+\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}{r}-1\right) \int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}\right.}^{r} \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x \\
& =\frac{r}{\left.\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}\right.}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x
\end{aligned}
$$

Also

$$
\begin{aligned}
& \frac{\eta r}{r \frac{J(w)}{\Phi(w)}-\sup _{u \in \bar{\Phi}^{-1}(-\infty, r[)}^{w} J(u)} \\
& \leq \frac{\eta r}{2 r \frac{\int_{a}^{b} F(x, w(x)) d x}{\tilde{K}\left(\|w\|^{2}\right)}-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x}=\rho .
\end{aligned}
$$

Note from (ii) that

$$
2 r \frac{\int_{a}^{b} F(x, w(x)) d x}{\tilde{K}\left(\|w\|^{2}\right)}-\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\frac{r(b-a)}{2 m}}\right]} F(x, t) d x
$$

$$
\begin{aligned}
& >\left(\frac{2 r}{\tilde{K}\left(\|w\|^{2}\right)}-\frac{r}{r+\frac{1}{2} \tilde{K}\left(\|w\|^{2}\right)}\right) \int_{a}^{b} F(x, w(x)) d x \\
& \geq\left(\frac{2 r}{\tilde{K}\left(\|w\|^{2}\right)}-\frac{2 r}{\tilde{K}\left(\|w\|^{2}\right)}\right) \int_{a}^{b} F(x, w(x)) d x=0
\end{aligned}
$$

since $\int_{a}^{b} F(x, w(x)) d x \geq 0$ (note $F(x, 0)=0$ so

$$
\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x \geq 0
$$

and now apply (ii). Now with $x_{0}=0, x_{1}=w$ from Theorem 2.1 (note $J(0)=0$ from (2.3) it follows that, for each $\lambda \in \Lambda_{1}$, the problem 1.1) admits at least three weak solutions and there exist an open interval $\Lambda_{2} \subseteq[0, \rho]$ and a real positive number σ such that, for each $\lambda \in \Lambda_{2}$, the problem (1.1) admits at least three weak solutions that whose norms in X are less than σ.

References

[1] R. P. Agarwal, H. B. Thompson and C.C. Tisdell; On the existence of multiple solutions to boundary value problems for second order, ordinary differential equations. Dynam. Systems Appl. 16 (2007) 595-609.
[2] C. O. Alves, F. S. J. A. Corrêa and T. F. Ma; Positive solutions for a quasilinear elliptic equations of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.
[3] G. Bonanno; A critical points theorem and nonlinear differential problems, J. Global Optimization, 28 (2004) 249-258.
[4] G. Bonanno, G. Molica Bisci and V. Rădulescu; Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 263-268.
[5] M. Chipot and B. Lovat; Some remarks on non local elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.
[6] M. Ghergu and V. Rădulescu; Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford University Press, 2008.
[7] X. He and W. Zou; Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009) 1407-1414.
[8] A. Kristály, V. Rădulescu and C. Varga; Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, No. 136, Cambridge University Press, Cambridge, 2010.
[9] T. F. Ma; Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), e1957-e1977.
[10] A. Mao and Z. Zhang; Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition, Nonlinear Anal. 70 (2009) 1275-1287.
[11] K. Perera and Z. T. Zhang; Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
[12] B. Ricceri; A further three critical points theorem, Nonlinear Anal. 71 (2009) 4151-4157.
[13] B. Ricceri; On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optimization 46 (2010) 543-549.
[14] E. Zeidler; Nonlinear functional analysis and its applications, Vol. II, III. Berlin-HeidelbergNew York 1985.
[15] Z. T. Zhang and K. Perera; Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006) 456-463.

Shapour Heidarkhani
Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran

E-mail address: s.heidarkhani@razi.ac.ir

Ghasem Alizadeh Afrouzi
Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, 47416-1467 Babolsar, Iran

E-mail address: afrouzi@umz.ac.ir
Donal O'Regan
Department of Mathematics, National University of Ireland, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J25, 35J60.
 Key words and phrases. Kirchhoff-type problem; multiple solutions; critical point.
 (C) 2011 Texas State University - San Marcos.

 Submitted April 26, 2011. Published July 6, 2011.

