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TIME-DEPENDENT DOMAINS FOR NONLINEAR EVOLUTION
OPERATORS AND PARTIAL DIFFERENTIAL EQUATIONS

CHIN-YUAN LIN

Dedicated to Professor Jerome A. Goldstein on his 70th birthday

Abstract. This article concerns the nonlinear evolution equation

du(t)

dt
∈ A(t)u(t), 0 ≤ s < t < T,

u(s) = u0

in a real Banach space X, where the nonlinear, time-dependent, and multi-
valued operator A(t) : D(A(t)) ⊂ X → X has a time-dependent domain
D(A(t)). It will be shown that, under certain assumptions on A(t), the equa-
tion has a strong solution. Illustrations are given of solving quasi-linear partial
differential equations of parabolic type with time-dependent boundary condi-
tions. Those partial differential equations are studied to a large extent.

1. Introduction

Let (X, ‖ · ‖) be a real Banach space with the norm ‖ · ‖, and let T > 0, ω be
two real constants. Consider the nonlinear evolution equation

du(t)
dt

∈ A(t)u(t), 0 ≤ s < t < T,

u(s) = u0,
(1.1)

where
A(t) : D(A(t)) ⊂ X → X

is a nonlinear, time-dependent, and multi-valued operator. To solve (1.1), Crandall
and Pazy [9] made the following hypotheses of (H1)–(H3) and the t-dependence
hypothesis of either (H4) or (H5), for each 0 ≤ t ≤ T .

(H1) A(t) is dissipative in the sense that

‖u− v‖ ≤ ‖(u− v)− λ(g − h)‖
for all u, v ∈ D(A(t)), g ∈ (A(t)− ω)u, h ∈ (A(t)− ω)v, and for all λ > 0.
Equivalently,

<(η(g − h)) ≤ 0
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for some η ∈ G(u − v) ≡ {ξ ∈ X∗ : ‖u − v‖2 = ξ(u − v) = ‖ξ‖2X∗}, the
duality map of (u − v) [27]. Here (X∗, ‖.‖X∗) is the dual space of X and
<(z) is the real part of a complex number z.

(H2) The range of (I −λA(t)) contains the closure D(A(t)) of D(A(t)) for small
0 < λ < λ0 with λ0ω < 1.

(H3) D(A(t)) = D is independent of t.
(H4) There are a continuous function f : [0, T ] → X and a monotone increasing

function L : [0,∞) → [0,∞), such that

‖Jλ(t)x− Jλ(τ)x‖ ≤ λ‖f(t)− f(τ)‖L(‖x‖)

for 0 < λ < λ0, 0 ≤ t, τ ≤ T, and x ∈ D. Here Jλ(t)x ≡ (I − λA(t))−1

exists for x ∈ D by (H1) and (H2).
(H5) There is a continuous function f : [0, T ] → X, which is of bounded variation

on [0, T ], and there is a monotone increasing function L : [0,∞) → [0,∞),
such that

‖Jλ(t)x− Jλ(τ)x‖ ≤ λ‖f(t)− f(τ)‖L(‖x‖)(1 + |A(τ)x|)

for 0 < λ < λ0, 0 ≤ t, τ ≤ T, and x ∈ D. Here

|A(τ)x| ≡ lim
λ→0

‖ (Jλ(τ)− I)x
λ

‖

by (H1) and (H2), which can equal ∞ [7, 9].

By defining the generalized domain D̂(A(t)) ≡ {x ∈ D(A(t)) : |A(t)x| < ∞}
[7, 37], they [9] proved, among other things, that the limit

U(t, s)x ≡ lim
n→∞

n∏
i=1

J t−s
n

(s+ i
t− s

n
)x (1.2)

exists for x ∈ D and that U(t, s)u0 is a unique solution, in a generalized sense, to
the equation (1.1) for u0 ∈ D.

Because of the restriction in (H3) that D(A(t)) = D is independent of t, the
boundary condition in the example in [9] does not depend on time. In this pa-
per, in order to enlarge the scope of applications, we will consider a different set
of hypotheses, the dissipativity condition (H1), the range condition (H2’), and the
time-regulating condition (HA) below. Here a similar set of hypotheses was con-
sidered in [21] but the results were not satisfactory.

(H2’) The range of (I − λA(t)), denoted by E, is independent of t and contains
D(A(t)) for all t ∈ [0, T ] and for small 0 < λ < λ0 with λ0ω < 1.

(HA) There is a continuous function f : [0, T ] → R, of bounded variation, and
there is a nonnegative function L on [0,∞) with L(s) bounded for bounded
s, such that, for each 0 < λ < λ0, we have

{Jλ(t)x− Jλ(τ)y : 0 ≤ t, τ ≤ T, x, y ∈ E} = S1(λ) ∪ S2(λ).

Here S1(λ) denotes the set{
Jλ(t)x− Jλ(τ)y : 0 ≤ t, τ ≤ T, x, y ∈ E,
‖Jλ(t)x− Jλ(τ)y‖ ≤ L(‖Jλ(τ)y‖)|t− τ |

}
,

and S2(λ) denotes the set{
Jλ(t)x− Jλ(τ)y : 0 ≤ t, τ ≤ T, x, y ∈ E, ‖Jλ(t)x− Jλ(τ)y‖
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≤ (1− λω)−1[‖x− y‖+ λ|f(t)− f(τ)|L(‖Jλ(τ)y‖)(1 +
‖(Jλ(τ)− I)y‖

λ
)]

}
.

We will show that the limit in (1.2) for x ∈ D̂(A(s)) = D(A(s)) exists, and that
this limit for x = u0 ∈ D̂(A(s)) is a strong solution to the equation (1.1), if A(t)
satisfies additionally an embedding property in [20] of embeddedly quasi-demi-
closedness. We then apply the abstract theory to quasi-linear, parabolic partial
differential equations with boundary conditions depending on time t. We finally
show that, in those applications, each quantity

J t−s
n

(s+ i
t− s

n
)h = [I − t− s

n
A(s+ i

t− s

n
)]−1h, i = 1, 2, . . . , n

is the limit of a sequence where each term in the sequence is an explicit function
F (φ) of the solution φ = £−1

0 (h, ϕ) to the elliptic equation with ϕ ≡ 0:

−∆v(y) = h, y ∈ Ω,
∂v

∂ν
+ v = ϕ, y ∈ ∂Ω.

(1.3)

Here for the dimension of the space variable y equal to 2 or 3, the φ = £−1
0 (h, 0)

and the solution £−1
0 (h, ϕ) to (1.3) can be computed numerically and efficiently

by the boundary element methods [13, 34]. See Sections 4 and 5 for more details
of these, including how F (φ) depends on φ, and for other aspects of the treated
partial differential equations.

There are many related works, to cite a few, we mention [1, 2, 3, 4, 6, 8, 9, 10,
11, 15, 19, 16, 17, 18, 20, 22, 23, 21, 24, 27, 29, 30, 31, 32, 33, 36], especially the [24]
for the recent development on nonlinear evolution equations where the hypothesis
(H2) is relaxed.

The rest of this article will be organized as follows. Section 2 obtains some pre-
liminary estimates, and Section 3 deals with the main results, where the nonlinear
operator A(t) is equipped with time-dependent domain D(A(t)). The Appendix
in Section 6 examines the difference equations theory in our papers [22, 23, 24],
whose results, together with those in Section 2, will be used to prove the main
results in Section 3. Section 4 studies applications to linear or nonlinear partial dif-
ferential equations of parabolic type, in which each corresponding elliptic solution
J t−s

n
(s + i t−s

n )h will be derived theoretically. Finally, Section 5 follows Section 4
but derives each elliptic solution J t−s

n
(s + i t−s

n )h as the limit of a sequence where
each term in the sequence is an explicit function of the solution φ to the elliptic
equation (1.3) with ϕ ≡ 0. In either Section 4 or Section 5, other aspects of the
treated partial differential equations are considered.

2. Some preliminary estimates

Within this section and the Sections 3 and 6, we can assume, without loss of
generality, that ω ≥ 0 where ω is the ω in the hypothesis (H1). This is because
the case ω < 0 is the same as the case ω = 0. This will be readily seen from the
corresponding proofs.

To prove the main results Theorems 3.3 and 3.5 in Section 3, we need to make
two preparations. One preparation is this section, and the other is the Appendix
in Section 6.



4 C.-Y. LIN EJDE-2011/92

Proposition 2.1. Let A(t) satisfy the dissipativity condition (H1), the range condi-
tion (H2’) , and the time-regulating condition (HA), and let u0 be in D(A(s)) ⊂ E
where 0 ≤ s ≤ T . Let 0 < ε < λ0 be so chosen that 0 < εω < 1, and let
0 ≤ ti = s+ iε ≤ T where i ∈ N. Then

‖ui − u0‖ ≤ ηiL(‖u0‖)(iε) + [ηi−1b1 + ηi−2b2 + · · ·+ ηbi−1 + bi] (2.1)

and

‖ui − ui−1

ε
‖ ≤ [(cici−1 . . . c2)L(‖u0‖) or (cici−1 . . . c3)L(‖u1‖) or . . .

or ciL(‖ui−2‖) or L(‖ui−1‖)] + [(cici−1 . . . c1)a0

+ (cici−1 . . . c2)d1 + (cici−1 . . . c3)d2 + · · ·+ cidi−1 + di].

(2.2)

Here ui =
∏i

j=1 Jε(tj)u0 exists uniquely by the hypotheses (H1) and (H2’);
η = (1− εω)−1 > 1;
bi = ηε‖v0‖+ηε|f(ti)−f(s)|L(‖u0‖)(1+‖v0‖), where v0 is any element in A(s)u0;
ci = η[1 + L(‖ui−1‖)|f(ti)− f(ti−1)|];
di = ηL(‖ui−1‖)|f(ti)− f(ti−1)|;
the right sides of (2.2) are interpreted as [L(‖u0‖)] + [c1a0 + d1] for i = 1;
[c2L(‖u0‖) or L(‖u1‖)] + [c2c1a0 + c2d1 + d2] for i = 2; . . . , and so on; and

a0 = ‖u0 − u−1

ε
‖,

where u−1 is defined by u0 − εv0 = u−1, with v0 any element in A(s)u0.

Proof. We will use the method of mathematical induction. Two cases will be con-
sidered, and for each case, we divide the proof into two steps.

Case 1. Here (2.1) is considered
Step 1. Claim that (2.1) is true for i = 1. This will follow from the arguments

below. If (u1 − u0) ∈ S1(ε) (defined in Section 1), then

‖u1 − u0‖ = ‖Jε(t1)u0 − Jε(s)(I − εA(s))u0‖ ≤ L(‖u0‖)|t1 − s| ≤ L(‖u0‖)ε,
which is less than or equal to the right-hand side of (2.1) with i = 1.

On the other and, if (u1 − u0) ∈ S2(ε) (defined in Section 1), then

‖u1 − u0‖ ≤ η‖u0 − u0‖+ ηε‖v0‖+ ηε|f(t1)− f(s)|L(‖u0‖)(1 + ‖v0‖),
which is less than or equal to the right-hand side of (2.1) with i = 1. Here v0 is
any element in A(s)u0.

Step 2. By assuming that (2.1) is true for i = i − 1, we shall show that it is
also true for i = i. If (ui − u0) ∈ S1(ε), then

‖ui − u0‖ = ‖Jε(ti)ui−1 − Jε(s)(I − εA(s))u0‖ ≤ L(‖u0‖)|ti − s| = L(‖u0‖)(iε),
which is less than or equal to the right side of (2.1) with i = i because of ηi > 1.

On the other hand, if (ui − u0) ∈ S2(ε), then

‖ui − u0‖ ≤ η‖ui−1 − u0‖+ bi

where η = (1− εω)−1 and

bi = ηε‖v0‖+ ηε|f(ti)− f(s)|L(‖u0‖)(1 + ‖v0‖).
This recursive inequality, combined with the induction assumption, readily gives

‖ui − u0‖ ≤ η{ηi−1L(‖u0‖)(i− 1)ε+ [ηi−2b1 + ηi−3b2 + · · ·+ ηbi−2 + bi−1]}+ bi
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= ηiL(‖u0‖)(i− 1)ε+ [ηi−1b1 + ηi−2b2 + · · ·+ ηbi−1 + bi],

which is less than or equal to the right-hand side of (2.1) with i = i because of
(i− 1)ε ≤ iε.

Case 2. Here (2.2) is considered.
Step 1. Claim that (2.2) is true for i = 1. This follows from the Step 1 in Case

1, because there it was shown that

‖u1 − u0‖ ≤ L(‖u0‖)ε or b1,

which, when divided by ε, is less than or equal to the right side of (2.2) with i = 1.
Here a0 = ‖v0‖, in which a0 = (u0 − u−1)/ε and u−1 ≡ u0 − εv0.

Step 2. By assuming that (2.2) is true for i = i− 1, we will show that it is also
true for i = i. If (ui − ui−1) ∈ S1(ε), then

‖ui − ui−1‖ ≤ L(‖ui−1‖)|ti − ti−1| = L(‖ui−1‖)ε.

This, when divided by ε, has its right side less than or equal to one on the right-hand
sides of (2.2) with i = i.

If (ui − ui−1) ∈ S2(ε), then

‖ui − ui−1‖ ≤ (1− εω)−1[‖ui−1 − ui−2‖

+ ε|f(ti)− f(ti−1)|L(‖ui−1‖)(1 +
‖ui−1 − ui−2‖

ε
)].

By letting

ai =
‖ui − ui−1‖

ε
,

ci = (1− εω)−1[1 + L(‖ui−1‖)|f(ti)− f(ti−1)|], and

di = L(‖ui−1‖)(1− εω)−1|f(ti)− f(ti−1)|,

it follows that ai ≤ ciai−1 + di. Here notice that

u0 − εv0 = u−1; a0 = ‖u0 − u−1

ε
‖ = ‖v0‖.

The above inequality, combined with the induction assumption, readily gives

ai ≤ ci
{
[(ci−1ci−2 . . . c2)L(‖u0‖) or (ci−1ci−2 . . . c3)L(‖u1‖) or . . .

or ci−1L(‖ui−3‖) or L(‖ui−2‖)] + [(ci−1ci−2 . . . c1)a0

+ (ci−1ci−2 . . . c2)d1 + (ci−1ci−2 . . . c3)d2 + . . .

+ ci−1di−2 + di−1]
}

+ di

≤ [(cici−1 . . . c2)L(‖u0‖) or (cici−1 . . . c3)L(‖u1‖) or . . .

or ciL(‖ui−2‖)] + [(cici−1 . . . c1)a0

+ (cici−1 . . . c2)d1 + (cici−1 . . . c3)d2 + · · ·+ cidi−1 + di],

each of which is less than or equal to one on the right sides of (2.2) with i = i.
The induction proof is now complete. �

Proposition 2.2. Under the assumptions of Proposition 2.1, the following are true
if u0 is in D̂(A(s)) = {y ∈ D(A(s)) : |A(s)y| <∞}:

‖ui − u0‖ ≤ K1(1− εω)−i(2i+ 1)ε ≤ K1e
(T−s)ω(3)(T − s);
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‖ui − ui−1

ε
‖ ≤ K3;

where the constants K1 and K3 depend on the quantities:

K1 = K1(L(‖u0‖), (T − s), ω, |A(s)u0|,KB);

K2 = K2(K1, (T − s), ω, ‖u0‖);
K3 = K3(L(K2), (T − s), ω, ‖u0‖, |A(s)u0|,KB);

KB is the total variation of f on [0, T ].

Proof. We divide the proof into two cases.

Case 1. Here u0 ∈ D(A(s)). It follows immediately from Proposition 2.1 that

‖ui − u0‖ ≤ N1(1− εω)−i(2i+ 1)ε ≤ N1e
(T−s)ω(3)(T − s);

‖ui − ui−1

ε
‖ ≤ N3;

where the constants N1 and N3 depend on the quantities:

N1 = N1(L(‖u0‖), (T − s), ω, ‖v0‖,KB);

N2 = N2(N1, (T − s), ω, ‖u0‖);
N3 = N3(L(N2), (T − s), ω, ‖u0‖, ‖v0‖,KB);

KB is the total variation of f on [0, T ].

We used here the estimate in [9, Page 65]

ci . . . c1 ≤ eiεωeei+···+e1 ,

where ei = L(‖ui−1‖)|f(ti)− f(ti−1)|.

Case 2. Here u0 ∈ D̂(A(s)). This involves two steps.
Step 1. Let uµ

0 = (I − µA(s))−1u0 where µ > 0, and let

ui =
i∏

j=1

Jε(tj)u0; uµ
i =

i∏
j=1

Jε(tj)u
µ
0 .

As in [31, Lemma 3.2, Page 9], we have, by letting µ→ 0,

uµ
0 → u0;

here notice that D(A(s)) is dense in D̂(A(s)). Also it is readily seen that

uµ
i =

i∏
k=1

(I − εA(tk))−1uµ
0 → ui =

i∏
k=1

(I − εA(tk))−1u0

as µ→ 0, since (A(t)− ω) is dissipative for each 0 ≤ t ≤ T .
Step 2. Since uµ

0 ∈ D(A(s)), Case 1 gives

‖uµ
i − uµ

0‖ ≤ N1(L(‖uµ
0‖), (T − s), ω, ‖vµ

0 ‖,KB)(1− εω)−i(2i+ 1)ε

‖uµ
i − uµ

i−1‖
ε

≤ N3(L(N2), (T − s), ω, ‖uµ
0‖, ‖v

µ
0 ‖,KB),

(2.3)

where
N2 = N2(N1, (T − s), ω, ‖uµ

0‖),
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and vµ
0 is any element in A(s)(I − µA(s))−1u0. We can take

vµ
0 = wµ

0 ≡
(Jµ(s)− I)u0

µ
,

since wµ
0 ∈ A(s)(I − µA(s))−1u0.

On account of u0 ∈ D̂(A(s)), we have

lim
µ→0

‖ (Jµ(s)− I)u0

µ
‖ = |A(s)u0| <∞.

Thus, by letting µ→ 0 in (2.3) and using Step 1, the results in the Proposition 2.2
follow. The proof is complete. �

3. Main results

Using the estimates in Section 2, together with the difference equations theory,
the following result will be shown in in Section 6.

Proposition 3.1. Under the assumptions of Proposition 3.2, the following inequal-
ity is true

am,n ≤

{
L(K2)|nµ−mλ|, if S2(µ) = ∅;
cm,n + sm,n + dm,n + fm,n + gm,n, if S1(µ) = ∅;

where am,n, cm,n, sm,n, fm,n, gm,n and L(K2) are defined in Proposition 3.2.

In view of this and Proposition 2.1, we are led to the following claim.

Proposition 3.2. Let x ∈ D̂(A(s)) where 0 ≤ s ≤ T , and let λ, µ > 0, n,m ∈ N,
be such that 0 ≤ (s+mλ), (s+ nµ) ≤ T , and such that λ0 > λ ≥ µ > 0 for which
µω, λω < 1. If A(t) satisfies the dissipativity condition (H1), the range condition
(H2’), and the time-regulating condition (HA), then the inequality is true:

am,n ≤ cm,n + sm,n + dm,n + em,n + fm,n + gm,n. (3.1)

Here

am,n ≡ ‖
n∏

i=1

Jµ(s+ iµ)x−
m∏

i=1

Jλ(s+ iλ)x‖;

γ ≡ (1− µω)−1 > 1; α ≡ µ

λ
; β ≡ 1− α;

cm,n = 2K1γ
n[(nµ−mλ) +

√
(nµ−mλ)2 + (nµ)(λ− µ)];

sm,n = 2K1γ
n(1− λω)−m

√
(nµ−mλ)2 + (nµ)(λ− µ);

dm,n = [K4ρ(δ)γn(mλ)] + {K4
ρ(T )
δ2

γn[(mλ)(nµ−mλ)2 + (λ− µ)
m(m+ 1)

2
λ2]};

em,n = L(K2)γn
√

(nµ−mλ)2 + (nµ)(λ− µ);

fm,n = K1[γnµ+ γn(1− λω)−mλ];

gm,n = K4ρ(|λ− µ|)γn(mλ);

K4 = γL(K2)(1 +K3); δ > 0 is arbitrary;

ρ(r) ≡ sup{|f(t)− f(τ)| : 0 ≤ t, τ ≤ T, |t− τ | ≤ r}
where ρ(r) is the modulus of continuity of f on [0, T ]; and K1,K2, and K3 are
defined in Proposition 2.2.
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Proof. We will use the method of mathematical induction and divide the proof into
two steps. Step 2 will involve six cases.

Step 1. (3.1) is clearly true by Proposition 2.2, if (m,n) = (0, n) or (m,n) =
(m, 0).

Step 2. By assuming that (3.1) is true for (m,n) = (m− 1, n− 1) or (m,n) =
(m,n− 1), we will show that it is also true for (m,n) = (m,n). This is done by the
arguments below.

Using the nonlinear resolvent identity in [6], we have

am,n = ‖Ju(s+ nµ)
n−1∏
i=1

Jµ(s+ iµ)x

− Jµ(s+mλ)[α
m−1∏
i=1

Jλ(s+ iλ)x+ β

m∏
i=1

Jλ(s+ iλ)x)]‖.

Here α = µ/λ and β = (λ− µ)/λ.
Under the time-regulating condition (HA), it follows that, if the element inside

the norm of the right side of the above equality is in S1(µ), then, by Proposition
2.2 with ε = µ,

am,n ≤ L(‖
n∏

i=1

Jµ(s+ iµ)x‖)|mλ− nµ| ≤ L(K2)|mλ− nµ|, (3.2)

which is less than or equal to the right-hand side of (3.1) with (m,n) = (m,n),
where γn > 1.

If that element instead lies in S2(µ), then, by Proposition 2.2 with ε = µ,

am,n ≤ γ(αam−1,n−1 + βam,n−1) + γµ|f(s+mλ)− f(s+ nµ)|

× L(‖
n∏

i=1

Jµ(s+ iµ)x‖)[1 + ‖
∏n

i=1 Jµ(s+ iµ)x−
∏n−1

i=1 Jµ(s+ iµ)x
µ

‖]

≤ [γαam−1,n−1 + γβam,n−1] +K4µρ(|nµ−mλ|),
(3.3)

where K4 = γL(K2)(1 +K3) and ρ(r) is the modulus of continuity of f on [0, T ].
From this, it follows that proving the relations is sufficient under the induction
assumption:

γαpm−1,n−1 + γβpm,n−1 ≤ pm,n; (3.4)

γαqm−1,n−1 + γβqm,n−1 +K4µρ(|nµ−mλ|) ≤ qm,n; (3.5)

where qm,n = dm,n, and pm,n = cm,n or sm,n or em,n or fm,n or gm,n.
Now we consider five cases.
Case 1. Here pm,n = cm,n. Under this case, (3.4) is true because of the

calculations, where

bm,n =
√

(nµ−mλ)2 + (nµ)(λ− µ)

was defined and the Schwartz inequality was used:

α[(n− 1)µ− (m− 1)λ] + β[(n− 1)µ−mλ] = (nµ−mλ);
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αbm−1,n−1 + βbm,n−1 =
√
α
√
αbm−1,n−1 +

√
β
√
βbm,n−1

≤ (α+ β)1/2(αb2m−1,n−1 + βb2m,n−1)
1/2

≤ {(α+ β)(nµ−mλ)2 + 2(nµ−mλ)[α(λ− µ)− βµ]

+ [α(λ− µ)2 + βµ2] + (n− 1)µ(λ− µ)}1/2

= bm,n.

Here
α+ β = 1; α(λ− µ)− βµ = 0; α(λ− µ)2 + βµ2 = µ(λ− µ).

Case 2. Here pm,n = sm,n. Under this case, (3.4) is true, as is with the Case 1,
by noting that

(1− λω)−(m−1) ≤ (1− λω)−m.

Case 3. Here qm,n = dm,n. Under this case, (3.5) is true because of the
calculations:

γαdm−1,n−1 + γβdm,n−1 +K4µρ(|nµ−mλ|)
≤ {γα[K4ρ(δ)γn−1(m− 1)λ] + γβ[K4ρ(δ)γn−1(mλ)]}

+ γα{K4
ρ(T )
δ2

γn−1[(m− 1)λ ((n− 1)µ− (m− 1)λ)2 + (λ− µ)
(m− 1)m

2
λ2]}

+ γβ{K4
ρ(T )
δ2

γn−1[(mλ) ((n− 1)µ−mλ)2 + (λ− µ)
m(m+ 1)

2
λ2]}

+K4µρ(|nµ−mλ|)
= K4ρ(δ)γn[(α+ β)(mλ)− αλ]

+K4
ρ(T )
δ2

γn{α[(nµ−mλ)2 + 2(nµ−mλ)(λ− µ) + (λ− µ)2](mλ− λ)

+ [α(λ− µ)
m(m+ 1)

2
λ2 − α(λ− µ)mλ2]

+ β[(nµ−mλ)2 − 2(nµ−mλ)µ+ µ2](mλ)

+ [β(λ− µ)
m(m+ 1)

2
λ2]}+K4µρ(|nµ−mλ|)

≤ K4ρ(δ)γn[(mλ)− µ] +K4µρ(|nµ−mλ|)

+K4
ρ(T )
δ2

γn[(mλ)(nµ−mλ)2 + (λ− µ)
m(m+ 1)

2
λ2 − µ(nµ−mλ)2]

≡ rm,n,

where the negative terms [2(nµ−mλ)(λ− µ) + (λ− µ)2](−λ) were dropped,

α2(nµ−mλ)(λ− µ)− β2(nµ−mλ)µ = 0,

and
[α(λ− µ)2 + βµ2](mλ) = (mλ)µ(λ− µ),

which cancelled
−α(λ− µ)mλ2 = −(mλ)µ(λ− µ);

it follows that rm,n ≤ dm,n, since

K4µρ(|nµ−mλ|)
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≤

{
K4µρ(δ) ≤ K4µρ(δ)γn, if |nµ−mλ| ≤ δ;

K4µρ(T ) (nµ−mλ)2

δ2 ≤ K4µρ(T )γn (nµ−mλ)2

δ2 , if |nµ−mλ| > δ.

Case 4. Here pm,n = em,n. Under this case, (3.4) is true, as is with the Case 1.
Case 5. Here pm,n = fm,n. Under this case, (3.4) is true because of the

calculations:

γαfm−1,n−1 + γβfm,n−1 = γαK1[γn−1µ+ γn−1(1− λω)−(m−1)λ]

+ γβK1[γn−1µ+ γn−1(1− λω)−mλ]

≤ K1[(α+ β)γnµ+ (α+ β)γn(1− λω)−mλ],
= fm,n.

Case 6. Here pm,n = gm,n. Under this case, (3.4) is true because of the
calculations:

γαgm−1,n−1 + γβgm,n−1 ≤ K4γ
nρ(|λ− µ|)α(m− 1)λ+K4γ

nρ(|λ− µ|)β(mλ)

≤ K4γ
nρ(|λ− µ|)(α+ β)(mλ)

= gm,n.

Now the proof is complete. �

Here is one of our two main results:

Theorem 3.3. If the nonlinear operator A(t) satisfies the dissipativity condition
(H1), the range condition (H2’), and the time-regulating condition (HA) , then

U(s+ t, s)u0 ≡ lim
n→∞

n∏
i=1

J t
n
(s+ i

t

n
)u0

exists for u0 ∈ D̂(A(s)) = D(A(s)) where s, t ≥ 0 and 0 ≤ (s + t) ≤ T , and is the
so-called a limit solution to the equation (1.1) . Furthermore, this limit U(s+t, s)u0

has the Lipschitz property

‖U(s+ t, s)u0 − U(s+ τ, s)u0‖ ≤ k|t− τ |

for 0 ≤ s+ t, s+ τ ≤ T and for u0 ∈ D̂(A(s)).

Proof. For x ∈ D̂(A(s)), it follows from Proposition 3.2, by setting µ = t
n , λ = t

m ,

and δ2 =
√
λ− µ that, as n,m → ∞, am,n converges to 0, uniformly for 0 ≤

(s+ t) ≤ T . Thus

lim
n→∞

n∏
i=1

J t
n
(s+ i

t

n
)x

exists for x ∈ D̂(A(s)). This limit also exits for x ∈ D̂(A(s)) = D(A(s))), on
following the limiting arguments in Crandall-Pazy [9].

On the other hand, setting µ = λ = t/n, m = [ t
µ ] and setting δ2 =

√
λ− µ, it

follows that

lim
n→∞

n∏
i=1

J t
n
(s+ i

t

n
)u0 = lim

µ→0

[ t
µ ]∏

i=1

Jµ(s+ iµ)u0. (3.6)
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Now, to show the Lipschitz property, (3.6) and Crandall-Pazy [9, Page 71] will
be used. From Proposition 2.2, it is derived that

‖un − um‖ ≤ ‖un − un−1‖+ ‖un−1 − un−2‖+ · · ·+ ‖um+1 − um‖

≤ K3µ(n−m) for x ∈ D̂(A(s)),

un =
n∏

i=1

Jµ(s+ iµ)x, um =
m∏

i=1

Jµ(s+ iµ)x,

where n = [t/µ], m = [τ/µ], t > τ and 0 < µ < λ0. The proof is completed by
making µ→ 0 and using (3.6). �

Now discretize (1.1) as
ui − εA(ti)ui 3 ui−1,

ui ∈ D(A(ti)),
(3.7)

where n ∈ N is large, and ε is such that s ≤ ti = s+ iε ≤ T for each i = 1, 2, . . . , n.
Here notice that, for u0 ∈ E, ui exists uniquely by the hypotheses (H1) and (H2’).

Let u0 ∈ D̂(A(s)), and construct the Rothe functions [12, 32]. Let

χn(s) = u0, Cn(s) = A(s),

χn(t) = ui, Cn(t) = A(ti) for t ∈ (ti−1, ti],

and let

un(s) = u0,

un(t) = ui−1 + (ui − ui−1)
t− ti−1

ε
for t ∈ (ti−1, ti] ⊂ [s, T ].

Since ‖ui−ui−1
ε ‖ ≤ K3 for u0 ∈ D̂(A(s)) by Proposition 2.1, it follows that, for

u0 ∈ D̂(A(s)),
lim

n→∞
sup

t∈[0,T ]

‖un(t)− χn(t)‖ = 0,

‖un(t)− un(τ)‖ ≤ K3|t− τ |,
(3.8)

where t, τ ∈ (ti−1, ti], and that, for u0 ∈ D̂A(s)),

dun(t)
dt

∈ Cn(t)χn(t),

un(s) = u0,
(3.9)

where t ∈ (ti−1, ti]. Here the last equation has values in B([s, T ];X), which is the
real Banach space of all bounded functions from [s, T ] to X.

Proposition 3.4. If A(t) satisfies the assumptions in Theorem 3.3, then

lim
n→∞

un(t) = lim
n→∞

n∏
i=1

J t−s
n

(s+ i
t

n
)u0

uniformly for finite 0 ≤ (s+ t) ≤ T and for u0 ∈ D̂(A(s)).

Proof. The asserted uniform convergence will be proved by using the Ascoli-Arzela
Theorem [33].
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Pointwise convergence will be proved first. For each t ∈ [s, T ), we have t ∈
[ti, ti+1) for some i, and so i = [ t−s

ε ], the greatest integer that is less than or equal
to t−s

ε . That ui converges is because, for each above t,

lim
ε→0

ui = lim
ε→0

i∏
k=1

(I − εA(tk))−1u0

= lim
n→∞

n∏
k=1

[I − t− s

n
A(s+ k

t− s

n
)]−1u0

(3.10)

by (3.6), which has the right side convergent by Theorem 3.3. Since

‖ui − ui−1

ε
‖ ≤ K3

for u0 ∈ D̂(A(s)), we see from the definition of un(t) that

lim
n→∞

un(t) = lim
ε→0

ui = lim
n→∞

n∏
i=1

J t−s
n

(s+ i
t− s

n
)u0

for each t.
On the other hand, due to

‖ui − ui−1

ε
‖ ≤ K3

again, we see that un(t) is equi-continuous in C([s, T ];X), the real Banach space
of all continuous functions from [s, T ] to X. Thus it follows from the Ascoli-Arzela
theorem [33] that, for u0 ∈ D̂(A(s)), some subsequence of un(t) (and then itself)
converges uniformly to some

u(t) = lim
n→∞

n∏
i=1

J t−s
n

(s+ i
t− s

n
)u0 ∈ C([s, T ];X).

This completes the proof. �

Now consider a strong solution. Let (Y, ‖·‖Y ) be a real Banach space, into which
the real Banach space (X, ‖·‖) is continuously embedded. Assume additionally that
A(t) satisfies the embedding property of embeddedly quasi-demi-closedness:

(HB) If tn ∈ [0, T ] → t, if xn ∈ D(A(tn)) → x, and if ‖yn‖ ≤ k for some
yn ∈ A(tn)xn, then η(A(t)x) exists and

|η(ynl
)− z| → 0

for some subsequence ynl
of yn, for some z ∈ η(A(t)x), and for each η ∈

Y ∗ ⊂ X∗, the real dual space of Y .
Here is the other main result.

Theorem 3.5. Let A(t) satisfy the dissipativity condition (H1), the range condition
(H2’), the time-regulating condition (HA), and the embedding property (HB). Then
equation (1.1), for u0 ∈ D̂(A(s)), has a strong solution

u(t) = lim
n→∞

n∏
i=1

J t−s
n

(s+ i
t

n
)u0
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in Y , in the sense that

d

dt
u(t) ∈ A(t)u(t) in Y for almost every t ∈ (0, T );

u(s) = u0.

The solution is unique if Y ≡ X. Furthermore,

‖u(t)− u(τ)‖X ≤ K3|t− τ |

for 0 ≤ s ≤ t, τ ≤ T , a result from Theorem 3.3.

The results in the above theorem follow from Theorem 3.3 and the proof in [20,
page 364], [21, pages 262-263].

Remark 3.6. The results in Sections 2 and 3 are still true if the range condition
(H2’) is replaced by the weaker condition (H2”) below, provided that the initial
conditions u0 ∈ D̂(A(s))(⊃ D(A(s))) and u0 ∈ D̂(A(s)) = D(A(s))(⊃ D(A(s))) are
changed to the condition u0 ∈ D(A(s)). This is readily seen from the corresponding
proofs. Here
(H2”) The range of (I − λA(t)), denoted by E, is independent t and contains

D(A(t)) for all t ∈ [0, T ] and for small 0 < λ < λ0 with λ0ω < 1.

4. Applications to partial differential equations (I)

Within this section, K will denote a constant that can vary with different occa-
sions. Now we make the following assumptions:

(A1) Ω is a bounded smooth domain in Rn, n ≥ 2, and ∂Ω is the boundary of Ω.
(A2) ν(x) is the unit outer normal to x ∈ ∂Ω, and µ is a real number such that

0 < µ < 1.
(A3) α(x, t, p) ∈ C2(Ω × Rn) is true for each t ∈ [0, T ], and is continuous in all

its arguments. Furthermore, α(x, t, p) ≥ δ0 > 0 is true for all x, z, and all
t ∈ [0, T ], and for some constant δ0 > 0.

(A4) g(x, t, z, p) ∈ C2(Ω×R×Rn) is true for each t ∈ [0, T ], is continuous in all
its arguments, and is monotone non-increasing in z for each t, x, and p.

(A5) g(x,t,z,p)
α(x,t,p) is of at most linear growth in p, that is ,

|g(x, t, z, p)
α(x, t, p)

| ≤M(x, t, z)(1 + |p|)

for some continuous function M and for all t ∈ [0, T ] when |p| is large
enough.

(A6) β(x, t, z) ∈ C3(Ω × R) is true for each t ∈ [0, T ], is continuous in all its
arguments, and is strictly monotone increasing in z so that βz ≥ δ0 > 0 for
the constant δ0 > 0 in (A3).

(A7)

|α(x, t, p)− α(x, τ, p)| ≤ |ζ(t)− ζ(τ)|N1(x, |p|),
|g(x, t, z, p)− g(x, τ, z, p)| ≤ |ζ(t)− ζ(τ)|N2(x, |z|, |p|),

|β(x, t, z)− β(x, τ, z)| ≤ |t− τ |N3(x, |z|)

are true for some continuous positive functions N1, N2, N3 and for some
continuous function ζ of bounded variation.
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Define the t-dependent nonlinear operator A(t) : D(A(t)) ⊂ C(Ω) → C(Ω) by

D(A(t)) = {u ∈ C2+µ(Ω) :
∂u

∂ν
+ β(x, t, u) = 0 on ∂Ω} and

A(t)u = α(x, t,Du)∆u+ g(x, t, u,Du) for u ∈ D(A(t)).

Example 4.1. Consider the equation

∂

∂t
u(x, t) = α(x, t,Du)∆u+ g(x, t, u,Du), (x, t) ∈ Ω× (0, T ),

∂

∂ν
u+ β(x, t, u) = 0, x ∈ ∂Ω,

u(x, 0) = u0,

(4.1)

for u0 ∈ D(A(0)). The above equation has a strong solution

u(t) = lim
n→∞

n∏
i=1

J t
n
(i
t

n
)u0

in L2(Ω) with
∂

∂ν
u(t) + β(x, t, u(t)) = 0, x ∈ ∂Ω,

and the solution u(t) satisfies the property

sup
t∈[0,T ]

‖u(t)‖C1+µ(Ω) ≤ K

for some constant K.

Proof. It was shown in [21, Pages 264-268] that A(t) satisfies the dissipativity con-
dition (H1), the range condition (H2”) with E = Cµ(Ω) for any 0 < µ < 1, and
satisfies the time-regulating condition (HA) and the embedding property (HB).
Here the third line on [21, Page 268]:

×[‖N2(z, ‖v‖∞, ‖Dv‖∞)‖∞ +
‖N1(z, ‖Dv‖∞)‖∞

δ1
‖A(τ)v‖∞)]

should have ‖A(τ)v‖∞ replaced by

[‖A(τ)v‖∞ + ‖g(z, τ, v,Dv)‖∞].

Hence Remark 3.6 and Theorems 3.3 and 3.5 are applicable.
It remains to prove that u(t) satisfies the mentioned property and the middle

equation in (4.1) in C(Ω). This basically follows from [21, pages 264-268]. To this
end, the ui in (3.7) will be used.

Since A(t) satisfies (H1), (H2”), and (HA), it follows from Proposition 2.2 and
Remark 3.6 that

‖ui − ui−1

ε
‖ = ‖A(ti)ui‖∞ ≤ K3 and ‖ui‖∞ ≤ K2.

Thus, from linear Lp elliptic theory [35, 14], it follows that ‖ui‖W 2,p ≤ K for some
constant K, whence

‖ui‖C1+η ≤ K (4.2)

for any 0 < η < 1 by the Sobolev embedding theorem [14]. This, together with
the interpolation inequality [14] and the Ascoli-Arzela theorem [14, 33], implies
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that a convergent subsequence of ui converges in C1+µ(Ω) for any 0 < λ < η < 1.
Therefore, on account of (3.10) and Proposition 3.4,

sup
t∈[0,T ]

‖u(t)‖C1+µ ≤ K

results for u0 ∈ D(A(0)), and u(t) satisfies the middle equation in (4.1) in C(Ω).
The proof is complete �

Consider the linear equation

∂u(x, t)
∂t

=
n∑

i,j=1

aij(x, t)Diju(x, t) +
n∑

i=1

bi(x, t)Diu(x, t) + c(x, t)u(x, t)

for (x, t) ∈ Ω× (0, T ),
∂

∂ν
u+ β(x, t)u = 0, x ∈ ∂Ω,

u(x, 0) = u0,

(4.3)

in which the following are assumed. Let aij(x, t) = aji(x, t), and let

λmin|ξ|2 ≤
n∑
i,j

aij(x, t)ξiξj ≤ λmax|ξ|2

for some positive constants λmin, λmax, for all ξ ∈ Rn, and for all x, t. Let

aij(x, t), bi(x, t), c(x, t) ∈ Cµ(Ω)

uniformly for all t, be continuous in all their arguments, and be of bounded variation
in t uniformly for x. Let c(x, t) ≤ 0 for all x, t,

β(x, t) ∈ C1+µ(Ω), 0 < µ < 1

for all t, and β(x, t) ≥ δ > 0 for some constant δ > 0. Finally, let β(x, t) and
c(x, t) be continuous in all its arguments, and let β(x, t) be Lipschitz continuous in
t uniformly for x.

Example 4.2. If
∑

i,j aij(x, t)Diju(x, t) = a0(x, t)∆u(x, t) for some a0(x, t), then
the equation (4.3), for u0 ∈ D(A(0)), has a strong solution

u(t) = lim
n→∞

n∏
i=1

J t
n
(i
t

n
)u0

in L2(Ω) with
∂

∂ν
u(t) + β(x, t)u(t) = 0, x ∈ ∂Ω,

and u(t) satisfies the property

sup
t∈[0,T ]

‖u(t)‖C1+µ(Ω) ≤ K.

Proof. Linear elliptic equation theory [14, Pages 128-130] shows that the corre-
sponding operator A(t) satisfies the range condition (H2”) with E = Cµ(Ω). The
arguments in [21, Pages 267-268] shows that A(t) satisfies the dissipativity condi-
tion (H1), the time-regulating condition (HA), and the embedding property (HB).
The proof is complete, after applying Remark 3.6, Theorems 3.3 and 3.5, and the
proof for Theorem 4.1. �
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Example 4.3. Suppose that

aij(x), bi(x), c(x) ∈ C1+µ(Ω), β(x) ∈ C2+µ(Ω)

are independent of t, where 0 < µ < 1. Then equation (4.3) has a unique classical
solution

u(t) = lim
n→∞

n∏
i=1

J t
n
(i
t

n
)u0 = lim

n→∞
(I − t

n
A)−nu0

for u0 ∈ D(A) with Au0 ∈ D(A), and the solution has the properties that du(t)
dt is

Lipschitz continuous in t, and that

‖du
dt
‖C1+µ(Ω) ≤ K.

Furthermore, d
dtu is differentiable in t and d2

dt2u(t) is Lipschitz continuous in t, if
u0 is in D(A3) such that A3u0 ∈ D(A). More regularity of du

dt in t can be obtained
iteratively.

Remark 4.4. In order for u0 to be in D(A2), more smoothness assumptions should
be imposed on the coefficient functions aij(x), bi(x), c(x) and β(x).

Proof. Here observe that the operator A is not closed, and so [20, Theorem 1 Page
363] does not apply directly.

The ui in (3.7) will be used, and u0 ∈ D(A) with Au0 ∈ D(A) will be assumed
for a moment. It follows that

Aui =
ui − ui−1

ε
= (I − εA)−i(Au0),

and hence, by (4.2) which is for the proof of Theorem 4.1,

‖Aui‖C1+η(Ω) = ‖(I − εA)−i(Au0)‖C1+η(Ω) ≤ K

for Au0 ∈ D(A) and for any 0 < η < 1. This implies

‖ui‖C3+η(Ω) ≤ K

by the Schauder global estimate with more smoothness in the linear elliptic theory
[14]. Consequently, on using the interpolation inequality [14] and the Ascoli-Arzela
theorem [14, 33], we have

Aui → Au(t) = U(t)(Au0)

through some subsequence with respect to the topology in C1+λ(Ω) for any 0 <
λ < η < 1. Here

U(t)u0 ≡ lim
n→∞

(I − t

n
A)−nu0.

The rest follows from [20, Page 363], where the Lipschitz property in Theorem 3.3
and Remark 3.6 will be used. �

Now consider the linear equation with the space dimension 1:
∂u

∂t
= a(x, t)uxx + b(x, t)ux + c(x, t)u, (x, t) ∈ (0, 1)× (0, T ),

u′(j, t) = (−1)jβj(j, t)u(j, t), j = 0, 1,

u(x, 0) = u0(x).

(4.4)

Here we assume that a, b, c are jointly continuous in x ∈ [0, 1], t ∈ [0, T ], and are
of bounded variation in t uniformly for all x, that c(x, t) ≤ 0 and a(x, t) ≥ δ0 for
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some constant δ0 > 0, and finally that βj ≥ δ0 > 0, j = 0, 1 are jointly continuous
in x, t, and are Lipschitz continuous in t, uniformly over x.

Let A(t): D(A(t)) ⊂ C[0, 1] → C[0, 1] be the operator defined by

A(t)u ≡ a(x, t)u′′ + b(x, t)u′ + c(c, t)u for u ∈ D(A(t)) where

D(A(t)) ≡ {v ∈ C2[0, 1] : v′(j) = (−1)jβj(j, t)v(j), j = 0, 1}.

Following [20] and the proof for the previous case of higher space dimensions,
and applying linear ordinary differential equation theory [5, 25] and Theorem 3.5,
the next example is readily proven. Here the range condition (H2’) is satisfied with
E = C[0, 1] ⊃ D(A(t)) for all t.

Example 4.5. Equation (4.4) has a strong solution

u(t) = lim
n→∞

(I − t

n
A)−nu0

in L2(0, 1) for u0 ∈ D̂(A(0)), and u(t) satisfies the middle equation in (4.4) and the
Lipschitz property

‖u(t)− u(τ)‖∞ ≤ k|t− τ |

for u0 ∈ D̂(A(0)) and for 0 ≤ t, τ ≤ T .

In the case that a, b, c, βj , for j = 0, 1, are independent of t, the Theorem 1 in
[20, Page 363], together with the Lipschitz property in the Theorem 3.3 in this
paper, will readily deliver the following example. Here it is to be observed that the
corresponding operator A is closed.

Example 4.6. If the coefficient functions a, b, c, βj , j = 0, 1 are independent of t,
then the equation (4.4) has a unique classical solution

u(t) = lim
n→∞

(I − t

n
A)−nu0

for u0 ∈ D(A) with Au0 ∈ D(A). This u(t) has this property that the function du
dt

is continuous in t.
Furthermore, u(t) is Lipschitz continuous in t for u0 ∈ D̂(A), and du

dt is Lipschitz
continuous in t for u0 ∈ D(A) with Au0 ∈ D̂(A), and is differentiable in t for
u0 ∈ D(A2) with A2u0 ∈ D(A). More regularity of du

dt can be obtained iteratively.

Remark 4.7. In order for u0 to be in D(A2), more smoothness assumptions should
be imposed on the coefficient functions a(x), b(x), c(x), and βj , j = 0, 1.

5. Applications to partial differential equations (II)

In this section, it will be further shown that, for each concrete A(t) in Section
4, the corresponding quantity

J t
n
(i
t

n
)h = [I − t

n
A(i

t

n
)]−1h, i = 1, 2, . . . , n

is the limit of a sequence where each term in the sequence is an explicit function of
the solution φ to the elliptic equation (1.3) with ϕ ≡ 0.

We start with the case of linear A(t) and consider the parabolic equation (4.3).
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Proposition 5.1. For h ∈ Cµ(Ω), the solution u to the equation

[I − εA(t)]u = h (5.1)

where 0 ≤ t ≤ T and ε > 0, is the limit of a sequence where each term in the
sequence is an explicit function of the solution φ to the elliptic equation (1.3) with
ϕ ≡ 0. Here A(t) is the linear operator corresponding to the parabolic equation
(4.3).

Proof. The linear operator A(t) : D(A(t)) ⊂ C(Ω) → C(Ω) is defined by

A(t)u ≡
∑
i,j

aij(x, t)Diju+
∑

i

bi(x, t)Diu+ c(x, t)u

for u ∈ D(A(t)) ≡ {u ∈ C2+µ(Ω) :
∂u

∂ν
+ β(x, t)u = 0 on ∂Ω}.

Solvability of (5.1) follows from [14, Pages 128-130], where the method of con-
tinuity [14, Page 75] is used. By writing out fully how the method of continuity is
used, it will be seen that the solution u is the limit of a sequence where each term
in the sequence is an explicit function of the solution φ to the elliptic equation (1.3)
with ϕ ≡ 0. To this end, set

U1 = C2+µ(Ω), U2 = Cµ(Ω)× C1+µ(∂Ω),

Lτu = τ [u− εA(t)u] + (1− τ)(−∆u) in Ω,

Nτu = τ [
∂u

∂ν
+ β(x, t)u] + (1− τ)(

∂u

∂ν
+ u) on ∂Ω,

where 0 ≤ τ ≤ 1. Define the linear operator £τ : U1 → U2 by

£τu = (Lτu,Nτu)

for u ∈ U1, and assume that £s is onto for some s ∈ [0, 1].
It follows from [14, Pages 128-130] that

‖u‖U1 ≤ C‖£τu‖U2 , (5.2)

where the constant C is independent of τ . This implies that £s is one to one, and
so £−1

s exists. By making use of £−1
s , the equation, for w0 ∈ U2 given,

£τu = w0

is equivalent to the equation

u = £−1
s w0 + (τ − s)£−1

s (£0 −£1)u,

from which a linear map S : U1 → U1,

Su = Ssu ≡ £−1
s w0 + (τ − s)£−1

s (£0 −£1)u

is defined. The unique fixed point u of S = Ss will be related to the solution of
(5.1).

By choosing τ ∈ [0, 1] such that

|s− τ | < δ ≡ [C(‖£0‖U1→U2 + ‖£1‖U1→U2)]
−1, (5.3)

it follows that S = Ss is a strict contraction map. Therefore S has a unique fixed
point w, and the w can be represented by

lim
n→∞

Sn0 = lim
n→∞

(Ss)n0

because of 0 ∈ U1. Thus £τ is onto for |τ − s| < δ.
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It follows that, by dividing [0, 1] into subintervals of length less than δ and
repeating the above arguments in a finite number of times, £τ becomes onto for
all τ ∈ [0, 1], provided that it is onto for some τ ∈ [0, 1]. Since £0 is onto by
the potential theory [14, Page 130], we have that £1 is also onto. Therefore, for
w0 = (h, 0), the equation

£1u = w0

has a unique solution u, and the u is the seeked solution to (5.1). Here it is to
be observed that φ ≡ £−1

0 (h, 0) is the unique solution £−1
0 (h, ϕ) to the elliptic

equation (1.3) with ϕ ≡ 0:

−∆v = h, x ∈ Ω,
∂v

∂ν
+ v(x) = 0 on ∂Ω,

and that

S0 = S00 = £−1
0 (h, 0),

S20 = (S0)20 = £−1
0 (h, 0) + £−1

0 [|τ − 0|(£0 −£1)£−1
0 (h, 0)],

. . . .

The proof is complete. �

Remark 5.2. • The solution u is eventually represented by

u(x) = £−1
0 H((h, 0)),

where H((h, 0)) is a convergent series in which each term is basically obtained by,
repeatedly, applying the linear operator (£0−£1)£−1

0 to (h, 0) for a certain number
of times.
• The quantity £−1

0 (h, ϕ), for each (h, ϕ) ∈ U2 given, can be computed numeri-
cally and efficiently by the boundary element methods [13, 34], if the dimension of
the space variable x equals 2 or 3.
• The constant C above in (5.2) and (5.3) depends on n, µ, λmin,Ω, and on

the coefficient functions aij(x, t), bi(x, t), c(x, t), β(x, t), and is not known explicitly
[14]. Therefore, the corresponding δ cannot be determined in advance, and so, when
dealing with the elliptic equation (5.1) in Proposition 5.1 numerically, it is more
possible, by choosing τ ∈ [0, 1] such that |s − τ | is smaller, that the sequence Sn0
will converge, for which |s− τ | < δ occurs.

Next, we extend the above techniques to the case of nonlinear A(t), and consider
the nonlinear parabolic equation (4.1); more work is required in this case.

Proposition 5.3. For h ∈ Cµ(Ω), the solution u to the equation (5.1)

[I − εA(t)]u = h

where 0 ≤ t ≤ T and ε > 0, is the limit of a sequence where each term in the
sequence is an explicit function of the solution φ to the elliptic equation (1.3) with
ϕ ≡ 0. Here A(t) is the nonlinear operator corresponding to the parabolic equation
(4.1), and β(x, t, 0) ≡ 0 is assumed additionally.

Proof. The nonlinear operator A(t) : D(A(t)) ⊂ C(Ω) → C(Ω) is defined by

D(A(t)) = {u ∈ C2+µ(Ω) :
∂u

∂ν
+ β(x, t, u) = 0 on ∂Ω},
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A(t)u = α(x, t,Du)∆u+ g(x, t, u,Du), u ∈ D(A(t)).

Equation (5.1) with the nonlinear A(t) has been solved in [21], but here the proof
will be based on the contraction mapping theorem as in the proof of Proposition
5.1. To this end, set

U1 = C2+µ(Ω),

U2 = Cµ(Ω)× C1+µ(∂Ω),

Lτu = τ [u− εA(t)u] + (1− τ)(u−∆u), x ∈ Ω,

Nτu = τ [
∂u

∂ν
+ β(x, t, u)] + (1− τ)(

∂u

∂ν
+ u) on ∂Ω,

where 0 ≤ τ ≤ 1. Define the nonlinear operator £τ : U1 → U2 by

£τu = (Lτu,Nτu)

for u ∈ U1, and assume that £s is onto for some s ∈ [0, 1].
As in proving that A(t) satisfies the dissipativity (H1) where the maximum

principle was used, £s is one to one, and so £−1
s exists. By making use of £−1

s , the
equation, for w0 ∈ U2 given, £τu = w0 is equivalent to the equation

u = £−1
s [w0 + (τ − s)(£0 −£1)u],

from which a nonlinear map

S : U1 → U1,

Su = Ssu ≡ £−1
s [w0 + (τ − s)(£0 −£1)u] for u ∈ U1

is defined. The unique fixed point of S = Ss will be related to the solution of (5.1)
with nonlinear A(t).

By restricting S = Ss to the closed ball of the Banach space U1,

Bs,r,w0 ≡ {u ∈ U1 : ‖u−£−1
s w0‖C2+µ ≤ r > 0},

and choosing small enough |τ−s|, we will show that S = Ss leaves Bs,r,w0 invariant.
This will be done by the following steps 1 to 4.

Step 1. It follows as in [21, Pages 265-266] that, for £τv = (f, χ),

‖v‖∞ ≤ k{‖f‖∞,‖χ‖C(∂Ω)},

‖Dv‖Cµ ≤ k{‖v‖∞}‖Dv‖∞ + k{‖v‖∞,‖f‖∞,‖χ‖C(∂Ω)},

‖v‖C1+µ ≤ k{‖χ‖C(∂Ω),‖f‖∞},

‖v‖C2+µ ≤ K‖£τv‖U2 = K‖£τv‖Cµ(Ω)×C1+µ(∂Ω)

(5.4)

where k{‖f‖∞} is a constant depending on ‖f‖∞, and similar meaning is defined
for other constants k’s; further, K is independent of τ , but depends on n, δ0, µ,Ω,
and on the coefficient functions α(x, t,Dv), g(x, t, v,Dv), β(x, t, v), which have in-
corporated the dependence of v,Dv into ‖£τv‖U2 .

Step 2. It is readily seen that, for v ∈ C2+µ(Ω) with ‖v‖C2+µ ≤ R > 0, we have

‖£τv‖U2 ≤ k{R}‖v‖C2+µ , (5.5)

where k{R} is independent of τ .
Step 3. It will be shown that, if

‖u‖C2+µ ≤ R, ‖v‖C2+µ ≤ R > 0,
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then
‖£τu−£τv‖U2 ≤ k{R}‖u− v‖C2+µ . (5.6)

It will be also shown that, if

£τu = (f, χ1), £τv = (w,χ2),

then
‖u− v‖C2+µ ≤ k{‖£τ u‖U2 ,‖£τ v‖U2}[‖f − w‖Cµ + ‖χ1 − χ2‖C1+µ ]

= k{‖£τ u‖U2 ,‖£τ v‖U2}‖£τu−£τv‖U2 .
(5.7)

Here K{R} and K{‖£τ u‖U2 ,‖£τ v‖U2} are independent of τ .
Using the mean value theorem, we have that

f − w = Lτu− Lτv

= (u− v)− (1− τ)∆(u− v)− τε[α∆(u− v)

+ αp(x, t, p1)(Du−Dv)∆v + gp(x, t, u, p2)(Du−Dv)

+ gz(x, t, z1, Dv)(u− v)], x ∈ Ω,

∂(u− v)
∂ν

+ [β(x, t, u)− β(x, t, v)] = χ1 − χ2 on ∂Ω,

were p1, p2 are some functions between Du and Dv, and z1 is some function between
u and v.

It follows as in (5.5) that

‖£τu−£τv‖U2 ≤ k{R}‖u− v‖C2+µ ,

which is the desired estimate.
On the other hand, the maximum principle yields

‖u− v‖∞ ≤ k{‖f−w‖∞,‖χ1−χ2‖∞}

and (5.4) yields

‖u‖C2+µ ≤ K‖£τu‖U2 , ‖v||C2+µ ≤ K‖£τv‖U2 .

Thus, it follows from the Schauder global estimate [14] that

‖u− v‖C2+µ ≤ k{‖£τ u‖U2 ,‖£τ‖U2}‖£τu−£τv‖U2 ,

which is the other desired estimate.
Step 4. Consequently, for u ∈ Bs,r,w0 , we have that, by (5.4),

‖u‖C2+µ ≤ r + ‖£−1
s w0‖C2+µ ≤ r +K‖w0‖U2 ≡ R{r,‖w0‖U2}, (5.8)

and that

‖Su−£−1
s w0‖C2+µ

≤ k{‖w0‖U2 ,‖w0+(τ−s)(£0−£1)u‖U2}‖(τ − s)(£0 −£1)u‖U2 by (5.7)

≤ |τ − s|k{‖w0‖U2 ,R{r,‖w0‖U2
}} by (5.5) and (5.8).

Here the constant k{‖w0‖U2 ,R{r,‖w0‖U2
}} when w0 given and r chosen, is independent

of τ and s. Hence, by choosing some sufficiently small δ1 > 0, there results

S = Ss : Bs,r,w0 ⊂ U1 → Bs,r,w0 ⊂ U1

for |τ − s| < δ1; that is, Bs,r,w0 is left invariant by S = Ss.
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Next, it will be shown that, for small |τ − s|, S = Ss is a strict contraction on
Bs,r,w0 , from which S = Ss has a unique fixed point. Because, for u, v ∈ Bs,r,w0 ,

‖u‖C2+µ ≤ R{r,‖w0‖U2}, ‖v‖C2+µ ≤ R{r,‖w0‖U2} by (5.8),

it follows that, by (5.5),

‖w0 + (τ − s)(£0 −£1)u‖U2 ≤ k{‖w0‖U2 ,R{r,‖w0‖U2
}},

‖w0 + (τ − s)(£0 −£1)v‖U2 ≤ k{‖w0‖U2 ,R{r,‖w0‖U2
}},

(5.9)

and that, by (5.6),

‖(τ − s)[(£0 −£1)u− (£0 −£1)v]‖U2 ≤ |τ − s|k{R{r,‖w0‖U2
}}‖u− v‖C2+µ . (5.10)

Therefore, on account of (5.7), (5.9), and (5.10), we obtain

‖Su− Sv‖C2+µ ≤ |τ − s|k{R{r,‖w0‖U2
},‖w0‖U2}k{R{r,‖w0‖U2

}}‖u− v‖C2+µ .

Here the constant k{R{r,‖w0‖U2
},‖w0‖U2}k{R{r,‖w0‖U2

}} when w0 given and r chosen,
is independent of τ and s. Hence, by choosing some sufficiently small δ2 > 0, it
follows that

S = Ss : Bs,r,w0 → Bs,r,w0

ia a strict contraction for
|τ − s| < δ2 ≤ δ1.

Furthermore, the unique fixed point w of S = Ss can be represented by

lim
n→∞

Sn0 = lim
n→∞

(Ss)n0

if β(x, t, 0) ≡ 0 and if r = r{K‖w0‖U2} is chosen such that

r = r{K‖w0‖U2} ≥ K‖w0‖U2 ≥ ‖£−1
s w0‖C2+µ (5.11)

(by (5.8)); this is because 0 belongs to Bs,r,w0 in this case. Thus £τ is onto for
|τ − s| < δ2.

It follows that, by dividing [0, 1] into subintervals of length less than δ2 and
repeating the above arguments in a finite number of times, £τ becomes onto for
all τ ∈ [0, 1], provided that it is onto for some τ ∈ [0, 1]. Since £0 is onto by
linear elliptic theory [14], we have that £1 is also onto. Therefore, the equation,
for w0 = (h, 0),

£1u = w0

has a unique solution u, and the u is the sought solution to (5.1).
Here it is to be observed that ψ ≡ £−1

0 (h, 0) is the unique solution to the elliptic
equation

v −∆v = h, x ∈ Ω,
∂v

∂ν
+ v(x) = 0 on ∂Ω,

and that, by Proposition 5.1, ψ is the limit of a sequence where each term in the
sequence is an explicit function of the solution φ to the elliptic equation (1.3) with
ϕ ≡ 0.

It is also to be observed that

S0 = S00 = £−1
0 (h, 0),

S20 = (S0)20 = £−1
0 [(h, 0) + |τ − 0|(£0 −£1)£−1

0 (h, 0)],
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. . . ,

where (£0 −£1)£−1
0 is a nonlinear operator. The proof is complete. �

Remark 5.4. The constants k{R{r,‖w0‖U2
}} and k{R{r,‖w0‖U2

},‖w0‖U2}k{R{r,‖w0‖U2
}},

when w0 is given and when r is chosen and conditioned by (5.11), is not known
explicitly, and so the corresponding δ2 cannot be determined in advance. Hence,
when dealing with the elliptic equation (5.1) in Proposition 5.3 numerically, it is
more possible, by choosing τ ∈ [0, 1] such that |τ − s| is smaller, that the sequence
Sn0 will converge, for which |τ − s| < δ2 ≤ δ1 occurs.

Finally, what will be considered is the linear equation (4.4) of space dimension
1.

Proposition 5.5. For h ∈ C[0, 1], the solution u to the equation (5.1)

[I − εA(t)]u = h

where 0 ≤ t ≤ T and ε > 0, is the limit of a sequence where each term in the
sequence is an explicit function of the solution φ to the ordinary differential equation

v − v′′ = h x ∈ (0, 1),

v′(j) = (−1)jv(j), j = 0, 1.
(5.12)

Here A(t) is the linear operator corresponding to the parabolic equation (4.4).

Proof. The linear operator A(t) : D(A(t)) ⊂ C[0, 1] → C[0, 1] is defined by

A(t)u ≡ a(x, t)u′′ + b(x, t)u′ + c(x, t)u for u ∈ D(A(t)) where

D(A(t)) ≡ {v ∈ C2[0, 1] : v′(j) = (−1)jβj(j, t)v(j), j = 0, 1}.

The contraction mapping theorem in the proof of Proposition 5.1 will be used
in order to solve the equation (5.1). To this end, set, for 0 ≤ τ ≤ 1,

U1 = C2[0, 1], U2 = C[0, 1]× R2,

Lτu = τ [u− εA(t)u] + (1− τ)(u− u′′),

Nτu =
(
τ [u′(0)− β0(0, t)u(0)] + (1− τ)[u′(0)− u(0)],

τ [u′(1) + β1(1, t)u(1)] + (1− τ)[u′(1) + u(1)]
)
.

Define the linear operator £τ : U1 → U2 by

£τu = (Lτu,Nτu)

for u ∈ U1, and assume that £s is onto for some s ∈ [0, 1].
The following will be readily derived.
• For u ∈ C2[0, 1], we have

‖£τu‖U2 = ‖£τu‖C[0,1]×R2 ≤ k{a,b,c,β0,β1}‖u‖C2 , (5.13)

where k{a,b,c,β0,β1} is independent of τ , and can be computed, depending on the
given a(x, t), b(x, t), c(x, t), β0(0, t), and β1(1, t).
• For £τu = (h, (r, s)), the maximum principle shows

‖u‖∞ ≤ ‖h‖∞ + | r

β0(0, t)
|+ | s

β1(1, t)
|.
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This, together with the known interpolation inequality [15, Page 65] or [27, Pages
7-8]

‖u′‖∞ ≤ 2
λ
‖u‖∞ +

λ

2
‖u′′‖∞

for any λ > 0, applied to £τu = (h, (r, s)), it follows that, by choosing small enough
λ = λ1,

‖u‖C2 ≤ k{λ1,a,b,c,β0,β1}(‖h‖∞ + |r|+ |s|) = k{λ1,a,b,c,β0,β1}‖£τu‖U2 , (5.14)

where k{λ1,a,b,c,β0,β1} is independent of τ and can be computed explicitly.

On account of the estimate (5.14), £s is one to one, and so £−1
s exists. Thus,

making use of £−1
s , the equation, for w0 ∈ U2 given, £τu = w0 is equivalent to the

equation

u = £−1
s w0 + (τ − s)£−1

s (£0 −£1)u,

from which a linear map

S : U1 = C2[0, 1] → U1 = C2[0, 1],

Su = Ssu ≡ £−1
s w0 + (τ − s)£−1

s (£0 −£1)u, u ∈ U1

is defined. Because of (5.14) and (5.13), it follows that this S is a strict contraction
if

|τ − s| < δ = [k{λ1,a,b,c,β0,β1}2k{a,b,c,β0,β1}]
−1.

The rest of the proof will be the same as that for Proposition 5.1, in which the
equation, for w0 = (h, (0, 0)),

£1u = w0

has a unique solution u, and the u is the sought solution. �

Remark 5.6. • The δ = [k{λ1,a,b,c,β0,β1}2k{a,b,c,β0,β1}]
−1 in the above proof of

Proposition 5.5 can be computed explicitly.
• The quantity £−1

0 (h, (0, 0)) is represented by the integral

£−1
0 (h, (0, 0)) =

∫ 1

0

g0(x, y)h(y) dy,

where g0(x, y) is the Green function associated with the boundary value problem

u− u′′ = h in (0, 1),

u′(j) = (−1)ju(j), j = 0, 1.

This g0(x, y) is known explicitly by a standard formula.
• As before, we have

S0 = S00 = £−1
0 (h, (0, 0)),

S20 = S2
00 = £−1

0 (h, (0, 0)) + £−1
0 [|τ − 0|(£0 −£1)£−1

0 (h, (0, 0))],
. . . .
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6. Appendix

In this section, the Proposition 3.1 in Section 3 will be proved, using the theory
of difference equations. We now introduce its basic theory [26]. Let

{bn} = {bn}n∈{0}∪N = {bn}∞n=0

be a sequence of real numbers. For such a sequence {bn}, we further extend it by
defining

bn = 0 if n = −1,−2, . . . ..

The set of all such sequences {bn}’s will be denoted by S. Thus, if {an} ∈ S, then
0 = a−1 = a−2 = . . . .

Define a right shift operator E : S → S by

E{bn} = {bn+1} for {bn} ∈ S.

For c ∈ R and c 6= 0, define the operator (E − c)∗ : S → S by

(E − c)∗{bn} = {cn
n−1∑
i=0

bi
ci+1

}

for {bn} ∈ S. Here the first term on the right side of the equality, corresponding to
n = 0, is zero.

Define, for {bn} ∈ S,

(E − c)i∗{bn} = [(E − c)∗]i{bn}, i = 1, 2, . . . ;

(E − c)0{bn} = {bn}.

It follows that (E − c)∗ acts approximately as the inverse of (E − c) in this sense

(E − c)∗(E − c){bn} = {bn − cnb0}.

Next we extend the above definitions to doubly indexed sequences. For a doubly
indexed sequence {ρm,n} = {ρm,n}∞m,n=0 of real numbers, let

E1{ρm,n} = {ρm+1,n}; E2{ρm,n} = {ρm,n+1}.

Thus, E1 and E2 are the right shift operators, which acts on the first index and the
second index, respectively. It is easy to see that

E1E2{ρm,n} = E2E1{ρm,n} .

Before we prove the Proposition 3.1, we need the following four lemmas, which are
proved in [23, 22, 23, 24], respectively.

Lemma 6.1. If (3.3) is true, then

{am,n} ≤ (αγ(E2 − βγ)∗)m{a0,n}+
m−1∑
i=0

(γα(E2 − γβ)∗)i{(γβ)nam−i,0}

+
m∑

j=1

(γα)j−1((E2 − γβ)∗)j{rm+1−j,n+1},
(6.1)

where rm,n = K4µρ(|nµ−mλ|).
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Lemma 6.2. The following equality holds:

((E2−βγ)∗)m{nγn} = {nγ
n

αm

1
γm

− mγn

αm+1

1
γm

+
( m−1∑

i=0

(
n

i

)
βn−i

αm+1−i
(m− i) 1

γm

)
γn}.

Here γ, α and β are defined in Proposition 3.2.

Lemma 6.3. The following equality holds:

((E−βγ)∗)j{γn} =
{( 1
αj

− 1
αj

j−1∑
i=0

(
n

i

)
βn−iαi

)
γn−j

}
=

{( 1
αj

n∑
i=j

βn−iαi
)
γn−j

}
for j ∈ N. Here γ, α and β are defined in Proposition 3.2

Lemma 6.4. The following equality holds:

(E − βγ)m∗{n2γn} = γn−m{ n
2

αm
− (2m)n
αm+1

+ (
m(m− 1)
αm+2

+
m(1 + β)
αm+2

)

−
m−1∑
j=0

( (m− j)(m− j − 1)
αm−j+2

+
(m− j)(1 + β)

αm−j+2

)(n
j

)
βn−j}.

Here γ, α, and β are defined in Proposition 3.2.

Proof of Proposition 3.1. If S2(µ) = ∅, then (3.2) is true, and so

am,n ≤ L(K2)|nµ−mλ|.

If S1(µ) = ∅, then (3.3) is true, and so the inequality (6.1) follows by Lemma 6.1.
Since, by Proposition 2.2,

a0,n ≤ K1γ
n(2n+ 1)µ;

am−i,0 ≤ K1(1− λω)−m[2(m− i) + 1]λ;

it follows from Lemma 6.3 and from the Proposition 3 and its proof of [22, Pages
115-116] that the first two terms of the right side of the inequality (6.1) is less than
or equal to

cm,n + sm,n + fm,n.

We finally estimate the third term, denoted by {tm,n}, of the right-hand side of
(6.1). Observe that, using the subadditivity of ρ, we have

{tm,n} ≤
m∑

j=1

(γα)j−1(E2 − γβ)j∗K4µ{ρ(|λ− µ|) + ρ(|nµ−mλ+ jλ|)}

≤
m∑

j=1

(γα)j−1(E2 − γβ)j∗K4µ{γnρ(|λ− µ|) + γnρ(|nµ− (m− j)λ|)}

≡ {um,n}+ {vm,n},

where γ = (1− µω)−1 > 1. It follows from Lemma 6.3 that

{um,n} ≤ {K4µγ
nρ(|λ− µ|)

m∑
j=1

αj−1 1
αj

n∑
i=1

(
n

i

)
βn−iαi}

≤ {K4γ
nρ(|λ− µ|)µ 1

α
m} = {K4ρ(|λ− µ|)γn(mλ)}.
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To estimate {vm,n}, as in Crandall-Pazy [9, page 68], let δ > 0 be given and
write

{vm,n} = {I(1)
m,n}+ {I(2)

m,n},

where {I(1)
m,n} is the sum over indices with |nµ − (m − j)λ| < δ, and {I(2)

m,n} is the
sum over indices with |nµ − (m − j)λ| ≥ δ. As a consequence of Lemma 6.3, we
have

{I(1)
m,n} ≤ {K4µγ

nρ(δ)
m∑

j=1

αj−1 1
αj

n∑
i=j

(
n

i

)
βn−iαi}

≤ {K4ρ(δ)µγnm
1
α
} = {K4ρ(δ)γnmλ}.

On the other hand,

{I(2)
m,n} ≤ K4µρ(T )

m∑
j=1

(γα)j−1(E2 − γβ)j∗{γn}

≤ K4µρ(T )
m∑

j=1

(γα)j−1(E2 − γβ)j∗{γn [nµ− (m− j)λ]2

δ2
},

which will be less than or equal to

{K4
ρ(T )
δ2

γn[(mλ)(nµ−mλ)2 + (λ− µ)
m(m+ 1)

2
λ2]}

and so the proof is complete. This is because of the calculations, where Lemmas
6.2, 6.3, and 6.4 were used:

[nµ− (m− j)λ]2 = n2µ2 − 2(nµ)(m− j)λ+ (m− j)2λ2;
m∑

j=1

(γα)j−1(E2 − γβ)j∗{γnn2}µ2

= γn−1
m∑

j=1

αj−1{n
2

αj
− 2jn
αj+1

+ [
j(j − 1)
αj+2

+
j(1 + β)
αj+2

]

−
j−1∑
i=0

[
(j − i)(j − i− 1)

αj−i+2
+

(j − i)(1 + β)
αj−i+2

]
(
n

i

)
βn−i}µ2

≤ γn
m∑

j=1

{n
2

α
− 2jn

α2
+ [

j(j − 1)
α3

+
j(1 + β)
α3

]}µ2,

where the negative terms associated with
∑j−1

i=0 were dropped;
m∑

j=1

(γα)j−1(E2 − γβ)j∗{γnn}[2µ(m− j)λ](−1)

=
m∑

j=1

(γα)j−1{γn−j [
n

αj
− j

αj+1

+
j−1∑
i=0

(
n

i

)
βn−iαi−j−1(j − i)]}[2µ(m− j)λ](−1)



28 C.-Y. LIN EJDE-2011/92

≤
m∑

j=1

γn{n
α
− j

α2
}[2µ(m− j)λ](−1),

=
m∑

j=1

γnα−1{−2(nµ)(mλ) + j[2nµλ+
2µ
α

(mλ)]− j2(
2µλ
α

)};

where the negative terms associated with
∑j−1

i=0 were dropped;
m∑

j=1

(γα)j−1(E2 − γβ)j∗{γn}(m− j)2λ2

=
m∑

j=1

(γα)j−1{γn−j [
1
αj

− 1
αj

j−1∑
i=0

(
n

i

)
βn−iαi]}(m− j)2λ2

≤
m∑

j=1

γnα−1(m2 − 2mj + j2)λ2,

where the negative terms associated with
∑j−1

i=0 were dropped.
Adding up the right sides of the above three inequalities and grouping them as

a polynomial in j of degree two, we have the following: The term involving j0 = 1
has the factor

µ
1
α

m∑
j=1

[n2µ2 − 2(nµ)(mλ) + (mλ)2] = (mλ)(nµ−mλ)2;

the term involving j2 has the factor

µ2

α3
− 2µλ

α2
+
λ2

α
= 0;

the term involving j has two parts, one of which has the factor

2nµλ
α

+
2µmλ
α2

− 2mλ2

α
− 2nµ2

α2
= 0,

and the other of which has the factor

µ

m∑
j=1

(
1 + β

α3
− 1
α3

)jµ2 = (λ− µ)
m(m+ 1)

2
λ2.

The proof is complete. �

Remark 6.5. The results in Proposition 3.1 are true for n,m ≥ 0, but a similar
result in the [23, Proposition 4, page 236] has the restriction nµ−mλ ≥ 0 which is
not suitable for a mathematical induction proof.
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