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TIME-DEPENDENT DOMAINS FOR NONLINEAR EVOLUTION
OPERATORS AND PARTIAL DIFFERENTIAL EQUATIONS

CHIN-YUAN LIN

Dedicated to Professor Jerome A. Goldstein on his 70th birthday

ABSTRACT. This article concerns the nonlinear evolution equation

du(t

WO ¢ Ay, 0<s<i<T,

u(s) = ug

in a real Banach space X, where the nonlinear, time-dependent, and multi-
valued operator A(t) : D(A(t)) C X — X has a time-dependent domain
D(A(t)). It will be shown that, under certain assumptions on A(t), the equa-
tion has a strong solution. Illustrations are given of solving quasi-linear partial
differential equations of parabolic type with time-dependent boundary condi-
tions. Those partial differential equations are studied to a large extent.

1. INTRODUCTION

Let (X, || - ||) be a real Banach space with the norm || - ||, and let T > 0, w be
two real constants. Consider the nonlinear evolution equation
du(t)

€ A(t)u(t), 0<s<t<T,

dt (1.1)

u(s) = uyg,
where
A(t) : D(At)) c X —- X
is a nonlinear, time-dependent, and multi-valued operator. To solve (1.1)), Crandall
and Pazy [9] made the following hypotheses of (H1)-(H3) and the t-dependence
hypothesis of either (H4) or (H5), for each 0 <¢ < T.

(H1) A(t) is dissipative in the sense that
[ —of] < [(u —v) = A(g = B

for all u,v € D(A(t)), g € (A(t) — w)u,h € (A(t) — w)v, and for all A > 0.
Equivalently,
R(n(g—h)) <0
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for some n € G(u —v) = {£ € X* : |lu—v[]? = &(u—v) = ||€]|%.}, the
duality map of (u — v) [27]. Here (X*,||.||x+) is the dual space of X and
R(z) is the real part of a complex number z.

(H2) The range of (I — AA(¢)) contains the closure D(A(t)) of D(A(t)) for small
0 < X< A with A\w < 1.

(H3) D(A(t)) = D is independent of .

(H4) There are a continuous function f : [0,7] — X and a monotone increasing
function L : [0,00) — [0, 00), such that

[Ix(®)z = Ix(r)z| < AFE) = F(OILAz])
for 0 < A < X,0 < t,7 <T,and z € D. Here Jy(t)x = (I — MA(t))™*
exists for z € D by (H1) and (H2).

(H5) There is a continuous function f : [0, 7] — X, which is of bounded variation
on [0,77], and there is a monotone increasing function L : [0, 00) — [0, 00),
such that

[z = Ia(r)zl < Alf(E) = FOIL2[D L+ [A(T)z])
for 0 < A < Xp,0<t,7<T,and z € D. Here
(JX(T) — I)l‘”
A
by (H1) and (H2), which can equal oo [7, [@].
By defining the generalized domain D(A(t)) = {z € D(A(t)) : |A(t)z| < oo}
[, B7], they [9] proved, among other things, that the limit

(7)) = lim |

. - t—s
U(t, 8)$_7}LH;O7;1;[1J’L—T5(S+Z - ) (1.2)
exists for # € D and that U(t, s)ug is a unique solution, in a generalized sense, to
the equation for ug € D.

Because of the restriction in (H3) that D(A(t)) = D is independent of ¢, the
boundary condition in the example in [9] does not depend on time. In this pa-
per, in order to enlarge the scope of applications, we will consider a different set
of hypotheses, the dissipativity condition (H1), the range condition (H2’), and the
time-regulating condition (HA) below. Here a similar set of hypotheses was con-
sidered in [2I] but the results were not satisfactory.

(H2’) The range of (I — MA(t)), denoted by E, is independent of ¢ and contains
D(A(t)) for all t € [0,T] and for small 0 < A < Ag with Agw < 1.

(HA) There is a continuous function f : [0,7] — R, of bounded variation, and
there is a nonnegative function L on [0, 00) with L(s) bounded for bounded
s, such that, for each 0 < A < Ay, we have

{I@)x—I(T)y:0<t,7 <T,z,y € E} = S1(A) US2(A).
Here S1()) denotes the set
{JA(t)x —I(ry:0<t,7<T,x,y € E,
[ I3 (®)z = Ta(r)yll < LAIA(F)yIDIE = 71},
and S2(A) denotes the set
{IB)z— I\(T)y:0<t, 7 <T,x,y € E,||Jx(t)x — Jx(7)y||
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[(Ja(r) = Dy
)= Dol

We will show that the limit in for z € D(A(s)) = D(A(s)) exists, and that
this limit for 2 = ug € D(A(s)) is a strong solution to the equation (L), if A(t)
satisfies additionally an embedding property in [20] of embeddedly quasi-demi-
closedness. We then apply the abstract theory to quasi-linear, parabolic partial
differential equations with boundary conditions depending on time ¢. We finally
show that, in those applications, each quantity

< (1= 2)Hlle =yl + MLf (@) = FOILAIA (DY) +

t—s)h:u_t—s

t—
Jioe(s+i AGs+i—""h, i=1,2,...,n
n n
is the limit of a sequence where each term in the sequence is an explicit function
F(¢) of the solution ¢ = £5'(h, ¢) to the elliptic equation with ¢ = 0:

—Av(y)=h, yeqQ,
@Jrv:go, y € 0N (1:3)
ov

Here for the dimension of the space variable y equal to 2 or 3, the ¢ = £al(h, 0)
and the solution £ L(h, ) to (1.3) can be computed numerically and efficiently
by the boundary element methods [I3, [34]. See Sections [4] and [5| for more details
of these, including how F(¢) depends on ¢, and for other aspects of the treated
partial differential equations.

There are many related works, to cite a few, we mention [I, 2 8] [4 [6] 8] @ 10,
111, (15, (19}, [16] [17, [18, 20, 22, 23, 21, 24, 27, 29, 30, 311, 32, 33, 36], especially the [24]
for the recent development on nonlinear evolution equations where the hypothesis
(H2) is relaxed.

The rest of this article will be organized as follows. Section [2| obtains some pre-
liminary estimates, and Section [3| deals with the main results, where the nonlinear
operator A(t) is equipped with time-dependent domain D(A(t)). The Appendix
in Section |§| examines the difference equations theory in our papers [22] 23] 24],
whose results, together with those in Section [2} will be used to prove the main
results in Section |3 Section 4]studies applications to linear or nonlinear partial dif-
ferential equations of parabolic type, in which each corresponding elliptic solution
Jt;ns (s +i=2)h will be derived theoretically. Finally, Section [5| follows Section
but derives each elliptic solution J:-s (s + zt_TS)h as the limit of a sequence where
each term in the sequence is an exlglicit function of the solution ¢ to the elliptic

equation (1.3) with ¢ = 0. In either Section [4] or Section |5 other aspects of the
treated partial differential equations are considered.

2. SOME PRELIMINARY ESTIMATES

Within this section and the Sections [3] and [f] we can assume, without loss of
generality, that w > 0 where w is the w in the hypothesis (H1). This is because
the case w < 0 is the same as the case w = 0. This will be readily seen from the
corresponding proofs.

To prove the main results Theorems [3.3] and in Section [3] we need to make
two preparations. One preparation is this section, and the other is the Appendix
in Section



4 C.-Y. LIN EJDE-2011/92

Proposition 2.1. Let A(t) satisfy the dissipativity condition (H1), the range condi-
tion (H2’) , and the time-regulating condition (HA), and let ug be in D(A(s)) C E
where 0 < s < T. Let 0 < € < Ao be so chosen that 0 < ew < 1, and let
0<t;=s+1c <T wheret € N. Then

[ui = woll < 0 L(|luoll)(i€) + [0 b1 + 0" 2bg + - - - + nb;—1 + bi] (2.1)

and

Ui — WUj—
71” < [(cici—1...c2)L(||uol]) or (cici—1...c3)L(||ur]]) or ...

or ¢;L(||ui—2]|) or L(||ui—1]))] + [(cici—1 - .. c1)ag (2.2)
+ (cici_l e Cg)dl + (Cz'ci—l PN Cg)dQ + -+ Cidi—l + dz]

€

Here u; = H;:1 Je(tj)uo exists uniquely by the hypotheses (H1) and (H2’);
n=(1-ew) ! >1;

bi = nel|voll +ne| f(t:) — F(8)|L(JJuo|) (L + ||vol|), where vy is any element in A(s)uop;
ci =01+ L[[ui—1 D f(t:) — f(ti-1)l];

di = nL(|lui1 [N f (t:) = f(ti1)];

the right sides of are interpreted as [L(|uol])] + [c1ao + di] fori=1;
[eaL(|luoll) or L(|luall)] + [c2c1a0 + codr + da] fori=2; ..., and so on; and

Ug —U_1
ap = ” ”7
€
where u_y is defined by ug — evg = u_1, with vy any element in A(s)ug.

Proof. We will use the method of mathematical induction. Two cases will be con-
sidered, and for each case, we divide the proof into two steps.

Case 1. Here (2.1)) is considered
Step 1. Claim that (2.1) is true for ¢ = 1. This will follow from the arguments
below. If (u; — ug) € Si(e) (defined in Section [I]), then

l[ur — ol = [[Je(tr)uo — Je(s)(I — €A(s))uoll < L([luol[)[tr — 5| < L([[uol))e,

which is less than or equal to the right-hand side of (2.1)) with i = 1.
On the other and, if (u; — ug) € Sa2(€) (defined in Section [I]), then

l[ur — ol < nlluo — woll + nellvoll + nel £ (1) = F(s)|L(l[uoll) (1 + llvoll),

which is less than or equal to the right-hand side of with ¢ = 1. Here vq is
any element in A(s)ug.

Step 2. By assuming that is true for ¢ = i — 1, we shall show that it is
also true for i = 4. If (u; — ug) € Si(€), then

l[wi = woll = | Je(ti)uir = Je(s)(I — €A(s))uoll < L([luol)|t: = s| = L([|uoll)(é€),

which is less than or equal to the right side of (2.1)) with i = i because of n° > 1.
On the other hand, if (u; — ug) € S2(€), then

i = woll < nllui—1 — uoll + bi
where = (1 — ew)~! and
by = nellvoll + nel £ (£:) — f ()| L([[uol) (1 + [[vol])-
This recursive inequality, combined with the induction assumption, readily gives

i — ol < n{n" ' L(|juol)(i — Ve + [n""2by + 0" 3bg + -+ - +nbi—a + b;_1]} + b;
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= nlL(HUOH)(’L — e+ [771.7151 + 77i72b2 + -+ nbi—1 + b,
which is less than or equal to the right-hand side of (2.1) with ¢ = ¢ because of
(i — e < ie.

Case 2. Here (2.2) is considered.
Step 1. Claim that (2.2)) is true for ¢ = 1. This follows from the Step 1 in Case
1, because there it was shown that

lur —uol|l < L([luoll)e or b1,

which, when divided by ¢, is less than or equal to the right side of (2.2)) with ¢ = 1.
Here ag = ||vg||, in which ag = (ug — u—1)/e and u_1 = ug — evp.
Step 2. By assuming that (2.2)) is true for i = ¢ — 1, we will show that it is also
true for ¢ = 4. If (u; —u;—1) € S1(e), then
i = wima || < LlJui-a [t — tiza| = L([Jui-1[]e.
This, when divided by €, has its right side less than or equal to one on the right-hand

sides of with 7 = 1.
If (Ui — Ui—l) S 52(6), then

[l — wia]l < (1 — ew) ™ [Jui—y — ui—s]|

el f(t:) — F(tio)|Lluioa (1 + M)]'

By letting
llu; —wi1]|

a; = —,
€

¢i = (1—ew) U+ Lluia DI f(t:) = f(ti-1)]], and
di = L([Juia|)(1 = ew) M f(8) = ftim1)],
it follows that a; < ¢;a;—1 + d;. Here notice that

Uo

o
uo = €vo = u—1;  ao = || =——I = [[vo]-

The above inequality, combined with the induction assumption, readily gives
ai < ci{[(ci—1ci—2 ... c2)L(||Jugl]) or (ci—1ci—z...c3)L(JJusl]) or ...
or ¢;i—1L([lui-sl[) or L(|lui—2[])] + [(ci—1ci—2...c1)ao
+ (cim1Ci—2...co)dy + (ci—1Ci—2 ... c3)da+ ...
+¢i1di—g + diq]} + d;
<[(¢ici—1...co)L(JJugl|) or (cici—1...c3)L(||url]]) or ...
or ¢;L(||ui—2]))] + [(cici—1 - .. c1)ao
+ (cici—1...co)dr + (cici—1 ... c3)do + -+ - + ¢idi—1 + di],

each of which is less than or equal to one on the right sides of (2.2) with ¢ = i.
The induction proof is now complete. O

Proposition 2.2. Under the assumptions of Proposition[2.1], the following are true
if ug is in D(A(s)) = {y € D(A(s)) : |A(s)y|] < o0}

lu; — uoll < K1(1— ew)_i(2i + e < Kle(T_s)“(?))(T —3);
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U; — Uj—1

where the constants K1 and K3 depend on the quantities:
Ky = Ky (L([[uol)), (T = 5), w, [A(s)uol, K);
K2 = KQ(Kly (T - 8)7wa ||U0||),
K3 = KS(L(KQ)a (T - 5),(4), HUOHa |A(5)u0|a KB);
Kg is the total variation of f on [0,T).

| < Ks;

Proof. We divide the proof into two cases.

Case 1. Here ug € D(A(s)). It follows immediately from Proposition [2.1] that
i — uol| < Ni(1 — ew)™5(2i + 1)e < N1eT =9 (3)(T — s);

|| U; — Uj—1

where the constants N1 and N3 depend on the quantities:
N1 = Ni(L([lwoll), (T = s8),w, [lvoll, K);
Ny = N2(N17 (T - S)vwa HUOH);
N3 = N3(L(N2)7 (T - 8)7wa ||U'O||7 ||U0Hv KB)1
Kp is the total variation of f on [0,T].

| < Ns;
€

We used here the estimate in [9, Page 65]

Ci...cp < elwetittea
where e; = L(|lui—1([)[f(t:) — f(ti-1)]-

Case 2. Here ug € D(A(s)). This involves two steps.
Step 1. Let uff = (I — pA(s))"tug where g > 0, and let

U; = H Je(tj)uo; ’U,fj = H Je(tj)ug
j=1 j=1

As in [31] Lemma 3.2, Page 9], we have, by letting 1 — 0,
ufy — uo;

here notice that D(A(s)) is dense in D(A(s)). Also it is readily seen that
ul' = H(I— eA(ty)) tuly — u; = H(I — €A(ty)) tug
k=1 k=1
as u — 0, since (A(t) — w) is dissipative for each 0 <t < T.
Step 2. Since uff € D(A(s)), Case 1 gives
luff = ug || < Nu(L(llugl), (T = ), w, [[v5]], Kp)(1 — ew) ™" (2 + 1)e
[ (2.3)
% < N3(L(N2)v (T - 8),&), ||U5||7 ||116L||,KB),
where

N2 = N2(N17 (T - s),w, ||ug||)7
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1

and vf) is any element in A(s)(I — pA(s)) tug. We can take

)
i p_ (Ju(s) = Dug

vy =wh = . )
since wh € A(s)(I — pA(s)) tuo.
On account of uy € D(A(s)), we have
tim | 228 =D 4] < oo
n—0 i
Thus, by letting 4 — 0 in and using Step 1, the results in the Proposition
follow. The proof is complete. O

3. MAIN RESULTS

Using the estimates in Section [2] together with the difference equations theory,
the following result will be shown in in Section [6]

Proposition 3.1. Under the assumptions of Proposition[3.3, the following inequal-
ity s true
0 < J LUER)Inp —mAl, if S2(p) =05
= Cm,n + Sm,n + dm,n + fm,n + Im,n;» Zf Sl (M) = Q)a
where G, n, Cmns Smons fmons gmn and L(K2) are defined in Proposition .

In view of this and Proposition 2.1} we are led to the following claim.

Proposition 3.2. Let x € ﬁ(A(s)) where 0 < s < T, and let \,;u > 0, n,m € N,
be such that 0 < (s +mM), (s +np) < T, and such that Ag > A > p > 0 for which
pw, Aw < 1. If A(t) satisfies the dissipativity condition (H1), the range condition
(H2’), and the time-requlating condition (HA), then the inequality is true:

am,n S Cm,n + Sm,n + dm7n + em’n + fm’n + gm’n~ (3-1)
Here
n m
Amn = || H Jyu(s +ip)x — H Ia(s +iN)z|;
i=1 i=1

y=1—-—pw)t>1; a=

Cmon = 2K17"[(npp — mA) 4+ /(i — mA)? + (np) (A — p)];
Smoa = 2K17" (1= Aw) ™"/ (e — mA)? + (np) (A — p);

P N g )2 + (1 — ) D)

emn = L(K2)y"/(np —mA)? + (np) (A — p);

fmn =K1Y +9"(1 — Aw)" ™AL
Gman = Kap(IX = p))y™ (mA);

Ky =~L(K3)(1+ K3); d>0 is arbitrary,

p(r) =sup{[f(t) — f(r)[: 0<t, 7 <T,[t —7[ <1}

where p(r) is the modulus of continuity of f on [0,T]; and Ky, Ks, and K3 are
defined in Proposition[2.9

dm,n = [Kap(0)y" (mA)] + {K4 Nk
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Proof. We will use the method of mathematical induction and divide the proof into
two steps. Step 2 will involve six cases.

Step 1. is clearly true by Proposition if (m,n) = (0,n) or (m,n) =
(m, 0).

Step 2. By assuming that is true for (m,n) = (m—1,n—1) or (m,n) =
(m,n —1), we will show that it is also true for (m,n) = (m,n). This is done by the
arguments below.

Using the nonlinear resolvent identity in [6], we have

n—1

am,n = || Ju(s + np) H Ju(s +ip)z
i=1
m—1

— Ju(s+mN)a [T Ja(s +iNa + B[] Ials +iNa)].
i=1 i=1
Here o = /A and = (A — p)/ A
Under the time-regulating condition (HA), it follows that, if the element inside
the norm of the right side of the above equality is in Sy (i), then, by Proposition

22 with € = p,

amn < L(| TT Ju(s +imzl)imA = np| < L(K2)|lmA = npl, (3-2)

i=1
which is less than or equal to the right-hand side of (3.1) with (m,n) = (m,n),
where 4™ > 1.

If that element instead lies in So(u), then, by Proposition with € = p,

ampn < Y(@m—1,n-1 + Bamn-1) + [ f(s +mA) — f(s+ np)|

iy Ju(s +ip)a =TT Juls +ip)z
o)

x L(| TT Ju(s + iDL + I ]

i=1
S [’yaamfl,nfl + Vﬁam,nfl] + K4/J,0(|Tl/i - m>‘|)a
(3.3)

where Ky = vL(K3)(1 + K3) and p(r) is the modulus of continuity of f on [0, T].
From this, it follows that proving the relations is sufficient under the induction
assumption:

YOPm—1,n—1 + 7ﬂpm,n71 < Pm,n; (34)
YOGm—1,n—1 + 'yﬁQm,nfl + K4MP(|”M - m)\l) S dm,n>
where ¢, = dpn, a0d Pryy = Cmp OF Sy OF €y OT fy 1y OT Gy -
Now we consider five cases.

Case 1. Here pyn = ¢pmpn. Under this case, (3.4) is true because of the
calculations, where

b =V (npp — mA)? + (np)(A — p)
was defined and the Schwartz inequality was used:

af(n = 1)p—(m = DA+ Bl(n — Dp —mA] = (np —mA);
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abmfl,nfl + ﬁbm,nfl = \/a\/abmfl,nfl + \/B\/Bbm,nfl
S (0{ + 6)1/2 (abfn—l,n—l + /())l)gn,n—l)l/2
< {(a+ B)(np —mX)? + 2(np — mA) (X — p) — Bp]
+ [\ = p)? + Bu®] + (n = (A — )}/
=bm -
Here
a+B=1 aA—p)—PBu=0; a\—u)’+8p*=pu—p).
Case 2. Here p,,n = Sm,n. Under this case, (3.4) is true, as is with the Case 1,
by noting that
(1= 2w)" "D < (1= )™,
Case 3. Here ¢y = dm,n. Under this case, (3.5)) is true because of the
calculations:
’yadm—l,n—l + ryﬂdm,n—l + K4,up(‘n:u - m/\|)
< {yalKap(8)y"~H(m — DN + 7B[Kap(8)y"~H (mN)]}
(m—1)m

0Ky = ) (- D= (- D0+ (- D 2y

B () (0= = A+ (A - )
+ Kapsp(lnga — mA)

= Kap(0)7"[( + ) (mA) — o]

K2l = mA)? + 2 = A )+ (3 = ) mA = )

52
flo(r - ™D

+ Bl(np —mA)? = 2(np — mA)p + p*)(mA)
180 ™I K — m)

< Kyp(6)y"[(mA) — p] + Kapp(Inp — mA|)
m(m+ 1)
2

A —a(\ = p)mA?

K2y A g — ) + (A= ) N2 = g = mA)]

e
= Tm,n,
where the negative terms [2(nu — mA)(A — u) + (A — p)?](=A) were dropped,
a2(np —mA)(A — p) = B2(np — mA)u =0,
and
[a(X = 1) + Bp?|(mA) = (mA)p(X — p),
which cancelled
—a(A = p)mA® = —(mA)p(A — p);

it follows that 7, ,, < dp, r, since

Kapp(|np — mAl)
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_ {K4up(5) < Kapp(6)y™, if [np —mA| < 6;
—m)>2 n (nu—mX)?2 s
Kapp(T) P52 < Kypup(T)y™ M2 if [ — m| > 6.

Case 4. Here py, n = €m,n- Under this case, (3.4) is true, as is with the Case 1.
Case 5. Here ppyn = fmn. Under this case, (3.4) is true because of the
calculations:
Yofm—t1,n-1+ VB fmn-1 = yaKi[y" 'p+4" N1 - Aw) ~ (MU
+BK Y A (L = dw) T
< Kif(e+ 87" pu+ (a+ B)y"(1 = Aw) ™A
= fm,n~
Case 6. Here ppn = gmn- Under this case, (3.4) is true because of the
calculations:
YGm—1,n-1 + VBImm-1 < Kay"p(|A — pl)a(m — 1)A + Kay" p(|A = p|) B(mA)
< Kay"p(IA = p)(a + B)(mA)
= 9m,n-
Now the proof is complete. O
Here is one of our two main results:
Theorem 3.3. If the nonlinear operator A(t) satisfies the dissipativity condition

(H1), the range condition (H2’), and the time-requlating condition (HA) , then

U(s+t,8)ug = lim HJL
i=1

.t
(s—l—zn)uo

exists for ug € D(A(s)) = D(A(s)) where s,t >0 and 0 < (s +t) < T, and is the
so-called a limit solution to the equation (1.1 . Furthermore, this limit U(s+t, s)ug
has the Lipschitz property

NU(s+t,s)ug — U(s + 7, s)ugl|| < k|t — 7|
for0< s+t s+7<T and for ug € D(A(s)).
Proof. For x € D(A(s)), it follows from Proposition by setting u = %, A=L

m’

and 62 = /A — p that, as n,m — oo, Qpm,n converges to 0, uniformly for 0 <
(s+t) <T. Thus

n
. ot
nlingo 1_[1 J% (s+ zﬁ)x
1=

exists for 2 € D(A(s)). This limit also exits for 2 € D(A(s)) = D(A(s))), on
following the limiting arguments in Crandall-Pazy [9].
On the other hand, setting p = A =t/n, m = [ﬁ] and setting 6% = /X — p, it
follows that
n (]
. 1 . .
nlggoHJ%(S—i_lﬁ)uo = ilir%)r[lju(s—&—zu)uo. (3.6)
1=

i=1



EJDE-2011/92 TIME-DEPENDENT DOMAINS 11

Now, to show the Lipschitz property, (3.6) and Crandall-Pazy [9, Page 71] will
be used. From Proposition [2.2] it is derived that

un = um|l < llun — wn—1ll + [[un—1 — un—a|l + - + [[ums1 — unl|

< Ksu(n—m) for z € D(A(s)),
wn = [ Juls + i), wm = [[ Juls + i),
i=1 i=1

where n = [t/u], m = [7/u], t > 7 and 0 < g < Ag. The proof is completed by
making p — 0 and using (3.6]). O

Now discretize as
u; — €A(t;)u; 3 ui—q,
u; € D(A(t:)),
where n € N is large, and € is such that s <t¢; =s+ie < T foreachi=1,2,...,n.

Here notice that, for ug € F, u; exists uniquely by the hypotheses (H1) and (H2’).
Let ug € D(A(s)), and construct the Rothe functions [12, 32]. Let

X" (s) = ug, C"(s) = A(s),
Xn(t) = Uy, Cm(t) = A(tz) for t € (ti—17ti]7

(3.7)

and let
u™(s) = uo,
n t—ti_1
U (t) = U;j—1 + (uz — ui_l) for t € (tz’—htz’} C [S,T]
Since ||“=%“=L|| < K3 for ug € D(A(s)) by Proposition it follows that, for

ug € ﬁ(A(s)),

lim sup ||u"(t) —x" ()| =0,
A, sup (3.8)

[ (8) = u™(7)]| < K3t — 7],
where ¢,7 € (t;_1,t;], and that, for ug € DA(s)),

du™(t)
dt

€ CM (X" (1),

u"(s) = u,

(3.9)

where t € (t,_1,%;]. Here the last equation has values in B([s,T]; X), which is the
real Banach space of all bounded functions from [s, T to X.

Proposition 3.4. If A(t) satisfies the assumptions in Theorem then

. t
lim «"(t) = lim HJQ(S—FZ'E)UO

n— oo
=1

uniformly for finite 0 < (s +t) < T and for ug € D(A(s)).

Proof. The asserted uniform convergence will be proved by using the Ascoli-Arzela
Theorem [33].
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Pointwise convergence will be proved first. For each t € [s,T), we have t €
[ti,tiv1) for some i, and so i = [£=2], the greatest integer that is less than or equal

€

to t_Té That u; converges is because, for each above t,

. 1 . -1
!% U; 251(1) H(I eA(ty)) ™ Tuo
k=1 (3.10)

t—

SA(s—l—kt_s -1
n

)™ o

= lim [I-
n—»oolg n

by (3.6), which has the right side convergent by Theorem Since

”uz — Uj—1

for ug € D(A(s)), we see from the definition of u”(¢) that

| < Ks

n
t—s
. N s o .
Jin (€)= By = Jig TT Jiza (5 =
im
for each t.
On the other hand, due to
U; — Ui
[ < K3

again, we see that u™(t) is equi-continuous in C([s,T]; X), the real Banach space
of all continuous functions from [s, 7] to X. Thus it follows from the Ascoli-Arzela

theorem [33] that, for ug € D(A(s)), some subsequence of u"(t) (and then itself)
converges uniformly to some

t—s
n

u(t) = nlirr;OHJ%(s +i—)ug € C([s,T); X).

=1

This completes the proof. ([l

Now consider a strong solution. Let (Y, ||-||y) be a real Banach space, into which
the real Banach space (X, ||-]|) is continuously embedded. Assume additionally that
A(t) satisfies the embedding property of embeddedly quasi-demi-closedness:

(HB) If t, € [0,T] — ¢, if @, € D(A(t,)) — =z, and if |jy,| < k for some
Yn € A(ty)xy, then n(A(t)z) exists and

1(Yn,) — 2| =0

for some subsequence y,, of y,, for some z € n(A(t)x), and for each n €
Y* C X*, the real dual space of Y.

Here is the other main result.

Theorem 3.5. Let A(t) satisfy the dissipativity condition (H1), the range condition
(H2), the time-regulating condition (HA), and the embedding property (HB). Then
equation (1.1)), for ug € D(A(s)), has a strong solution

- t
u(t) = lim HJQ(S—FZ-E)UO

n—oo

=1
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'Y, in the sense that

d

%u(t) € A(t)u(t) Y for almost every t € (0,T);
u(s) = ug.

The solution is unique if Y = X. Furthermore,
lu(t) —u(7)llx < Kslt — 7]
for 0 <s<t, 7 <T, aresult from Theorem[3.3

The results in the above theorem follow from Theorem [3.3[ and the proof in [20,
page 364], [21l pages 262-263].

Remark 3.6. The results in Sections [2| and [3] are still true if the range condition
(H2’) is replaced by the weaker condition (H2”) below, provided that the initial
conditions ug € D(A(s))(D D(A(s))) and ug € D(A(s)) = D(A(s))(D D(A(s))) are
changed to the condition ug € D(A(s)). This is readily seen from the corresponding
proofs. Here

(H2”) The range of (I — MA(t)), denoted by E, is independent ¢ and contains
D(A(t)) for all t € [0,T] and for small 0 < XA < Ag with Agw < 1.

4. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS (I)

Within this section, K will denote a constant that can vary with different occa-
sions. Now we make the following assumptions:

(A1) Qis a bounded smooth domain in R™ n > 2, and 99 is the boundary of .

(A2) v(z) is the unit outer normal to x € 0L, and p is a real number such that
0<p<l.

(A3) a(x,t,p) € C*(Q x R™) is true for each t € [0,7], and is continuous in all
its arguments. Furthermore, a(z,t,p) > dy > 0 is true for all z, z, and all
t € [0,T], and for some constant dp > 0.

(A4) g(z,t,2z,p) € C*(2 x R x R") is true for each t € [0, 7], is continuous in all
its arguments, and is monotone non-increasing in z for each ¢, x, and p.

(A5) 9(@:t:2:0) 5 of at most linear growth in p, that is ,

a(z,t,p)

9(x,t,2,p)

— | < M(x,t 1

LB < Mot )1+ 1)
for some continuous function M and for all ¢ € [0,7] when |p| is large
enough.

(A6) B(z,t,2) € C3(Q x R) is true for each t € [0,77], is continuous in all its
arguments, and is strictly monotone increasing in z so that 8, > §y > 0 for
the constant g > 0 in (A3).

|z, t,p) — a(z, 7, p)| < [C(t) — ¢(7)|Ni(z, |p]),
|g(m,t,z,p) - g(m,7‘,z,p)| < |<(t> - C(T)|N2($, |Z|’ |p|)7
‘ﬂ(.ﬁ, t Z) - ﬁ(]},T, Z)| < |t - T|N3(l‘, IZD

are true for some continuous positive functions Nj, No, N3 and for some
continuous function ¢ of bounded variation.
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Define the ¢t-dependent nonlinear operator A(t) : D(A(t)) € C(Q) — C(Q) by

D(A(t)) = {u € C*™(Q) : % + 0(z,t,u) =0 on JdN} and

Alt)u = afx,t, Du)Au+ g(z,t,u, Du) for u € D(A(?)).

Example 4.1. Consider the equation

%u(m,t) = oz, t, Du)Au + g(x,t,u, Du), (z,t) € Qx (0,T),
o _ (4.1)
81/u+ Bz, t,u) =0, x €,

u(z,0) = ug,

for ugp € D(A(0)). The above equation has a strong solution

u(t) = tim [ e (5 )u
n—o00 n n
i=1

in L2(Q) with

0

au(t) + Bz, t,u(t) =0, ze€dQ,
and the solution u(t) satisfies the property

sup [u(t)ll g1y < K
te[0.]

for some constant K.

Proof. It was shown in [21, Pages 264-268] that A(t) satisfies the dissipativity con-
dition (H1), the range condition (H2”) with E = C*(Q) for any 0 < pu < 1, and
satisfies the time-regulating condition (HA) and the embedding property (HB).
Here the third line on [21, Page 268]:

[N (2, | Dv]]oo) |0

X [[[N2(2, [[v]loos [[D]loo) oo + 5

[A(T)v]loo)]

should have || A(T)v||c replaced by
A(T)v]loo + llg (2,7, v, Dv)|oo]-

Hence Remark [3.6] and Theorems [3.3] and [3.5] are applicable.

It remains to prove that u(t) satisfies the mentioned property and the middle
equation in (4.1)) in C(Q2). This basically follows from [21], pages 264-268]. To this
end, the u; i will be used.

Since A(t) satisfies (H1), (H2”), and (HA), it follows from Proposition [2.2] and
Remark [B.6] that

Huz — Uj—1

Thus, from linear L? elliptic theory [35] [14], it follows that ||u;||y2» < K for some
constant K, whence

= lAG)uilloo < Kz and  [Juifoc < K.

[uillcren < K (4.2)

for any 0 < n < 1 by the Sobolev embedding theorem [I4]. This, together with
the interpolation inequality [14] and the Ascoli-Arzela theorem [I4], B3], implies
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that a convergent subsequence of u; converges in C1T#(Q) for any 0 < A < n < 1.
Therefore, on account of (3.10)) and Proposition

sup [[u(t)]cren < K

t€[0,T]
results for uy € D(A(0)), and u(t) satisfies the middle equation in (.1 in C(Q).
The proof is complete O
Consider the linear equation
Ou(x,t) " -
5 Z a;;(z, t)Diu(z, t) + Z bi(x,t)Du(x,t) + c(x, t)u(x,t)
i,j=1 i=1
for (x,t) € Q x (0,T), (4.3)

0
e + B(x,t)u=0, =z €I,

u(xz,0) = uy,

in which the following are assumed. Let a;;(x,t) = aj;(x,t), and let

>\min|£‘2 < Zaij(x,t)&-gj < >\max|£|2
i)j
for some positive constants Amin, Amax, for all £ € R™, and for all z,¢. Let
aij(z,t), bi(z,1), c(z,t) € C*(Q)

uniformly for all ¢, be continuous in all their arguments, and be of bounded variation
in ¢ uniformly for x. Let ¢(z,t) <0 for all z, ¢,

Bz, t) € CTTH(Q), 0<p<1
for all ¢, and B(z,t) > & > 0 for some constant 6 > 0. Finally, let S(z,t) and
c(x,t) be continuous in all its arguments, and let 5(z,t) be Lipschitz continuous in
t uniformly for x.

Example 4.2. If }7, - a;j(z, ) Diju(z,t) = ao(z,t)Au(z, t) for some ap(z,t), then

the equation (4.3)), for vy € D(A(0)), has a strong solution

- t
u(t) = lim [ Je(i=)uo
n—oo n n
=1

in L?(Q) with

0

au(t) + Bz, t)u(t) =0, x € 09,
and u(t) satisfies the property

sup ||U(t)||cl+u(ﬁ) < K.
t€[0,T)

Proof. Linear elliptic equation theory [14] Pages 128-130] shows that the corre-
sponding operator A(t) satisfies the range condition (H2”) with E = C*(Q). The
arguments in [2I, Pages 267-268] shows that A(t) satisfies the dissipativity condi-
tion (H1), the time-regulating condition (HA), and the embedding property (HB).
The proof is complete, after applying Remark [3.6 Theorems [3-3] and [3.5] and the

proof for Theorem O
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Example 4.3. Suppose that
aij(w), bi(z), c(z) € C'TH(Q), B(z) € C*TH(Q)

are independent of ¢, where 0 < u < 1. Then equation (4.3) has a unique classical
solution

u(t) = lim H.]L E ug = hm(I——A)
n—o0 n n

n—oo
i=1

for ug € D(A) with Aug € D(A), and the solution has the properties that
Lipschitz continuous in ¢, and that

du(t)

is

u
||E||cl+u(ﬁ) < K.

Furthermore, C‘litu is differentiable in ¢ and t2 u( ) is Lipschitz continuous in ¢, if

up is in D(A3) such that A3ug € D(A). More regularity of ‘C%‘ in ¢ can be obtained
iteratively.

Remark 4.4. In order for ug to be in D(A?), more smoothness assumptions should
be imposed on the coefficient functions a;;(x), b;i(x), c(x) and §(x).

Proof. Here observe that the operator A is not closed, and so [20, Theorem 1 Page
363] does not apply directly.

The u; in will be used, and ug € D(A) with Aug € D(A) will be assumed
for a moment. It follows that

Au; = = (I — eA)™"(Au),
€
and hence, by (4.2) which is for the proof of Theorem
||A“i||cl+n(§) = - GA)ii(AUO)HCHn(ﬁ) <K
for Aug € D(A) and for any 0 < i < 1. This implies

Ui — Uj—1

Huz”c3+n( Q) <K

by the Schauder global estimate with more smoothness in the linear elliptic theory
[14]. Consequently, on using the interpolation inequality [14] and the Ascoli-Arzela
theorem [I4], [33], we have

Au; — Au(t) = U(t)(Aug)

through some subsequence with respect to the topology in C***(Q) for any 0 <
A <n <1 Here

t
U(t)up = lim (I — —A) "ug
n— oo n
The rest follows from [20, Page 363], where the Lipschitz property in Theorem

and Remark 3.6 will be used. O
Now consider the linear equation with the space dimension 1:
0
o = al@, s + b, us + (e u,  (2,1) € (0,1) x (0,7),

W (j,t) = (=178, (i t),  j =01, (44)
u(x,0) = up(x).

Here we assume that a, b, c are jointly continuous in x € [0,1], ¢ € [0,T], and are
of bounded variation in ¢ uniformly for all x, that ¢(z,t) < 0 and a(x,t) > &y for
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some constant dp > 0, and finally that 5; > do > 0,j = 0,1 are jointly continuous
in x,t, and are Lipschitz continuous in ¢, uniformly over x.
Let A(t): D(A(t)) C C[0,1] — C]0,1] be the operator defined by

At)yu = a(x, t)u” + b(a, t)u’ + c(e,t)u  for u € D(A(t)) where
D(A(t)) = {v € C?*0,1] : v'(j) = (1) B;(j, t)v(j),j = 0,1}.

Following [20] and the proof for the previous case of higher space dimensions,
and applying linear ordinary differential equation theory [5] 25] and Theorem |3.5
the next example is readily proven. Here the range condition (H2’) is satisfied with

E =C[0,1) > D(A(t)) for all ¢.
Example 4.5. Equation (4.4]) has a strong solution

t
u(t) = lim (I — gA)7"u0
in L2(0,1) for up € D(A(0)), and u(t) satisfies the middle equation in (4.4) and the
Lipschitz property

[u(t) = u(r)l[co < K[t — 7]
for ug € D(A(0)) and for 0 < t,7 < T.

In the case that a,b,c,3;, for j = 0,1, are independent of ¢, the Theorem 1 in
[20, Page 363], together with the Lipschitz property in the Theorem in this
paper, will readily deliver the following example. Here it is to be observed that the
corresponding operator A is closed.

Example 4.6. If the coefficient functions a,b,c, 8,7 = 0,1 are independent of ¢,
then the equation (4.4)) has a unique classical solution

u(t) = lim (I — EA)_"uo
n

n—oo

for ug € D(A) with Aug € D(A). This u(t) has this property that the function 2%
is continuous in ¢. R
Furthermore, u(t) is Lipschitz continuous in ¢ for ug € D(A), and 2% is Lipschitz

continuous in ¢ for ug € D(A) with Aug € D(A), and is differentiable in ¢ for

up € D(A?) with A%ug € D(A). More regularity of 2% can be obtained iteratively.

du
dt

Remark 4.7. In order for ug to be in D(A?), more smoothness assumptions should
be imposed on the coefficient functions a(z), b(z), c(x), and 5;,j =0, L.

5. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS (II)
In this section, it will be further shown that, for each concrete A(t) in Section
the corresponding quantity
.t
iz
n

J N7t i=1,2,...,n

3l

()b = [T = A

is the limit of a sequence where each term in the sequence is an explicit function of
the solution ¢ to the elliptic equation (|1.3)) with ¢ = 0.
We start with the case of linear A(t) and consider the parabolic equation (4.3]).
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Proposition 5.1. For h € C*(RQ), the solution u to the equation
[I—eA(t)lu=nh (5.1)
where 0 < t < T and € > 0, is the limit of a sequence where each term in the

sequence is an explicit function of the solution ¢ to the elliptic equation (1.3|) with
@ = 0. Here A(t) is the linear operator corresponding to the parabolic equation

[3).
Proof. The linear operator A(t) : D(A(t)) C C(Q) — C(9) is defined by
Alt)u = Z a;j(z,t)Diju+ Z bi(z,t)Dju + c(z, t)u
i i
— 0
for u € D(A(t)) = {u € C*™*(Q) : a—u + B(z,t)u=0 on IN}.
v
Solvability of (5.1)) follows from [14], Pages 128-130], where the method of con-
tinuity [14, Page 75] is used. By writing out fully how the method of continuity is
used, it will be seen that the solution u is the limit of a sequence where each term

in the sequence is an explicit function of the solution ¢ to the elliptic equation (|1.3))
with ¢ = 0. To this end, set

Uy =C?*T(Q), Uy =CHQ) x CTTH(09),
Liu=71lu—eAt)u] + (1 —7)(—Au) in Q,
ou ou
Nyu = 7[5 + B(z, t)u] + (1 — T)(@ +u) on 09,
where 0 < 7 < 1. Define the linear operator £, : Uy — Us by
£:u = (Lyu, Nyu)

for u € Uy, and assume that £, is onto for some s € [0,1].
It follows from [14, Pages 128-130] that

lullv, < Cll£7ullv,, (5.2)
where the constant C is independent of 7. This implies that £ is one to one, and
so £ 1 exists. By making use of £, the equation, for wy € Uy given,

£u=wq
is equivalent to the equation
u= £ wo + (1 —8) £ £y — £1)u,
from which a linear map S : U; — Uj,
Su= Squ= £ wo+ (1 —8) L (Lo — £1)u
is defined. The unique fixed point v of S = S, will be related to the solution of

1)
By choosing 7 € [0,1] such that

s = 7| <6 = [C(ll£ollvy—v, + [ €1l —1)] 7Y, (5.3)

it follows that S = S, is a strict contraction map. Therefore S has a unique fixed

point w, and the w can be represented by
lim S™0 = lim (Ss)"0

n—0o0

because of 0 € U;. Thus £, is onto for |7 — s| < 4.
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It follows that, by dividing [0,1] into subintervals of length less than § and
repeating the above arguments in a finite number of times, £, becomes onto for
all 7 € [0,1], provided that it is onto for some 7 € [0,1]. Since £ is onto by
the potential theory [I4, Page 130], we have that £, is also onto. Therefore, for
wg = (h,0), the equation

.,€1u = Wy
has a unique solution w, and the w is the seeked solution to (5.1). Here it is to
be observed that ¢ = £0_1(h,0) is the unique solution £()_1(h,<p) to the elliptic

equation (1.3) with ¢ = 0:

and that
S0 = S50 = £5*(h,0),
520 = (50)%0 = £5(h,0) + £5|7 — 0|(£o — £1) £y (h,0)],

The proof is complete. |

Remark 5.2. e The solution u is eventually represented by
u(z) = £5 H((h,0)),

where H((h,0)) is a convergent series in which each term is basically obtained by,
repeatedly, applying the linear operator (£q— £1)£51 to (h,0) for a certain number
of times.

e The quantity £ (h, ), for each (h, ) € U given, can be computed numeri-
cally and efficiently by the boundary element methods [13] [34], if the dimension of
the space variable z equals 2 or 3.

e The constant C above in and depends on n, t, Amin, §2, and on
the coefficient functions a;;(z,t), b;i(z,t), c(x,t), B(z, t), and is not known explicitly
[14]. Therefore, the corresponding ¢ cannot be determined in advance, and so, when
dealing with the elliptic equation in Proposition numerically, it is more
possible, by choosing 7 € [0, 1] such that |s — 7| is smaller, that the sequence S™0
will converge, for which |s — 7| < § occurs.

Next, we extend the above techniques to the case of nonlinear A(t), and consider
the nonlinear parabolic equation (4.1)); more work is required in this case.

Proposition 5.3. For h € C*(Q), the solution u to the equation (5.1)
[I —eA(t)ju=h

where 0 < t < T and € > 0, is the limit of a sequence where each term in the
sequence is an explicit function of the solution ¢ to the elliptic equation with
@ =0. Here A(t) is the nonlinear operator corresponding to the parabolic equation
(4.1), and B(x,t,0) = 0 is assumed additionally.

Proof. The nonlinear operator A(t) : D(A(t)) € C(Q) — C(9) is defined by

D(A(t)) = {u € C*T"(Q) : % + Bz, t,u) =0 on 0N},
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A(t)u = a(x,t, Du)Au + g(x,t,u, Du), wu € D(A(t)).

Equation (5.1)) with the nonlinear A(t) has been solved in [21], but here the proof
will be based on the contraction mapping theorem as in the proof of Proposition
To this end, set

Uy = C?TH(Q),

Uy = CH(Q) x CTH(09),
Lru=7lu—eA(t)u] + (1 —7)(u — Au), z €,
ou ou
v v
where 0 < 7 < 1. Define the nonlinear operator £, : Uy — Us by

-£'ru = (LTU/»NTU’)

Nou=7[— 4+ 8(z,t,u)] + (1 = 7)(= +u) on 99,

for u € Uy, and assume that £ is onto for some s € [0, 1].

As in proving that A(t) satisfies the dissipativity (H1) where the maximum
principle was used, £ is one to one, and so £ ! exists. By making use of £}, the
equation, for wg € Us given, £,u = wy is equivalent to the equation

u= £ wo + (1 — 8)(£o — £1)ul,
from which a nonlinear map
S: U — Uy,
Su=Su= £ wy+ (1 —5) (Lo — £1)u] foruecl
is defined. The unique fixed point of S = S5 will be related to the solution of

with nonlinear A(t).
By restricting S = S to the closed ball of the Banach space Uy,

By, ={u € Uy : |lu— £ wg| covn <7 >0},

and choosing small enough |7 —s|, we will show that S = S, leaves Bj ;. ., invariant.
This will be done by the following steps 1 to 4.
Step 1. It follows as in [2I], Pages 265-266] that, for £.v = (f, x),

[vlloo < B flloelixllcion o

[Dvller < Egoflcy 1DV]loo + Eguoa,li flloo lixlicoa}

(5.4)
[oller+s < Efixlioway I £l b

[vllcz+n < K[| £70]|lu, = K||£'rv||cu(§)><cl+u(ag)
where kg .} is a constant depending on ||f||lso, and similar meaning is defined
for other constants k’s; further, K is independent of 7, but depends on n, dy, u, €2,
and on the coefficient functions «(x,t, Dv), g(x,t,v, Dv), B(x,t,v), which have in-

corporated the dependence of v, Dv into [|£v| v,
Step 2. It is readily seen that, for v € C?*T#(Q) with |[v]|gz+x < R > 0, we have

[£7vllv, < kryllollozen, (5.5)

where kypg) is independent of 7.
Step 3. It will be shown that, if

[ullcz+r < R, |v]lc2+n < R >0,
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then
| v — £70llu, < Fgryllu — vl (5.6)
It will be also shown that, if

Lru=(f,x1), £rv=(w,x2),
then
lu = vllczen < k(e ufu,, I £-vl0, I = wller + X1 = Xallor+4] (5.7)
= k(£ ulluy I £-vlloy [ €78 = £70]0,. ’
Here K(gy and K{ £ ullu, | £, 0], } BT€ independent of 7.
Using the mean value theorem, we have that
f—w=Lu—Lyv
=(u—v)—(1=7)A(u—v) — Te[aA(u —v)
+ ap(x,t,p1)(Du — Dv)Av + gy(x, t,u, p2)(Du — Dv)
+g.(x,t, 21, Dv)(u —v)], z€Q,
O(u —v)
v

were p1, po are some functions between Du and Dv, and z; is some function between
u and v.

It follows as in ([5.5) that

| £~ L], < kg lu— vlcae,

+ [5(33775’ u) — ﬂ(l‘,t,’l})] =X1— X2 on 9%,

which is the desired estimate.
On the other hand, the maximum principle yields
[t = vlloo < g w1 —x2lloc}
and (5.4)) yields
ullc2tn < K|l £7ullu,,  v]lc2+n < K[ £-0]|u,
Thus, it follows from the Schauder global estimate [14] that
[u = vllcz+n < k{je ullvy, | £- vyt | £70 — £70]|0,,

which is the other desired estimate.
Step 4. Consequently, for u € Bj .,, we have that, by (5.4)),

Jullc2en <7+ || £ wollc2en <7+ Kllwollu, = R, juwo| (5.8)

oy}
and that
[Su — £ wol| g2+
< Kfllwolluy Jwo+(r—s)(£Lo—£1)ulluy HI(T = 8)(£o = £1)ullu, by
< |7 = sl gwolioy R tug gy PY (B-5) and B8).

Here the constant k), } When wq given and r chosen, is independent

o B, g iy ¥
of 7 and s. Hence, by choosing some sufficiently small §; > 0, there results

S=25;: B rwy, C UL = Bsrw, C UL
for |7 — s| < d1; that is, By w, is left invariant by S = S;.



22 C.-Y. LIN EJDE-2011/92

Next, it will be shown that, for small |7 — s|, S = S is a strict contraction on
Bg ;. w,, from which S = S, has a unique fixed point. Because, for u,v € B; ;. 4,,

lullozr < Rirjwoliv,ys Vo2 < Ripjjuwoliv,y  bY (B-8),

it follows that, by ,
[wo + (7 = 8)(£o — £1)ullv, < k{HWOHUQ7R{T,H1U0|IU2}}7
[wo + (7 = 8)(£o — L1)v]vs < Egjjwoljv, Ry,
and that, by ,
(7 = 9)[(£o — £2)u— (Lo~ £2)ellloy < 17 = slkag, gy, 10— llcaen (5.10)
Therefore, on account of 7 , and 7 we obtain

15u = Svlloz+n <17 = SIR{R( gy Iwollos Yo R g,y HIE = Vllozen

(5.9)

lwollzry 32

Here the constant k(p o . when wq given and r chosen,

|Iw0HU2}7”“’0HU2}k{R{T,HWOIIUQ
is independent of 7 and s. Hence, by choosing some sufficiently small 5 > 0, it
follows that

S = Ss : Bs,r,wg - Bs,r,wo
ia a strict contraction for

|7 — 5| < b2 < 6.

Furthermore, the unique fixed point w of S = S5 can be represented by
lim S™0 = lim (S;)"0
n—0o0 n—0oo

if 3(z,t,0) =0 and if r = T{K|lwo ||, } 1S chosen such that

=T (Klwolluy) = Kllwollu, > [1£5  woll g2 (5.11)

(by ); this is because 0 belongs to B ;. in this case. Thus £, is onto for
|7 — 5| < da.

It follows that, by dividing [0, 1] into subintervals of length less than dy and
repeating the above arguments in a finite number of times, £, becomes onto for
all 7 € [0,1], provided that it is onto for some 7 € [0,1]. Since £y is onto by
linear elliptic theory [I4], we have that £; is also onto. Therefore, the equation,
for wg = (h,0),

.,€1u = Wy
has a unique solution u, and the u is the sought solution to .
Here it is to be observed that ¢ = £ (h,0) is the unique solution to the elliptic
equation
v—Av=h, xz€
v
v
and that, by Proposition 1) is the limit of a sequence where each term in the
sequence is an explicit function of the solution ¢ to the elliptic equation with
p=0.
It is also to be observed that
S0 = S50 = £5*(h,0),

520 = (S0)%0 = £5(h,0) + |7 — 0|(£o — £1)£5 (R, 0)],

+o(z)=0 on 09,
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cey

where (Lo — £1)£5" is a nonlinear operator. The proof is complete. O

Remark 5.4. The constants k{R{r,HonU2}} and k{R{r.HonUQ}v”wOHUz}k{R{nHwouuz}}’

when wy is given and when r is chosen and conditioned by (5.11)), is not known
explicitly, and so the corresponding do cannot be determined in advance. Hence,
when dealing with the elliptic equation in Proposition numerically, it is
more possible, by choosing 7 € [0, 1] such that |7 — s| is smaller, that the sequence
S™0 will converge, for which |7 — s| < d2 < §; occurs.

Finally, what will be considered is the linear equation (4.4) of space dimension
1.

Proposition 5.5. For h € C[0,1], the solution u to the equation (5.1)
[I—eAt)|ju=nh

where 0 < t < T and € > 0, is the limit of a sequence where each term in the
sequence is an explicit function of the solution ¢ to the ordinary differential equation

v—2v"=h xz€(0,1),
V() = (=1)70(G), j=0,1
Here A(t) is the linear operator corresponding to the parabolic equation .
Proof. The linear operator A(t) : D(A(t)) C C[0,1] — C0,1] is defined by
A(t)yu = a(x, t)u” + bz, t)u’ + c(z,t)u  for u € D(A(t)) where
D(A(t) = {v € C?[0,1] : v'(j) = (=1)? B;(4, t)v(5), Jj =0,1}.

The contraction mapping theorem in the proof of Proposition [5.1] will be used
in order to solve the equation (5.1). To this end, set, for 0 < 7 < 1,

Uy =C?0,1], Uy =C0,1] x R?,
Lyu=7lu—eA(t)u] + (1 —7)(u —u"),
Nyu= (T[u’(O) — Bo(0,)u(0)] + (1 — 7)[u’(0) — u(0)],

7l (1) + By (1, ()] + (1 = 7)[w' (1) + u(1)]).
Define the linear operator £, : Uy — Us by
£ru=(Lyu, N-u)

(5.12)

for u € Uy, and assume that £, is onto for some s € [0,1].
The following will be readily derived.
e For u € C?[0,1], we have

[ £-ullr, = [ £7ullcpayxre < Flab.esonyllullcz, (5.13)
where k{q.p.c8,,8} s independent of 7, and can be computed, depending on the
given a(x,t),b(x,t), c(z,t), Bo(0,t), and B1(1,1).

e For £,u = (h,(r,s)), the maximum principle shows
RA N
Bo(0,8)" ~ A(L,) "

[ulloe < [[Plloc + |
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This, together with the known interpolation inequality [I5, Page 65] or [27, Pages
7-8]

2 A
[l < lulloo + 5 "l

for any A > 0, applied to £,u = (h, (1, s)), it follows that, by choosing small enough
A= )\17
lulle2 < kpagabe.o,sny (1Bl + 7]+ [81) = kn ape,po 3 | £7ulloy,  (5.14)

where kix, a.,c,6,8,) 18 independent of 7 and can be computed explicitly.

On account of the estimate (5.14), £ is one to one, and so £ exists. Thus,
making use of £, the equation, for wy € U, given, £,u = wy is equivalent to the
equation

u= £ wo+ (1 —8) £ £y — £1)u,
from which a linear map
S:U, = C?0,1] — U, = C?[0,1],
Su=Squ= £ wo+ (1 —8) L7 (£g— £1)u, uel;
is defined. Because of and (5.13)), it follows that this S is a strict contraction
if
7= 8l <6 = [kpnabieso s 2Kiabeson)

The rest of the proof will be the same as that for Proposition in which the
equation, for wy = (h, (0,0)),

£1’LL = Wy
has a unique solution u, and the u is the sought solution. ([l
Remark 5.6. o The § = [k{x, a.b.c,80,5: 1 2K{ab,e,80,6:3] " in the above proof of

Proposition 5.5 can be computed explicitly.
e The quantity £; 1(h,(0,0)) is represented by the integral

£5(h, (0,0)) = / go(z, y)h(y) dy,

where go(z,y) is the Green function associated with the boundary value problem
u—u"=h in (0,1),
W' (j) = (=1)7u(g), =01

This go(x,y) is known explicitly by a standard formula.
e As before, we have

S0 = S0 = £5*(h,(0,0)),
520 = 530 = £51(h,(0,0)) + £5 |7 = 0[(£o0 — £1)£5 " (h, (0,0))],
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6. APPENDIX

In this section, the Proposition [3.1]in Section [3] will be proved, using the theory
of difference equations. We now introduce its basic theory [26]. Let

{bn} = {bn}’ne{(]}UN = {bn}zo:o
be a sequence of real numbers. For such a sequence {b,}, we further extend it by
defining
b,=0 ifn=-1,-2,.....
The set of all such sequences {b,}’s will be denoted by S. Thus, if {a,} € S, then
O=a_1=a_92=....
Define a right shift operator £ : S — S by

E{b,} = {bps1} for {b,} €8S.
For ¢ € R and ¢ # 0, define the operator (F —¢)*: S — S by

(E— oy (b} = (Y 2

i=0

for {b,} € S. Here the first term on the right side of the equality, corresponding to
n =0, is zero.

Define, for {b,} € S,
(E—o)™{ba} = (B =) T{ba}, i=12,..;
(B —0)°{bn} = {bn}-
It follows that (E — ¢)* acts approximately as the inverse of (E — ¢) in this sense
(E—¢)"(E—c){by} = {by, — "bo}.

Next we extend the above definitions to doubly indexed sequences. For a doubly
indexed sequence {pm.n} = {Pm,n}mn=o Of real numbers, let

El{pm,n} = {pm—i-l,n}; EQ{pm,n} = {pm,7z+1}~

Thus, F7 and Es are the right shift operators, which acts on the first index and the
second index, respectively. It is easy to see that

E1E2{pm,n} = E2E1{pm,n} .

Before we prove the Proposition we need the following four lemmas, which are
proved in [23] 22| 23] [24], respectively.

Lemma 6.1. If (3.3)) is true, then

m—1

{amn} < (@(By = 57)) a0} + Y (ya( Bz = 38)") {(78)" am—i.0}
=0

(6.1)

m

+ _ (va)? " (B2 = vB)* Y {rms1—jms1}s

where Ty, = Kapp(Inp — mA|).
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Lemma 6.2. The following equality holds:
m—1
ny™ 1 my™ 1 n\ pB"° N ,
(B2 =) )™ "y = {5~ e+ (2 () = (m )5 )7
Here v, a0 and (3 are defined in Proposition[3.3

Lemma 6.3. The following equality holds:

L it

1 S ()= (S

for j € N. Here v,a and 3 are defined in Proposition [5.

Lemma 6.4. The following equality holds:
n?  (2m)n m(im—1) m(l+p5)

(E - B’Y)m*{n2’7n} = Pynim{aim - am-‘rl + ( am+2 + am+2 )

m—1 .
(m—3—=1)  (m=0)A+B8)\ (") nj
Z am Jj+2 + am—i+2 ) j ﬂ ]}'
j=
Here vy, a, and (3 are defined in Proposition[3.9

Proof of Proposition[3.1 If Sa(u) =0, then (3.2) is true, and so
mn < L(K2)|nu —mA|.

If S1(p) = 0, then (3.3) is true, and so the inequality (6.1)) follows by Lemma
Since, by Proposition

ag,n < K1y"(2n+1)u;
Am—i,0 é Kl(]. — )\w)fm[Q(m - Z) + 1])\7
it follows from Lemma and from the Proposition 3 and its proof of [22] Pages

115-116] that the first two terms of the right side of the inequality (6.1)) is less than
or equal to

Cm,n + Sm,n + fm,n-
We finally estimate the third term, denoted by {t,, .}, of the right-hand side of
. Observe that, using the subadditivity of p, we have

{mn}<Zvo~ Y By —~8)7* Kap{p(IA — ) + p(lnp — mA + jX[)}

(ve)? (B = B)" Kap{y"p(IX = ul) + 7" p(lnp — (m — j)A)}

P/%S I

j=1
{umn} +{vmn},
where v = (1 — pw) ™! > 1. It follows from Lemma [6.3| that

{wman} < {Eapy"p(IA = pl) Y O‘jflé 2 (Tzl) A" lal}
Jj=1

i=1

< (A plIA — p)pimm} = {Kap(A — pl)y" (mA)}.
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To estimate {vy, ,}, as in Crandall-Pazy [J, page 68], let § > 0 be given and
write

{U’m,n} = {Iﬁr%,)n} + {17(”2»)"}’

where {L(nl,)n} is the sum over indices with |[nu — (m — j)A| < §, and {L(qf,)n} is the
sum over indices with |[nu — (m — j)A| > 6. As a consequence of Lemma we
have

m ) 1 n n o
(1) n Jj—1_~ n—i i
(2} < (93 a;()ﬁ ')
1
< {AKap()py"m—} = {Kap(6)y"mA}.
On the other hand,

NE

(I} < Kapp(T)Y “(va)! "N (Ey —8)7* ("}

<
I
—

- j— jx [ M - — A 2
< Kunp()3_(r0)™ (B =38 by~ (om 9y
which will be less than or equal to
T
Ky p§2 Ly lmA) s — mA)? + (A — M)WAQ]}

and so the proof is complete. This is because of the calculations, where Lemmas

and were used:
[np — (m — AP = n®p? = 2(np)(m — j)X+ (m — j)*N%;

> () (B — B v
j=1

m ) 2 1 (7 — ]
—or S - U AU

p=

i-1 . N P
G-DG—i—1) (G—9)1+p) n—i
-2 [~ LJ{H; + o;'*"“ ](7;)6 he

where the negative terms associated with ZZ;& were dropped;

D (07 (Bs = 38)" (3" n} 2as(m — )N (1)
j=1
=3 (e G -



28 C.-Y. LIN EJDE-2011/92

j=1
o . 2 o, 20\
= Y 7" {=2(nn)(mA) + j[2nud + ZmA)] - (225
j=1
where the negative terms associated with ZZ;& were dropped;
Y () T (Er = B {3 (m — j)PN?
j=1
u 1 1% /n
_ j—ly.n—gr_~- _ _— n—i 1 _ a2y 2
> e - 3 (7)ayom — g2

Vo (m? - 2mj + )02,

<.
Il
-

where the negative terms associated with ZZ;& were dropped.

Adding up the right sides of the above three inequalities and grouping them as
a polynomial in j of degree two, we have the following: The term involving j° = 1
has the factor

Y InP? = 2(np)(mA) + (mA)?] = (mA) (np — mA)%;
j=1

I

m

R+

the term involving j2 has the factor

20 2un A2
p_ma X
o a? e
the term involving j has two parts, one of which has the factor
2npX  2umA 2mA? 2nu?
T -2 =0
@ @ @ @
and the other of which has the factor
—~ 18 1, m(m+1)
T — =% =(A—p)———=X2°.
p ]Z:;( 5 it ==
The proof is complete. O

Remark 6.5. The results in Proposition [3.1] are true for n,m > 0, but a similar
result in the [23, Proposition 4, page 236] has the restriction ny —mA > 0 which is
not suitable for a mathematical induction proof.
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