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UNIFORM DECAY OF SOLUTIONS TO CAUCHY
VISCOELASTIC PROBLEMS WITH DENSITY

MOHAMMAD KAFINI

Abstract. In this article we consider the decay of solutions to a linear Cauchy
viscoelastic problem with density. This study includes the exponential and
polynomial rates as particular cases. To compensate for the lack of Poincare’s
inequality in the whole space, we consider the solutions in spaces weighted by
the density.

1. Introduction

In this article we are concerned with the initial-value problem

ρ(x)utt −∆u(x) +
∫ t

0

g(t− s)∆u(x, s)ds = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,

(1.1)

where u0, u1 are initial data chosen in suitable spaces and g is the relaxation func-
tion subjected to some conditions to be specified later. The density ρ(x) satisfying
the following conditions

(H1) ρ : Rn → R, n ≥ 2, ρ(x) > 0, ρ(x) ∈ C0,γ(Rn) with γ ∈ (0, 1) and
ρ ∈ Ln/2(Rn) ∩ L∞(Rn).

In the whole space case, Poincare’s inequality and some Lebesgue and Sobolev
embedding inequalities are not valid. To overcome this difficulty in this case, we
exploit the density to introduce weighted spaces for solutions of our problem.

The work with weighted spaces was studied by many authors. Papadopoulos and
Stavarakakis [11] established existence of a global solutions and blow up results for
the non local quasilinear hyperbolic problem of Kirchhoff type

utt − φ(x)‖∇u(t)‖2∆u + δut = |u|au,

x ∈ Rn, t ≥ 0,

in the case where n ≥ 3, δ ≥ 0 and ρ(x) = (φ(x))−1 is a positive function lying in
Ln/2(Rn) ∩ L∞(Rn). Brown and Stavarakakis [1] proved the existence of positive
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solutions for the semilinear elliptic equation

−∆u(x) = λg(x)f(u(x)), 0 < u < 1, x ∈ R
lim

|x|→+∞
u(x) = 0

and for g ∈ Ln/2(Rn) for n = 1, 2, 3. Karachalios and Stavarakakis [6] proved a local
existence of solutions and global attractor in the energy space D1,2(Rn)× L2

g(Rn)
for a semilinear hyperbolic problem

utt − φ(x)∆u + δut + λf(u) = η(x), x ∈ Rn, t > 0,

in the case where δ > 0, n ≥ 3 and ρ(x) = (φ(x))−1 lies in Ln/2(Rn).
It is also worth mentioning the work of Zhou [12] and Cavalcanti citec2. In this

work, the following nonlinear wave equation with damping and source terms of the
form

utt − φ(x)∆u + a|ut|m−1ut = f(x, u), x ∈ Rn, t > 0,

was considered. Where the author proved, in the linear damping case, that the
solution blows up in finite time even for vanishing initial energy. Criteria to guar-
antee blow up of solutions with positive initial energy were established for both
linear and nonlinear cases. Global existence and large time behavior also proved.

In [9], a class of abstract viscoelastic systems of the form

utt(t) +Au(t) + βu(t)− (g ∗ Aαu)(t) = 0

u(0) = u0, ut(0) = u1,
(1.2)

for 0 ≤ α ≤ 1, β ≥ 0, were investigated. The main focus was on the case when
0 < α < 1 and the main result was that solutions for (1.2) decay polynomially
even if the kernel g decay exponentially. This result is sharp (see [9, Theorem 12].
This result has been improved by Rivera et al. [10], where the authors studied a
more general abstract problem than (1.2) and established a necessary and sufficient
condition to obtain an exponential decay. In the case of lack of exponential decay,
a polynomial decay has been proved.

Kafini and Messaoudi [4] looked into the following Cauchy viscoelastic problem

utt −∆u +
∫ t

0

g(t− s)∆u(x, s)ds = 0, x ∈ Rn, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn

and showed that, for compactly supported initial data u0, u1 and for an exponen-
tially decaying relaxation function g, the decay of the first energy of solution is
polynomial. The finite-speed propagation is used to compensate for the lack of
Poincaré’s inequality in Rn. For nonexistence, the same authors [5] established a
blow-up result to the following Cauchy viscoelastic problem

utt −∆u +
∫ t

0

g(t− s)∆u(x, s)ds + ut = |u|p−1u, x ∈ Rn, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,
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under the conditions ∫ t

0

g(s)ds) <
2p− 2
2p− 1

, g′(t) ≤ 0,

E(0) =
1
2
‖u1‖22 +

1
2
‖∇u0‖22 −

1
p + 1

‖u0‖p+1
p+1 ≤ 0.

This result extends the one of [13], established for the wave equation in bounded
domain.

In this article, we will extend the result in [12] to our viscoelastic problem. We
aim to study the effect of the density to the decay rates. In the case ρ(x) = 1 (as
in [4]), the best decay obtained is polynomial. Here, we establish a general decay
result for solutions where the exponential and polynomial are only special cases.
This result does not contradict the past results in [4, 9, 10]. The choice of spaces
of solutions and the density one make it possible to get an exponential decay rate.
Where we have ρ(x) is a continuous and Ln/2(Rn) ∩ L∞(Rn) function that make
most of its contribution concentrate at the early time in the contrast of the late
time (t → ∞). Obviously, ρ(x) cannot be a constant here. In our proof, we use
the multiplier method together with the Lyapunov functional method as in [7] with
some necessary modification due to the nature of the problem. The paper organized
as follows. In Section 2, we define our function space and the assumptions on the
kernel g. In section 3, we state and prove our main result.

2. Preliminaries

To achieve our result, we assume the following assumptions on the relaxation
function g:

(G1) g : R+ → R+ is a differentiable function such that

g(0) > 0, 1−
∫ ∞

0

g(s)ds = l > 0.

(G2) There exists a nonincreasing differentiable function ξ : R+ → R+ such that

g′(t) ≤ −ξ(t)g(t), t ≥ 0,

∫ ∞

0

ξ(t)dt = +∞.

There are many functions satisfying (G1) and (G2), for example

g1(t) =
α

(1 + t)ν
, ν > 1

g2(t) = αe−β(t+1)p

, 0 < p ≤ 1

g3(t) =
α

(1 + t)[ln(1 + t)]ν
, ν > 1

where α and β are chosen properly.

Remark 2.1. Condition (G1) is necessary to guarantee the hyperbolicity of the
system.

We define the function space of our problem and its norm, as in [1, 11], as follows:
(A) The function space for (1.1) is X = D1,2(Rn)× L2

ρ(Rn), with

D1,2(Rn) = {f ∈ L
2n

n−2 (Rn) : ∇f ∈ L2(Rn)}.
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(B) The space L2
ρ(Rn) is defined to be the closure of C∞

0 (Rn) functions with respect
to the inner product

(f, h)L2
ρ(Rn) =

∫
Rn

ρfh dx.

One can easily check that L2
ρ(Rn) is a separable Hilbert space and

‖f‖2L2
ρ(Rn) = (f, f)L2

ρ(Rn).

(C) For 1 < p < ∞, if f is a measurable function on Rn, we define

‖f‖Lp
ρ

=
( ∫

Rn

ρ|f |pdx
)1/p

and let Lp
ρ(Rn) consist of all f for which ‖f‖Lp

ρ(Rn) < ∞.
For the weighted space Lp

ρ(Rn), we have the following lemma

Lemma 2.2 ([6]). Let ρ satisfies (H1), then for any u ∈ D1,2(Rn),

‖u‖Lq
ρ
≤ ‖ρ‖Ls‖∇u‖L2 , with s =

2n

2n− qn + 2q
, 2 ≤ q ≤ 2n

n− 2
.

Corollary 2.3. If q = 2, then Lemma 2.2. yields

‖u‖L2
ρ
≤ ‖ρ‖Ln/2‖∇u‖L2 ,

where we can assume ‖ρ‖Ln/2 = C0 > 0 to get

‖u‖L2
ρ(Rn) ≤ C0‖∇u‖L2 . (2.1)

Theorem 2.4 ([12]). Suppose that (H1) holds and g satisfies (G1). Assume that
1 ≤ p ≤ n+2

n−2 if n ≥ 2 or 1 ≤ p if n = 2. Then for any initial data

u0 ∈ D1,2(Rn) and u1 ∈ L2
ρ(Rn),

problem (1.1) has a unique solution

u ∈ C([0, T );D1,2(Rn)) and ut ∈ C([0, T );L2
ρ(Rn)),

for T small enough.

We now introduce the ‘modified’ energy functional

E(t) =
1
2
‖ut‖2L2

ρ
+

1
2

(
1−

∫ t

0

g(s)ds
)
‖∇u‖22 +

1
2
(g ◦ ∇u), (2.2)

where

(g ◦ v)(t) =
∫ t

0

g(t− s)‖v(t)− v(s)‖22ds, ∀v ∈ L2(Rn).

3. Decay of solutions

In this section, we state and prove our main result. For this purpose, we set

F (t) := E(t) + ε1Ψ(t) + ε2χ(t), (3.1)

where ε1 and ε2 are positive constants and

Ψ(t) :=
∫

Rn

ρuut dx, (3.2)

χ(t) := −
∫

Rn

ρut

∫ t

0

g(t− s)
(
u(t)− u(s)

)
ds dx. (3.3)
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Lemma 3.1. Along the solution of (1.1), the ‘modified’ energy satisfies

E′(t) =
1
2
(g′ ◦ ∇u)− 1

2
g(t)‖∇u‖22 ≤

1
2
(g′ ◦ ∇u) ≤ 0. (3.4)

Proof. By multiplying (1.1) by ut and integrating over Rn, using integration by
parts, hypotheses (G1) and (G2) and some manipulations as in [2, 3, 8], we reach
the result. �

Lemma 3.2. For any ε1 and ε2 small enough,

α1F (t) ≤ E(t) ≤ α2F (t), (3.5)

holds for two positive constants α1 and α2.

Proof. By applying Young’s inequality to (3.1) and using (3.2) and (3.3), we obtain

F (t) ≤ E(t) + ε1

(
δ‖ut‖2L2

ρ
+

1
4δ
‖u‖2L2

ρ

)
+ ε2

(
δ‖ut‖2L2

ρ
+

1
4δ
‖

∫ t

0

g(t− s)
(
u(t)− u(s)

)
ds‖2L2

ρ

)
≤ E(t) + ε1

(
δ‖ut‖2L2

ρ
+

C0

4δ
‖∇u‖22

)
+ ε2

(
δ‖ut‖2L2

ρ
+

C0

4δ
(1− l)(g ◦ ∇u)

)
≤ E(t) + δ(ε1 + ε2)‖ut‖2L2

ρ
+

ε1C0

4δ
‖∇u‖22 +

ε2C0

4δ
(1− l)(g ◦ ∇u)

≤ E(t) + βE(t) ≤ α2F (t).

Also, for ε1 and ε2 small enough, we have

F (t) ≥ E(t)− ε1Ψ(t)− ε2χ(t)

≥ E(t)− δ(ε1 + ε2)‖ut‖2L2
ρ
− ε1C0

4δ
‖∇u‖22 −

ε2C0

4δ
(1− l)(g ◦ ∇u)

≥ E(t)− βE(t) ≥ α1F (t).

Consequently, (3.5) follows. �

Lemma 3.3. Assume (H1), (G1), (G2). Along the solution of (1.1), the functional

Ψ(t) :=
∫

Rn

ρuut dx,

satisfies

Ψ′(t) ≤ ‖ut‖2L2
ρ
− (l − δ)‖∇u‖22 +

1
4δ

(1− l)(g ◦ ∇u)(t). (3.6)

Proof. From the definition of Ψ(t) in (3.2) we have

Ψ′(t) =
∫

Rn

ρu2
t dx +

∫
Rn

ρuuttdx. (3.7)

To estimate the last term in (3.7), we multiply (1.1) by u and integrate by parts
over Rn. So, we obtain∫

Rn

ρuuttdx =
∫

Rn

∇u(t) ·
∫ t

0

g(t− s)∇u(s) ds dx−
∫

Rn

|∇u(t)|2dx. (3.8)
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The first term in (3.8) can be estimated as follows∫
Rn

∇u(t) ·
∫ t

0

g(t− s)∇u(s) ds dx

=
∫

Rn

∇u(t) ·
∫ t

0

g(t− s)(∇u(s)−∇u(t) +∇u(t)) ds dx

=
( ∫ t

0

g(s)ds
) ∫

Rn

|∇u(t)|2dx +
∫

Rn

∇u(t) ·
∫ t

0

g(t− s)(∇u(s)−∇u(t)) ds dx

≤
( ∫ t

0

g(s)ds
) ∫

Rn

|∇u(t)|2dx + δ

∫
Rn

|∇u(t)|2dx +
1
4δ

( ∫ t

0

g(s)ds
)
(g ◦ ∇u)(t).

(3.9)

Recalling that ∫ t

0

g(s)ds ≤
∫ ∞

0

g(s)ds = 1− l,

we obtain the result. �

Lemma 3.4. Assume (G1), (G2). Along the solution of (1.1), for any δ > 0, the
functional

χ(t) := −
∫

Rn

ρut

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

satisfies

χ′(t) ≤ δ(1 + 2(1− l)2)‖∇u‖22 + (1− l)
[
(2δ +

1
2δ

) +
1
4δ

]
(g ◦ ∇u)(t)

g(0)
4δ

C0(−(g′ ◦ ∇u)(t))−
( ∫ t

0

g(s)ds− δ
) ∫

Rn

ρu2
t dx.

(3.10)

Proof. From the definition of χ(t) in (3.3), we have

χ′(t) = −
∫

Rn

ρutt

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Rn

ρut

∫ t

0

g′(t− s)(u(t)− u(s)) ds dx−
( ∫ t

0

g(s)ds
) ∫

Rn

ρu2
t dx.

(3.11)

To simplify the first term in (3.11), we multiply (1.1) by
∫ t

0
g(t− s)(u(t)− u(s))ds

and integrate by parts over Rn. So we obtain∫
Rn

ρutt

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

=
∫

Rn

∆u(x)
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Rn

(
∫ t

0

g(t− s)(u(t)− u(s))ds

∫ t

0

g(t− s)∆u(s)ds)dx.

(3.12)
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The first term in the right side of (3.12) is estimated as follows∫
Rn

∆u(x)
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

≤ −
∫

Rn

∇u(x) ·
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx

≤
∫

Rn

∇u(x) ·
∫ t

0

g(t− s)(∇u(s)−∇u(t)) ds dx

≤ δ

∫
Rn

|∇u(t)|2dx +
1
4δ

(
∫ t

0

g(s)ds)(g ◦ ∇u)(t)

≤ δ

∫
Rn

|∇u(t)|2dx +
1
4δ

(1− l)(g ◦ ∇u)(t),

(3.13)

while the second term becomes, as in (3.9),

−
∫

Rn

(
∫ t

0

g(t− s)(u(t)− u(s))ds

∫ t

0

g(t− s)∆u(x, s)ds)dx

=
∫

Rn

(
∫ t

0

g(t− s)∇u(s)ds) · (
∫ t

0

g(t− s)(∇u(t)−∇u(s))ds)dx

≤ δ

∫
Rn

|
∫ t

0

g(t− s)∇u(s)ds|2dx +
1
4δ

∫
Rn

|
∫ t

0

g(t− s)(∇u(t)−∇u(s))ds|2dx

≤ (2δ +
1
4δ

)
∫

Rn

(
∫ t

0

g(t− s)(∇u(t)−∇u(s))ds)2dx

2δ(1− l)2
∫

Rn

|∇u(t)|2dx

≤ (2δ +
1
4δ

)(1− l)(g ◦ ∇u)(t) + 2δ(1− l)2
∫

Rn

|∇u(t)|2dx.

(3.14)

Back to (3.11), the second term can be estimated as follows

−
∫

Rn

ρut

∫ t

0

g′(t− s)(u(t)− u(s)) ds dx

≤ δ

∫
Rn

ρu2
t dx +

1
4δ
‖

∫ t

0

−g′(t− s)(u(t)− u(s))ds‖2L2
ρ

≤ δ

∫
Rn

ρu2
t dx +

g(0)
4δ

C0(−(g′ ◦ ∇u)(t)).

(3.15)

By combining (3.11)-(3.15), the assertion of the lemma is established. �

Theorem 3.5. Let u0 ∈ D1,2(Rn) and u1 ∈ L2
ρ(Rn) be given. Assume that (H1)

holds and g satisfies (G1) and (G2). Then, for each t0 > 0, there exist strictly
positive constants C1 and C2 such that the energy of solution given by (1.1) satisfies,
for all t ≥ t0,

E(t) ≤ C1E(t0)e
−C2

R t
t0

ξ(s)ds
, ∀t > t0. (3.16)

Proof. Since g is positive and g(0) > 0, then for any t0 > 0 we have∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0, ∀t ≥ t0.
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Differentiation of (2.1) using (3.4), (3.6) and (3.10), yields

F ′(t) = E′(t) + ε1Ψ′(t) + ε2χ
′(t)

≤ −(ε2(g0 − δ)− ε1)
∫

Rn

ρu2
t dx + [

1
2
− ε2

g(0)
4δ

C0]((g′ ◦ ∇u)(t))

− [ε1(l − δ)− ε2δ(1 + 2(1− l)2)]‖∇u‖22{ ε1

4δ
(1− l) + ε2(1− l)[

(
2δ +

1
2δ

)
+

1
4δ

]
}
(g ◦ ∇u)(t)

(3.17)

At this point we choose δ so small that

max{g0 − δ, l − δ} >
1
2
g0,

δ(1 + 2(1− l)2) <
1
4
g0.

Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying
1
4
g0ε2 < ε1 <

1
2
g0ε2, (3.18)

will make

k1 = ε2(g0 − δ)− ε1 > 0,

k2 = ε1(l − δ)− ε2δ(1 + 2(1− l)2) > 0.

Then we pick ε1 and ε2 so small that (3.5) and (3.18) remain valid and

1
2
− ε2

g(0)
4δ

C0 > 0.

Therefore, for some positive constants β, β1 and β2, we have

F ′(t) ≤ −β(
∫

Rn

ρut
2dx + ‖∇u‖22) + β1(g ◦ ∇u)(t),

≤ −βE(t) + β2(g ◦ ∇u)(t) ∀t ≥ t0.

(3.19)

Multiplying (3.19) by ξ(t) gives

ξ(t)F ′(t) ≤ −βξ(t)E(t) + β2ξ(t)(g ◦ ∇u)(t), ∀t ≥ t0.

The last term can be estimated, using (H2), as follows

β2ξ(t)(g ◦ ∇u)(t) ≤ −β2(g′ ◦ ∇u)(t) ≤ −2β2E
′(t).

Thus, (3.19) becomes

ξ(t)F ′(t) ≤ −βξ(t)E(t)− 2β2E
′(t)

ξ(t)F ′(t) + 2β2E
′(t) ≤ −βξ(t)E(t).

(3.20)

It is clear that
F1(t) = ξ(t)F (t) + 2β2E(t) ∼ E(t).

Therefore, using (3.20) and the fact that ξ′(t) ≤ 0, we arrive at

F ′
1(t) = (ξ(t)F (t) + 2β2E(t))′ ≤ −βξ(t)E(t). (3.21)

Integration over (t0, t) leads to, for some constant C2 > 0 such that

F1(t) ≤ F1(t0)e
−C2

R t
t0

ξ(s)ds
, ∀t > t0.

Recalling (3.5), estimate (3.11) yields the desired result (3.16). �
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Remark 3.6. Our result is established without using the condition
∫∞
0

ξ(s)ds =
+∞, which is crucial for obtaining uniform stability.

Exponential decay is obtained for ξ(t) ≡ a, and polynomial decay for ξ(t) =
a(1 + t)−1, where a is a positive constant.

Estimate (3.16) is also true for t ∈ [0, t0] by virtue of continuity and boundedness
of E(t) and ξ(t).
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