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BOUNDARY-VALUE PROBLEMS FOR NONLINEAR
THIRD-ORDER q-DIFFERENCE EQUATIONS

BASHIR AHMAD

Abstract. This article shows existence results for a boundary-value problem
of nonlinear third-order q-difference equations. Our results are based on Leray-
Schauder degree theory and some standard fixed point theorems.

1. Introduction

The subject of q-difference equations, initiated in the beginning of the 19th
century [1, 6, 19, 22], has evolved into a multidisciplinary subject; see for example
[8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21] and references therein. For some recent work
on q-difference equations, we refer the reader to [2, 3, 5, 7, 16, 17, 23]. However,
the theory of boundary-value problems for nonlinear q-difference equations is still in
the initial stages and many aspects of this theory need to be explored. To the best
of our knowledge, the theory of boundary-value problems for third-order nonlinear
q-difference equations is yet to be developed.

In this paper, we discuss the existence of solutions for the nonlinear boundary-
value problem (BVP) of third-order q-difference equation

D3
qu(t) = f(t, u(t)), 0 ≤ t ≤ 1,

u(0) = 0, Dqu(0) = 0, u(1) = 0,
(1.1)

where f is a given continuous function.

2. Preliminaries

Let us recall some basic concepts of q-calculus [15, 21].
For 0 < q < 1, we define the q-derivative of a real valued function f as

Dqf(t) =
f(t)− f(qt)

(1− q)t
, Dqf(0) = lim

t→0
Dqf(t).

Higher order q-derivatives are given by

D0
qf(t) = f(t), Dn

q f(t) = DqD
n−1
q f(t), n ∈ N.
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The q-integral of a function f defined in the interval [a, b] is given by∫ x

a

f(t)dqt :=
∞∑

n=0

x(1− q)qnf(xqn)− af(qna), x ∈ [a, b],

and for a = 0, we denote

Iqf(x) =
∫ x

0

f(t)dqt =
∞∑

n=0

x(1− q)qnf(xqn),

provided the series converges. If a ∈ [0, b] and f is defined on the interval [0, b],
then ∫ b

a

f(t)dqt =
∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt.

Similarly, we have

I0
q f(t) = f(t), In

q f(t) = IqI
n−1
q f(t), n ∈ N.

Observe that
DqIqf(x) = f(x), (2.1)

and if f is continuous at x = 0, then IqDqf(x) = f(x) − f(0). In q-calculus, the
product rule and integration by parts formula are

Dq(gh)(t) = Dqg(t)h(t) + g(qt)Dqh(t), (2.2)∫ x

0

f(t)Dqg(t)dqt =
[
f(t)g(t)

]x

0
−

∫ x

0

Dqf(t)g(qt)dqt. (2.3)

In the limit q → 1 the above results correspond to their counterparts in standard
calculus.

Motivated by the solution of a classical third-order ordinary differential equation
(see Remark 2.2), we can write the solution of the third-order q-difference equation
D3

qu(t) = v(t) in the form

u =
∫ t

0

(
α1(q)t2 + α2(q)ts + α3(q)s2

)
v(s)dqs + a0 + a1t + a2t

2, (2.4)

where a0, a1, a2 are arbitrary constants and α1(q), α2(q), α3(q) can be fixed appro-
priately.

Choosing α1(q) = 1/(1 + q), α2(q) = −q, α3(q) = q3/(1 + q) and using (2.1) and
(2.2), we find that

Dqu(t) =
∫ t

0

tv(s)dqs−
∫ t

0

qsv(s)dqs, D2
qu(t) =

∫ t

0

v(s)dqs, D3
qu(t) = v(t).

Thus, the solution (2.4) of D3
qu(t) = v(t) takes the form

u =
∫ t

0

( t2 + q3s2

1 + q
− qts

)
v(s)dqs + a0 + a1t + a2t

2. (2.5)

Lemma 2.1. The BVP (1.1) is equivalent to the integral equation

u = Γu, (2.6)

where

Γu =
∫ 1

0

G(t, s; q)f(s, u(s))dqs,
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and G(t, s; q) is the Green’s function given by

G(t, s; q) =
1

(1 + q)

{
qs(1− t)[q2s(1 + t)− (1 + q)t], 0 ≤ s < t ≤ 1,

t2(1− qs)(q2s− 1), 0 ≤ t ≤ s ≤ 1.
(2.7)

Proof. In view of (2.5), the solution of D3
qu = f(t, u) can be written as

u =
∫ t

0

( t2 + q3s2

1 + q
− qts

)
f(s, u(s))dqs + a0 + a1t + a2t

2, (2.8)

where a1, a2, a2 are arbitrary constants. Using the boundary conditions of (1.1) in
(2.8), we find that a0 = 0, a1 = 0 and

a2 = −
∫ 1

0

(1 + q3s2

1 + q
− qs

)
f(s, u(s))dqs.

Substituting the values of a0, a1 and a2 in (2.8), we obtain

u =
∫ t

0

( t2 + q3s2

1 + q
− qts

)
f(s, u(s))dqs− t2

∫ 1

0

(1 + q3s2

1 + q
− qs

)
f(s, u(s))dqs

=
∫ 1

0

G(t, s; q)f(s, u(s))dqs,

where G(t, s; q) is given by (2.7). �

We define

G1 = max
t∈[0,1]

∣∣ ∫ 1

0

G(t, s; q)dqs
∣∣ =

(1 + q)q2

(1 + q + q2)4
. (2.9)

Remark 2.2. For q → 1, equation (2.8) takes the form

u =
1
2

∫ t

0

(t− s)2f(s, u(s))ds + a0 + a1t + a2t
2,

which is the solution of a classical third-order ordinary differential equation u′′′(t) =
f(t, u(t)) and the associated form of Green’s function for the classical case is

G(t, s) =
1
2

{
s(1− t)[s(1 + t)− 2t], if 0 ≤ s < t ≤ 1,

−t2(1− s)2, if 0 ≤ t ≤ s ≤ 1.

3. Some existence results

Theorem 3.1. Assume that there exist constants M1 ≥ 0 and M2 > 0 such that
M1G1 < 1 and |f(t, u)| ≤ M1|u| + M2 for all t ∈ [0, 1], u ∈ C([0, 1]), where G1 is
given by (2.9). Then the BVP (1.1) has at least one solution.

Proof. In view of Lemma 2.1, we just need to prove the existence of at least one
solution u ∈ C([0, 1]) such that u = Γu. Thus, it is sufficient to show that Γ :
BR → C([0, 1]) satisfies

u 6= λΓu, ∀u ∈ ∂BR ∀λ ∈ [0, 1], (3.1)

where BR ⊂ C([0, 1]) is a suitable ball with radius R > 0. Let us define

H(λ, u) = λΓu, u ∈ C([0, 1]), λ ∈ [0, 1].
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Then, by Arzela-Ascoli theorem, hλ(u) = u − H(λ, u) = u − λΓu is completely
continuous. If (3.1) is true, then the following Leray-Schauder degrees are well
defined and by the homotopy invariance of topological degree, it follows that

deg(hλ, BR, 0) = deg(I − λΓ, BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I,BR, 0) = 1 6= 0, 0 ∈ Br,

where I denotes the unit operator. By the nonzero property of Leray-Schauder
degree, h1(t) = u− λΓu = 0 for at least one u ∈ BR. Let us set

BR = {u ∈ C([0, 1]) : max
t∈[0,1]

|u(t)| < R},

where R will be fixed later. In order to prove (3.1), we assume that u = λΓu for
some λ ∈ [0, 1] and for all t ∈ [0, 1] so that

|u(t)| = |λΓu(t)| ≤
∣∣ ∫ 1

0

|G(t, s; q)f(s, u(s))dqs
∣∣

≤
∣∣ ∫ 1

0

G(t, s; q)(M1|u(s)|+ M2)dqs
∣∣

≤ (M1‖u‖+ M2) max
t∈[0,1]

∣∣ ∫ 1

0

G(t, s; q)dqs
∣∣

≤ (M1‖u‖+ M2)G1,

which implies

‖u‖ ≤ M2G1

1−M1G1
.

Letting R = M2G1
1−M1G1

+ 1, (3.1) holds. This completes the proof. �

Example 3.2. Consider the following problem

D3
1/2u(t) =

M1

(2π)
sin(2πu) +

|u|
1 + |u|

, 0 ≤ t ≤ 1,

u(0) = 0, D1/2u(0) = 0, u(1) = 0.

(3.2)

Here q = 1/2 and M1 will be fixed later. Observe that

|f(t, u)| =
∣∣ M1

(2π)
sin(2πu) +

|u|
1 + |u|

∣∣ ≤ M1|u|+ 1,

and

G1 =
q2(1 + q)

(1 + q + q2)4

∣∣∣
q=1/2

=
96

2401
.

Clearly M2 = 1 and and we can choose M1 < 1
G1

= 2401
96 ; that is, M1 ≤ 25. Thus,

Theorem 3.1 applies to the problem (3.2).

To prove the next existence result, we need the following known fixed point
theorem [4].

Theorem 3.3. Let Ω be an open bounded subset of a Banach space E with 0 ∈ Ω
and B : Ω → E be a compact operator. Then B has a fixed point in Ω provided
‖Bu− u‖2 ≥ ‖Bu‖2 − ‖u‖2, u ∈ ∂Ω.
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Theorem 3.4. If there exists a constant M3 such that

|f(t, u)| ≤ M3

G1
, ∀t ∈ [0, 1], u ∈ [−M3,M3],

where G1 is given by (2.9). Then (1.1) has at least one solution.

Proof. Let us define BM3 = {u ∈ C([0, 1]) : maxt∈[0,1] |u(t)| < M3}. In view of
Theorem 3.3, we just need to show that

‖Γu‖ ≤ ‖u‖, ∀u ∈ ∂BM3 . (3.3)

For all t ∈ [0, 1], u ∈ ∂BM3 , we have

|Γu(t)| =
∣∣ ∫ 1

0

G(t, s; q)f(s, u(s))dqs
∣∣ ≤ M3

G1

∣∣ ∫ 1

0

G(t, s; q)dqs
∣∣ ≤ M3.

Thus (3.3) holds, which completes the proof. �

In view of the assumption |f(t, u)| ≤ M1|u| + M2 of Theorem 3.1, we find that
M3 = M2G1(1−M1G1)−1.

Theorem 3.5. Suppose that f is of class C1 in the second variable and there exists
a constant 0 ≤ M4 < 1

G1
(G1 is given by (2.9)) such that |fu(t, u)| ≤ M4 for all

t ∈ [0, 1], u ∈ C([0, 1]), then (1.1) has at least one solution.

Proof. For all t ∈ [0, 1], we find that

|Γu(t)| =
∣∣∣ ∫ 1

0

G(t, s; q)f(s, u(s))dqs
∣∣∣ ≤ ∣∣∣ ∫ 1

0

G(t, s; q)(fu(s, u(s))u(s) + ν)dqs
∣∣∣

≤
∣∣∣ ∫ 1

0

G(t, s; q)dqs
∣∣∣(M4‖u‖+ ν) ≤ M4G1‖u‖+ ν1,

where ν1 = G1ν (ν is a positive constant). For R > 0, we define

BR = {u ∈ C([0, 1]) : max
t∈[0,1]

|u(t)| < R},

so that
‖Γu‖ ≤ M4G1R + ν1 = R

(
M4G1 +

ν1

R

)
≤ R,

for sufficiently large R. Therefore, by Schauder fixed point theorem, Γ has a fixed
point. This completes the proof. �

Example 3.6. Consider the problem

D3
1
4
u(t) =

1
12

(1− u2

1 + u2
) sin(2πt), 0 ≤ t ≤ 1,

u(0) = 0, D 1
4
u(0) = 0, u(1) = 0.

(3.4)

Clearly f(t, u) = 1
12

(
1−u2

1+u2 ) sin(2πt) and

G1 =
q2(1 + q)

(1 + q + q2)4

∣∣∣
q=1/4

=
5120

194481
.

Furthermore,

|fu(t, u)| ≤ 1
3

( |u|
(1 + u2)2

)
<

1
G1

=
194481
5120

.

Thus, by Theorem 3.5, there exists one solution for problem (3.4).

Our final result deals with the uniqueness of solutions to (1.1).
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Theorem 3.7. Let f : [0, 1] × R → R be a jointly continuous function satisfying
the condition

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀t ∈ [0, 1], u, v ∈ R,

where L is a Lipschitz constant. Then (1.1) has a unique solution provided that
L < 1/G1, where G1 is given by (2.9).

Proof. For t ∈ [0, 1], we define Γ : C([0, 1], R) → C([0, 1], R) by

Γu =
∫ 1

0

G(t, s; q)f(s, u(s))dqs,

where G(t, s; q) is the Green’s function given by (2.7).
Let us set M = maxt∈[0,1] |f(t, 0)| and choose

r ≥ MG1

1− LG1
. (3.5)

Now we show that ΓBr ⊂ Br, where Br = {u ∈ C([0, 1], R) : ‖u‖ ≤ r}. For u ∈ Br,
we have

‖Γu‖ = max
t∈[0,1]

∣∣ ∫ 1

0

G(t, s; q)f(s, u(s))dqs
∣∣

= max
t∈[0,1]

∣∣ ∫ 1

0

G(t, s; q)[(f(s, u(s))− f(s, 0)) + f(s, 0)]dqs
∣∣

≤ max
t∈[0,1]

∣∣ ∫ 1

0

G(t, s; q)dqs
∣∣(L‖u‖+ M |)

≤ G1(Lr + M) ≤ r.

where we have used (3.5). Now, for u, v ∈ R and for each t ∈ [0, 1], we obtain

‖(Γu)− (Γv)‖ = max
t∈[0,1]

|(Γu)(t)− (Γv)(t)|

≤ max
t∈[0,1]

∣∣ ∫ 1

0

G(t, s; q)[f(s, u(s))− f(s, v(s))]dqs
∣∣

≤ L max
t∈[0,1]

∣∣ ∫ 1

0

G(t, s; q)dqs
∣∣‖u− v‖

≤ LG1‖u− v‖.
As L < 1/G1, therefore Γ is a contraction. Thus, the conclusion of the theorem
follows by the contraction mapping principle. This completes the proof. �

Example 3.8. Consider

D3
3
4
u(t) = L

(
cos t + tan−1 u

)
, 0 ≤ t ≤ 1,

u(0) = 0, D 3
4
u(0) = 0, u(1) = 0.

(3.6)

With f(t, u) = L(cos t + tan−1 u), we find that

|f(t, u)− f(t, v)| ≤ L| tan−1 u− tan−1 v| ≤ L|u− v|
and

G1 =
q2(1 + q)

(1 + q + q2)4

∣∣∣
q=3/4

=
64512

1874161
.

Fixing L < 1
G1

= 1874161
64512 , it follows by Theorem 3.7 that (3.6) has a unique solution.
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Remark 3.9. In the limit as q → 1, our results reduce to the ones for the classical
third-order boundary-value problem

u′′′(t) = f(t, u(t)) t ∈ [0, 1]

u(0) = 0, u′(0) = 0, u(1) = 0.
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