Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 94, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BOUNDARY-VALUE PROBLEMS FOR NONLINEAR THIRD-ORDER *q*-DIFFERENCE EQUATIONS

BASHIR AHMAD

ABSTRACT. This article shows existence results for a boundary-value problem of nonlinear third-order q-difference equations. Our results are based on Leray-Schauder degree theory and some standard fixed point theorems.

1. INTRODUCTION

The subject of q-difference equations, initiated in the beginning of the 19th century [1, 6, 19, 22], has evolved into a multidisciplinary subject; see for example [8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21] and references therein. For some recent work on q-difference equations, we refer the reader to [2, 3, 5, 7, 16, 17, 23]. However, the theory of boundary-value problems for nonlinear q-difference equations is still in the initial stages and many aspects of this theory need to be explored. To the best of our knowledge, the theory of boundary-value problems for third-order nonlinear q-difference equations is yet to be developed.

In this paper, we discuss the existence of solutions for the nonlinear boundaryvalue problem (BVP) of third-order q-difference equation

$$D_q^3 u(t) = f(t, u(t)), \quad 0 \le t \le 1,$$

$$u(0) = 0, \quad D_q u(0) = 0, \quad u(1) = 0,$$
(1.1)

where f is a given continuous function.

2. Preliminaries

Let us recall some basic concepts of q-calculus [15, 21]. For 0 < q < 1, we define the q-derivative of a real valued function f as

$$D_q f(t) = \frac{f(t) - f(qt)}{(1 - q)t}, \quad D_q f(0) = \lim_{t \to 0} D_q f(t).$$

Higher order q-derivatives are given by

$$D_q^0 f(t) = f(t), \quad D_q^n f(t) = D_q D_q^{n-1} f(t), \quad n \in \mathbb{N}.$$

²⁰⁰⁰ Mathematics Subject Classification. 39A05, 39A13.

Key words and phrases. q-difference equations; boundary value problems; Leray-Schauder degree theory; fixed point theorems.

^{©2011} Texas State University - San Marcos.

Submitted December 2, 2010. Published July 28, 2011.

The q-integral of a function f defined in the interval [a, b] is given by

$$\int_{a}^{x} f(t)d_{q}t := \sum_{n=0}^{\infty} x(1-q)q^{n}f(xq^{n}) - af(q^{n}a), \quad x \in [a,b],$$

and for a = 0, we denote

$$I_q f(x) = \int_0^x f(t) d_q t = \sum_{n=0}^\infty x(1-q) q^n f(xq^n),$$

provided the series converges. If $a \in [0, b]$ and f is defined on the interval [0, b], then

$$\int_{a}^{b} f(t)d_{q}t = \int_{0}^{b} f(t)d_{q}t - \int_{0}^{a} f(t)d_{q}t.$$

Similarly, we have

$$I_q^0 f(t) = f(t), \quad I_q^n f(t) = I_q I_q^{n-1} f(t), \quad n \in \mathbb{N}.$$

Observe that

$$D_q I_q f(x) = f(x), (2.1)$$

and if f is continuous at x = 0, then $I_q D_q f(x) = f(x) - f(0)$. In q-calculus, the product rule and integration by parts formula are

$$D_q(gh)(t) = D_q g(t)h(t) + g(qt)D_q h(t),$$
(2.2)

$$\int_{0}^{x} f(t) D_{q} g(t) dqt = \left[f(t) g(t) \right]_{0}^{x} - \int_{0}^{x} D_{q} f(t) g(qt) d_{q} t.$$
(2.3)

In the limit $q \to 1$ the above results correspond to their counterparts in standard calculus.

Motivated by the solution of a classical third-order ordinary differential equation (see Remark 2.2), we can write the solution of the third-order q-difference equation $D_q^3 u(t) = v(t)$ in the form

$$u = \int_0^t \left(\alpha_1(q)t^2 + \alpha_2(q)ts + \alpha_3(q)s^2 \right) v(s)d_qs + a_0 + a_1t + a_2t^2,$$
(2.4)

where a_0, a_1, a_2 are arbitrary constants and $\alpha_1(q), \alpha_2(q), \alpha_3(q)$ can be fixed appropriately.

Choosing $\alpha_1(q) = 1/(1+q)$, $\alpha_2(q) = -q$, $\alpha_3(q) = q^3/(1+q)$ and using (2.1) and (2.2), we find that

$$D_q u(t) = \int_0^t t v(s) d_q s - \int_0^t q s v(s) d_q s, \quad D_q^2 u(t) = \int_0^t v(s) d_q s, \quad D_q^3 u(t) = v(t).$$

Thus, the solution (2.4) of $D_q^3 u(t) = v(t)$ takes the form

$$u = \int_0^t \left(\frac{t^2 + q^3 s^2}{1 + q} - qts\right) v(s) d_q s + a_0 + a_1 t + a_2 t^2.$$
(2.5)

Lemma 2.1. The BVP (1.1) is equivalent to the integral equation

$$u = \Gamma u, \tag{2.6}$$

where

$$\Gamma u = \int_0^1 G(t,s;q) f(s,u(s)) d_q s,$$

EJDE-2011/94

and G(t, s; q) is the Green's function given by

$$G(t,s;q) = \frac{1}{(1+q)} \begin{cases} qs(1-t)[q^2s(1+t) - (1+q)t], & 0 \le s < t \le 1, \\ t^2(1-qs)(q^2s-1), & 0 \le t \le s \le 1. \end{cases}$$
(2.7)

Proof. In view of (2.5), the solution of $D_q^3 u = f(t, u)$ can be written as

$$u = \int_0^t \left(\frac{t^2 + q^3 s^2}{1 + q} - qts\right) f(s, u(s)) d_q s + a_0 + a_1 t + a_2 t^2,$$
(2.8)

where a_1, a_2, a_2 are arbitrary constants. Using the boundary conditions of (1.1) in (2.8), we find that $a_0 = 0, a_1 = 0$ and

$$a_2 = -\int_0^1 \left(\frac{1+q^3s^2}{1+q} - qs\right) f(s, u(s)) d_q s.$$

Substituting the values of a_0, a_1 and a_2 in (2.8), we obtain

$$u = \int_0^t \left(\frac{t^2 + q^3 s^2}{1 + q} - qts\right) f(s, u(s)) d_q s - t^2 \int_0^1 \left(\frac{1 + q^3 s^2}{1 + q} - qs\right) f(s, u(s)) d_q s$$

=
$$\int_0^1 G(t, s; q) f(s, u(s)) d_q s,$$

where G(t, s; q) is given by (2.7).

We define

$$G_1 = \max_{t \in [0,1]} \left| \int_0^1 G(t,s;q) d_q s \right| = \frac{(1+q)q^2}{(1+q+q^2)^4}.$$
 (2.9)

Remark 2.2. For $q \rightarrow 1$, equation (2.8) takes the form

$$u = \frac{1}{2} \int_0^t (t-s)^2 f(s, u(s)) ds + a_0 + a_1 t + a_2 t^2,$$

which is the solution of a classical third-order ordinary differential equation u'''(t) = f(t, u(t)) and the associated form of Green's function for the classical case is

$$G(t,s) = \frac{1}{2} \begin{cases} s(1-t)[s(1+t)-2t], & \text{if } 0 \le s < t \le 1, \\ -t^2(1-s)^2, & \text{if } 0 \le t \le s \le 1. \end{cases}$$

3. Some existence results

Theorem 3.1. Assume that there exist constants $M_1 \ge 0$ and $M_2 > 0$ such that $M_1G_1 < 1$ and $|f(t, u)| \le M_1|u| + M_2$ for all $t \in [0, 1], u \in C([0, 1])$, where G_1 is given by (2.9). Then the BVP (1.1) has at least one solution.

Proof. In view of Lemma 2.1, we just need to prove the existence of at least one solution $u \in C([0,1])$ such that $u = \Gamma u$. Thus, it is sufficient to show that $\Gamma : \overline{B}_R \to C([0,1])$ satisfies

$$u \neq \lambda \Gamma u, \quad \forall u \in \partial B_R \quad \forall \lambda \in [0, 1],$$

$$(3.1)$$

where $B_R \subset C([0,1])$ is a suitable ball with radius R > 0. Let us define

$$H(\lambda, u) = \lambda \Gamma u, \quad u \in C([0, 1]), \ \lambda \in [0, 1].$$

B. AHMAD

Then, by Arzela-Ascoli theorem, $h_{\lambda}(u) = u - H(\lambda, u) = u - \lambda \Gamma u$ is completely continuous. If (3.1) is true, then the following Leray-Schauder degrees are well defined and by the homotopy invariance of topological degree, it follows that

$$deg(h_{\lambda}, B_R, 0) = deg(I - \lambda \Gamma, B_R, 0) = deg(h_1, B_R, 0)$$

= deg(h_0, B_R, 0) = deg(I, B_R, 0) = 1 \neq 0, \quad 0 \in B_r,

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, $h_1(t) = u - \lambda \Gamma u = 0$ for at least one $u \in B_R$. Let us set

$$B_R = \{ u \in C([0,1]) : \max_{t \in [0,1]} |u(t)| < R \},\$$

where R will be fixed later. In order to prove (3.1), we assume that $u = \lambda \Gamma u$ for some $\lambda \in [0, 1]$ and for all $t \in [0, 1]$ so that

$$\begin{aligned} |u(t)| &= |\lambda \Gamma u(t)| \le \left| \int_0^1 |G(t,s;q)f(s,u(s))d_qs \right| \\ &\le \left| \int_0^1 G(t,s;q)(M_1|u(s)| + M_2)d_qs \right| \\ &\le (M_1||u|| + M_2) \max_{t \in [0,1]} \left| \int_0^1 G(t,s;q)d_qs \right| \\ &\le (M_1||u|| + M_2)G_1, \end{aligned}$$

which implies

$$\|u\| \le \frac{M_2 G_1}{1 - M_1 G_1}$$

Letting $R = \frac{M_2G_1}{1-M_1G_1} + 1$, (3.1) holds. This completes the proof.

Example 3.2. Consider the following problem

$$D_{1/2}^{3}u(t) = \frac{M_{1}}{(2\pi)}\sin(2\pi u) + \frac{|u|}{1+|u|}, \quad 0 \le t \le 1,$$

$$u(0) = 0, \quad D_{1/2}u(0) = 0, \quad u(1) = 0.$$

(3.2)

Here q = 1/2 and M_1 will be fixed later. Observe that

$$|f(t,u)| = \left|\frac{M_1}{(2\pi)}\sin(2\pi u) + \frac{|u|}{1+|u|}\right| \le M_1|u| + 1,$$

and

$$G_1 = \frac{q^2(1+q)}{(1+q+q^2)^4}\Big|_{q=1/2} = \frac{96}{2401}.$$

Clearly $M_2 = 1$ and and we can choose $M_1 < \frac{1}{G_1} = \frac{2401}{96}$; that is, $M_1 \le 25$. Thus, Theorem 3.1 applies to the problem (3.2).

To prove the next existence result, we need the following known fixed point theorem [4].

Theorem 3.3. Let Ω be an open bounded subset of a Banach space E with $0 \in \Omega$ and $B : \overline{\Omega} \to E$ be a compact operator. Then B has a fixed point in $\overline{\Omega}$ provided $||Bu - u||^2 \ge ||Bu||^2 - ||u||^2, \ u \in \partial\Omega.$ EJDE-2011/94

Theorem 3.4. If there exists a constant M_3 such that

$$|f(t,u)| \le \frac{M_3}{G_1}, \quad \forall t \in [0,1], \ u \in [-M_3, M_3],$$

where G_1 is given by (2.9). Then (1.1) has at least one solution.

Proof. Let us define $B_{M_3} = \{u \in C([0,1]) : \max_{t \in [0,1]} |u(t)| < M_3\}$. In view of Theorem 3.3, we just need to show that

$$\|\Gamma u\| \le \|u\|, \quad \forall u \in \partial B_{M_3}. \tag{3.3}$$

For all $t \in [0, 1]$, $u \in \partial B_{M_3}$, we have

$$|\Gamma u(t)| = \left| \int_0^1 G(t,s;q) f(s,u(s)) d_q s \right| \le \frac{M_3}{G_1} \left| \int_0^1 G(t,s;q) d_q s \right| \le M_3.$$

Thus (3.3) holds, which completes the proof.

In view of the assumption $|f(t,u)| \leq M_1|u| + M_2$ of Theorem 3.1, we find that $M_3 = M_2 G_1 (1 - M_1 G_1)^{-1}$.

Theorem 3.5. Suppose that f is of class C^1 in the second variable and there exists a constant $0 \leq M_4 < \frac{1}{G_1}$ (G_1 is given by (2.9)) such that $|f_u(t, u)| \leq M_4$ for all $t \in [0, 1], u \in C([0, 1])$, then (1.1) has at least one solution.

Proof. For all $t \in [0, 1]$, we find that

$$|\Gamma u(t)| = \left| \int_0^1 G(t,s;q) f(s,u(s)) d_q s \right| \le \left| \int_0^1 G(t,s;q) (f_u(s,u(s)) u(s) + \nu) d_q s \right|$$
$$\le \left| \int_0^1 G(t,s;q) d_q s \right| (M_4 ||u|| + \nu) \le M_4 G_1 ||u|| + \nu_1,$$

where $\nu_1 = G_1 \nu$ (ν is a positive constant). For R > 0, we define

$$B_R = \{ u \in C([0,1]) : \max_{t \in [0,1]} |u(t)| < R \},\$$

so that

$$\|\Gamma u\| \le M_4 G_1 R + \nu_1 = R \left(M_4 G_1 + \frac{\nu_1}{R} \right) \le R,$$

for sufficiently large R. Therefore, by Schauder fixed point theorem, Γ has a fixed point. This completes the proof.

Example 3.6. Consider the problem

$$D^{3}_{\frac{1}{4}}u(t) = \frac{1}{12} \left(\frac{1-u^{2}}{1+u^{2}}\right) \sin(2\pi t), \quad 0 \le t \le 1,$$

$$u(0) = 0, \quad D_{\frac{1}{4}}u(0) = 0, \quad u(1) = 0.$$

(3.4)

Clearly $f(t, u) = \frac{1}{12} \left(\frac{1-u^2}{1+u^2} \right) \sin(2\pi t)$ and

$$G_1 = \frac{q^2(1+q)}{(1+q+q^2)^4}\Big|_{q=1/4} = \frac{5120}{194481}.$$

Furthermore,

$$|f_u(t,u)| \le \frac{1}{3} \left(\frac{|u|}{(1+u^2)^2} \right) < \frac{1}{G_1} = \frac{194481}{5120}.$$

Thus, by Theorem 3.5, there exists one solution for problem (3.4).

Our final result deals with the uniqueness of solutions to (1.1).

Theorem 3.7. Let $f : [0,1] \times \mathbb{R} \to \mathbb{R}$ be a jointly continuous function satisfying the condition

$$|f(t,u) - f(t,v)| \le L|u-v|, \quad \forall t \in [0,1], \ u,v \in \mathbb{R},$$

where L is a Lipschitz constant. Then (1.1) has a unique solution provided that $L < 1/G_1$, where G_1 is given by (2.9).

Proof. For $t \in [0,1]$, we define $\Gamma : C([0,1],\mathbb{R}) \to C([0,1],\mathbb{R})$ by

$$\Gamma u = \int_0^1 G(t,s;q) f(s,u(s)) d_q s,$$

where G(t, s; q) is the Green's function given by (2.7).

Let us set $M = \max_{t \in [0,1]} |f(t,0)|$ and choose

$$r \ge \frac{MG_1}{1 - LG_1}.\tag{3.5}$$

Now we show that $\Gamma B_r \subset B_r$, where $B_r = \{u \in C([0,1], \mathbb{R}) : ||u|| \leq r\}$. For $u \in B_r$, we have

$$\begin{aligned} \|\Gamma u\| &= \max_{t \in [0,1]} \left| \int_0^1 G(t,s;q) f(s,u(s)) d_q s \right| \\ &= \max_{t \in [0,1]} \left| \int_0^1 G(t,s;q) [(f(s,u(s)) - f(s,0)) + f(s,0)] d_q s \right| \\ &\leq \max_{t \in [0,1]} \left| \int_0^1 G(t,s;q) d_q s \right| (L \|u\| + M|) \\ &\leq G_1 (Lr + M) \leq r. \end{aligned}$$

where we have used (3.5). Now, for $u, v \in \mathbb{R}$ and for each $t \in [0, 1]$, we obtain

$$\begin{split} \|(\Gamma u) - (\Gamma v)\| &= \max_{t \in [0,1]} |(\Gamma u)(t) - (\Gamma v)(t)| \\ &\leq \max_{t \in [0,1]} \left| \int_0^1 G(t,s;q) [f(s,u(s)) - f(s,v(s))] d_q s \right| \\ &\leq L \max_{t \in [0,1]} \left| \int_0^1 G(t,s;q) d_q s \right| \|u - v\| \\ &\leq L G_1 \|u - v\|. \end{split}$$

As $L < 1/G_1$, therefore Γ is a contraction. Thus, the conclusion of the theorem follows by the contraction mapping principle. This completes the proof. \Box

Example 3.8. Consider

$$D_{\frac{3}{4}}^{3}u(t) = L\left(\cos t + \tan^{-1}u\right), \quad 0 \le t \le 1,$$

$$u(0) = 0, \quad D_{\frac{3}{4}}u(0) = 0, \quad u(1) = 0.$$
(3.6)

With $f(t, u) = L(\cos t + \tan^{-1} u)$, we find that

$$|f(t,u) - f(t,v)| \le L |\tan^{-1} u - \tan^{-1} v| \le L |u - v|$$

and

$$G_1 = \frac{q^2(1+q)}{(1+q+q^2)^4}\Big|_{q=3/4} = \frac{64512}{1874161}.$$

Fixing $L < \frac{1}{G_1} = \frac{1874161}{64512}$, it follows by Theorem 3.7 that (3.6) has a unique solution.

EJDE-2011/94

7

Remark 3.9. In the limit as $q \rightarrow 1$, our results reduce to the ones for the classical third-order boundary-value problem

$$u'''(t) = f(t, u(t)) \quad t \in [0, 1]$$

$$u(0) = 0, \quad u'(0) = 0, \quad u(1) = 0.$$

Acknowledgments. The author wants to thank anonymous referees for their useful comments.

References

- [1] C. R. Adams; On the linear ordinary q-difference equation, Annals Math. 30 (1928), 195-205.
- [2] M. H. Annaby, Z. S. Mansour; q-Taylor and interpolation series for Jackson q-difference operators, J. Math. Anal. Appl., 344 (2008), 472-483.
- [3] G. Bangerezako; Variational q-calculus, J. Math. Anal. Appl. 289 (2004), 650-665.
- [4] M. Altman, A fixed point theorem in Banach space. Bull. Polish acad. Sci. 5 (1957), 19-22.
- B. Ahmad, S. K. Ntouyas; Boundary value problems for q-difference inclusions, Abstr. Appl. Anal. Vol. 2011, Article ID 292860, 15 pages.
- [6] R. D. Carmichael; The general theory of linear q-difference equations, American J. Math. 34 (1912), 147-168.
- [7] A. Dobrogowska, A. Odzijewicz; Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math. 193 (2006), 319-346.
- [8] T. Ernst; A new notation for q-calculus and a new q-Taylor formula, U.U.D.M. Report 1999:25, ISSN 1101-3591, Department of Mathematics, Uppsala University, 1999.
- [9] R. Finkelstein, E. Marcus; Transformation theory of the q-oscillator, J. Math. Phys. 36 (1995), 2652-2672.
- [10] R. Finkelstein; The q-Coulomb problem, J. Math. Phys. 37 (1996), 2628-2636.
- [11] R. Floreanini, L. Vinet; Automorphisms of the q-oscillator algebra and basic orthogonal polynomials, *Phys. Lett. A* 180 (1993), 393-401.
- [12] R. Floreanini, L. Vinet; Symmetries of the q-difference heat equation, Lett. Math. Phys. 32 (1994), 37-44.
- [13] R. Floreanini, L. Vinet; Quantum symmetries of q-difference equations, J. Math. Phys. 36 (1995), 3134-3156.
- [14] P. G. O. Freund, A. V. Zabrodin; The spectral problem for the q-Knizhnik-Zamolodchikov equation and continuous q-Jacobi polynomials, *Comm. Math. Phys.* 173 (1995), 17-42.
- [15] G. Gasper, M. Rahman; Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
- [16] G. Gasper, M. Rahman; Some Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 13 (2007), 389-405.
- [17] M. E. H. Ismail, P. Simeonov; q-difference operators for orthogonal polynomials, J. Computat. Appl. Math. 233 (2009), 749-761.
- [18] G. N. Han, J. Zeng; On a q-sequence that generalizes the median Genocchi numbers, Ann. Sci. Math. Quebec 23 (1999), 63-72.
- [19] F. H. Jackson; On q-difference equations, American J. Math. 32(1910), 305-314.
- [20] M. Jaulent, I. Miodek; Nonlinear evolution equations associated with 'energy-dependent Schrodinger potentials', Lett. Math. Phys. 1 (1976), 243-250.
- [21] V. Kac, P. Cheung; Quantum Calculus, Springer, New York, 2002.
- [22] T. E. Mason; On properties of the solutions of linear q-difference equations with entire function coefficients, American J. Math. 37 (1915), 439-444.
- [23] M. El-Shahed, H. A. Hassan; Positive solutions of q-difference equation, Proc. Amer. Math. Soc. 138 (2010), 1733-1738.

Bashir Ahmad

Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: bashir_qau@yahoo.com