Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 94, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BOUNDARY-VALUE PROBLEMS FOR NONLINEAR THIRD-ORDER q-DIFFERENCE EQUATIONS

BASHIR AHMAD

Abstract

This article shows existence results for a boundary-value problem of nonlinear third-order q-difference equations. Our results are based on LeraySchauder degree theory and some standard fixed point theorems.

1. Introduction

The subject of q-difference equations, initiated in the beginning of the 19th century [1, 6, 19, 22, has evolved into a multidisciplinary subject; see for example $[8,9,10,11,12,13,14,15,18,20,21]$ and references therein. For some recent work on q-difference equations, we refer the reader to [2, 3, 5, 7, 16, 17, 23. However, the theory of boundary-value problems for nonlinear q-difference equations is still in the initial stages and many aspects of this theory need to be explored. To the best of our knowledge, the theory of boundary-value problems for third-order nonlinear q-difference equations is yet to be developed.

In this paper, we discuss the existence of solutions for the nonlinear boundaryvalue problem (BVP) of third-order q-difference equation

$$
\begin{gather*}
D_{q}^{3} u(t)=f(t, u(t)), \quad 0 \leq t \leq 1 \\
u(0)=0, \quad D_{q} u(0)=0, \quad u(1)=0 \tag{1.1}
\end{gather*}
$$

where f is a given continuous function.

2. Preliminaries

Let us recall some basic concepts of q-calculus [15, 21.
For $0<q<1$, we define the q-derivative of a real valued function f as

$$
D_{q} f(t)=\frac{f(t)-f(q t)}{(1-q) t}, \quad D_{q} f(0)=\lim _{t \rightarrow 0} D_{q} f(t)
$$

Higher order q-derivatives are given by

$$
D_{q}^{0} f(t)=f(t), \quad D_{q}^{n} f(t)=D_{q} D_{q}^{n-1} f(t), \quad n \in \mathbb{N}
$$

[^0]The q-integral of a function f defined in the interval $[a, b]$ is given by

$$
\int_{a}^{x} f(t) d_{q} t:=\sum_{n=0}^{\infty} x(1-q) q^{n} f\left(x q^{n}\right)-a f\left(q^{n} a\right), \quad x \in[a, b]
$$

and for $a=0$, we denote

$$
I_{q} f(x)=\int_{0}^{x} f(t) d_{q} t=\sum_{n=0}^{\infty} x(1-q) q^{n} f\left(x q^{n}\right)
$$

provided the series converges. If $a \in[0, b]$ and f is defined on the interval $[0, b]$, then

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

Similarly, we have

$$
I_{q}^{0} f(t)=f(t), \quad I_{q}^{n} f(t)=I_{q} I_{q}^{n-1} f(t), \quad n \in \mathbb{N}
$$

Observe that

$$
\begin{equation*}
D_{q} I_{q} f(x)=f(x) \tag{2.1}
\end{equation*}
$$

and if f is continuous at $x=0$, then $I_{q} D_{q} f(x)=f(x)-f(0)$. In q-calculus, the product rule and integration by parts formula are

$$
\begin{align*}
D_{q}(g h)(t) & =D_{q} g(t) h(t)+g(q t) D_{q} h(t), \tag{2.2}\\
\int_{0}^{x} f(t) D_{q} g(t) d q t & =[f(t) g(t)]_{0}^{x}-\int_{0}^{x} D_{q} f(t) g(q t) d_{q} t . \tag{2.3}
\end{align*}
$$

In the limit $q \rightarrow 1$ the above results correspond to their counterparts in standard calculus.

Motivated by the solution of a classical third-order ordinary differential equation (see Remark $\sqrt[2.2]{ }$), we can write the solution of the third-order q-difference equation $D_{q}^{3} u(t)=v(t)$ in the form

$$
\begin{equation*}
u=\int_{0}^{t}\left(\alpha_{1}(q) t^{2}+\alpha_{2}(q) t s+\alpha_{3}(q) s^{2}\right) v(s) d_{q} s+a_{0}+a_{1} t+a_{2} t^{2} \tag{2.4}
\end{equation*}
$$

where a_{0}, a_{1}, a_{2} are arbitrary constants and $\alpha_{1}(q), \alpha_{2}(q), \alpha_{3}(q)$ can be fixed appropriately.

Choosing $\alpha_{1}(q)=1 /(1+q), \alpha_{2}(q)=-q, \alpha_{3}(q)=q^{3} /(1+q)$ and using 2.1 and (2.2), we find that

$$
D_{q} u(t)=\int_{0}^{t} t v(s) d_{q} s-\int_{0}^{t} q s v(s) d_{q} s, \quad D_{q}^{2} u(t)=\int_{0}^{t} v(s) d_{q} s, \quad D_{q}^{3} u(t)=v(t)
$$

Thus, the solution (2.4) of $D_{q}^{3} u(t)=v(t)$ takes the form

$$
\begin{equation*}
u=\int_{0}^{t}\left(\frac{t^{2}+q^{3} s^{2}}{1+q}-q t s\right) v(s) d_{q} s+a_{0}+a_{1} t+a_{2} t^{2} \tag{2.5}
\end{equation*}
$$

Lemma 2.1. The $B V P(1.1$ is equivalent to the integral equation

$$
\begin{equation*}
u=\Gamma u, \tag{2.6}
\end{equation*}
$$

where

$$
\Gamma u=\int_{0}^{1} G(t, s ; q) f(s, u(s)) d_{q} s
$$

and $G(t, s ; q)$ is the Green's function given by

$$
G(t, s ; q)=\frac{1}{(1+q)} \begin{cases}q s(1-t)\left[q^{2} s(1+t)-(1+q) t\right], & 0 \leq s<t \leq 1 \tag{2.7}\\ t^{2}(1-q s)\left(q^{2} s-1\right), & 0 \leq t \leq s \leq 1\end{cases}
$$

Proof. In view of (2.5), the solution of $D_{q}^{3} u=f(t, u)$ can be written as

$$
\begin{equation*}
u=\int_{0}^{t}\left(\frac{t^{2}+q^{3} s^{2}}{1+q}-q t s\right) f(s, u(s)) d_{q} s+a_{0}+a_{1} t+a_{2} t^{2} \tag{2.8}
\end{equation*}
$$

where a_{1}, a_{2}, a_{2} are arbitrary constants. Using the boundary conditions of (1.1) in (2.8), we find that $a_{0}=0, a_{1}=0$ and

$$
a_{2}=-\int_{0}^{1}\left(\frac{1+q^{3} s^{2}}{1+q}-q s\right) f(s, u(s)) d_{q} s
$$

Substituting the values of a_{0}, a_{1} and a_{2} in (2.8), we obtain

$$
\begin{aligned}
u & =\int_{0}^{t}\left(\frac{t^{2}+q^{3} s^{2}}{1+q}-q t s\right) f(s, u(s)) d_{q} s-t^{2} \int_{0}^{1}\left(\frac{1+q^{3} s^{2}}{1+q}-q s\right) f(s, u(s)) d_{q} s \\
& =\int_{0}^{1} G(t, s ; q) f(s, u(s)) d_{q} s
\end{aligned}
$$

where $G(t, s ; q)$ is given by 2.7 .
We define

$$
\begin{equation*}
G_{1}=\max _{t \in[0,1]}\left|\int_{0}^{1} G(t, s ; q) d_{q} s\right|=\frac{(1+q) q^{2}}{\left(1+q+q^{2}\right)^{4}} \tag{2.9}
\end{equation*}
$$

Remark 2.2. For $q \rightarrow 1$, equation (2.8) takes the form

$$
u=\frac{1}{2} \int_{0}^{t}(t-s)^{2} f(s, u(s)) d s+a_{0}+a_{1} t+a_{2} t^{2}
$$

which is the solution of a classical third-order ordinary differential equation $u^{\prime \prime \prime}(t)=$ $f(t, u(t))$ and the associated form of Green's function for the classical case is

$$
G(t, s)=\frac{1}{2} \begin{cases}s(1-t)[s(1+t)-2 t], & \text { if } 0 \leq s<t \leq 1 \\ -t^{2}(1-s)^{2}, & \text { if } 0 \leq t \leq s \leq 1\end{cases}
$$

3. Some existence results

Theorem 3.1. Assume that there exist constants $M_{1} \geq 0$ and $M_{2}>0$ such that $M_{1} G_{1}<1$ and $|f(t, u)| \leq M_{1}|u|+M_{2}$ for all $t \in[0,1], u \in C([0,1])$, where G_{1} is given by 2.9. Then the BVP 1.1 has at least one solution.

Proof. In view of Lemma 2.1, we just need to prove the existence of at least one solution $u \in C([0,1])$ such that $u=\Gamma u$. Thus, it is sufficient to show that Γ : $\bar{B}_{R} \rightarrow C([0,1])$ satisfies

$$
\begin{equation*}
u \neq \lambda \Gamma u, \quad \forall u \in \partial B_{R} \quad \forall \lambda \in[0,1], \tag{3.1}
\end{equation*}
$$

where $B_{R} \subset C([0,1])$ is a suitable ball with radius $R>0$. Let us define

$$
H(\lambda, u)=\lambda \Gamma u, \quad u \in C([0,1]), \lambda \in[0,1]
$$

Then, by Arzela-Ascoli theorem, $h_{\lambda}(u)=u-H(\lambda, u)=u-\lambda \Gamma u$ is completely continuous. If (3.1) is true, then the following Leray-Schauder degrees are well defined and by the homotopy invariance of topological degree, it follows that

$$
\begin{aligned}
\operatorname{deg}\left(h_{\lambda}, B_{R}, 0\right) & =\operatorname{deg}\left(I-\lambda \Gamma, B_{R}, 0\right)=\operatorname{deg}\left(h_{1}, B_{R}, 0\right) \\
& =\operatorname{deg}\left(h_{0}, B_{R}, 0\right)=\operatorname{deg}\left(I, B_{R}, 0\right)=1 \neq 0, \quad 0 \in B_{r}
\end{aligned}
$$

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, $h_{1}(t)=u-\lambda \Gamma u=0$ for at least one $u \in B_{R}$. Let us set

$$
B_{R}=\left\{u \in C([0,1]): \max _{t \in[0,1]}|u(t)|<R\right\}
$$

where R will be fixed later. In order to prove 3.1, we assume that $u=\lambda \Gamma u$ for some $\lambda \in[0,1]$ and for all $t \in[0,1]$ so that

$$
\begin{aligned}
|u(t)| & =|\lambda \Gamma u(t)| \leq\left|\int_{0}^{1}\right| G(t, s ; q) f(s, u(s)) d_{q} s \mid \\
& \leq\left|\int_{0}^{1} G(t, s ; q)\left(M_{1}|u(s)|+M_{2}\right) d_{q} s\right| \\
& \leq\left(M_{1}\|u\|+M_{2}\right) \max _{t \in[0,1]}\left|\int_{0}^{1} G(t, s ; q) d_{q} s\right| \\
& \leq\left(M_{1}\|u\|+M_{2}\right) G_{1},
\end{aligned}
$$

which implies

$$
\|u\| \leq \frac{M_{2} G_{1}}{1-M_{1} G_{1}}
$$

Letting $R=\frac{M_{2} G_{1}}{1-M_{1} G_{1}}+1,(3.1)$ holds. This completes the proof.
Example 3.2. Consider the following problem

$$
\begin{gather*}
D_{1 / 2}^{3} u(t)=\frac{M_{1}}{(2 \pi)} \sin (2 \pi u)+\frac{|u|}{1+|u|}, \quad 0 \leq t \leq 1 \tag{3.2}\\
u(0)=0, \quad D_{1 / 2} u(0)=0, \quad u(1)=0
\end{gather*}
$$

Here $q=1 / 2$ and M_{1} will be fixed later. Observe that

$$
|f(t, u)|=\left|\frac{M_{1}}{(2 \pi)} \sin (2 \pi u)+\frac{|u|}{1+|u|}\right| \leq M_{1}|u|+1
$$

and

$$
G_{1}=\left.\frac{q^{2}(1+q)}{\left(1+q+q^{2}\right)^{4}}\right|_{q=1 / 2}=\frac{96}{2401} .
$$

Clearly $M_{2}=1$ and and we can choose $M_{1}<\frac{1}{G_{1}}=\frac{2401}{96}$; that is, $M_{1} \leq 25$. Thus, Theorem 3.1 applies to the problem 3.2.

To prove the next existence result, we need the following known fixed point theorem [4].

Theorem 3.3. Let Ω be an open bounded subset of a Banach space E with $0 \in \Omega$ and $B: \bar{\Omega} \rightarrow E$ be a compact operator. Then B has a fixed point in $\bar{\Omega}$ provided $\|B u-u\|^{2} \geq\|B u\|^{2}-\|u\|^{2}, u \in \partial \Omega$.

Theorem 3.4. If there exists a constant M_{3} such that

$$
|f(t, u)| \leq \frac{M_{3}}{G_{1}}, \quad \forall t \in[0,1], u \in\left[-M_{3}, M_{3}\right]
$$

where G_{1} is given by (2.9). Then (1.1) has at least one solution.
Proof. Let us define $B_{M_{3}}=\left\{u \in C([0,1]): \max _{t \in[0,1]}|u(t)|<M_{3}\right\}$. In view of Theorem 3.3, we just need to show that

$$
\begin{equation*}
\|\Gamma u\| \leq\|u\|, \quad \forall u \in \partial B_{M_{3}} \tag{3.3}
\end{equation*}
$$

For all $t \in[0,1], u \in \partial B_{M_{3}}$, we have

$$
|\Gamma u(t)|=\left|\int_{0}^{1} G(t, s ; q) f(s, u(s)) d_{q} s\right| \leq \frac{M_{3}}{G_{1}}\left|\int_{0}^{1} G(t, s ; q) d_{q} s\right| \leq M_{3}
$$

Thus (3.3) holds, which completes the proof.
In view of the assumption $|f(t, u)| \leq M_{1}|u|+M_{2}$ of Theorem 3.1, we find that $M_{3}=M_{2} G_{1}\left(1-M_{1} G_{1}\right)^{-1}$.
Theorem 3.5. Suppose that f is of class C^{1} in the second variable and there exists a constant $0 \leq M_{4}<\frac{1}{G_{1}}\left(G_{1}\right.$ is given by 2.9) $)$ such that $\left|f_{u}(t, u)\right| \leq M_{4}$ for all $t \in[0,1], u \in C([0,1])$, then 1.1) has at least one solution.

Proof. For all $t \in[0,1]$, we find that

$$
\begin{aligned}
|\Gamma u(t)| & =\left|\int_{0}^{1} G(t, s ; q) f(s, u(s)) d_{q} s\right| \leq\left|\int_{0}^{1} G(t, s ; q)\left(f_{u}(s, u(s)) u(s)+\nu\right) d_{q} s\right| \\
& \leq\left|\int_{0}^{1} G(t, s ; q) d_{q} s\right|\left(M_{4}\|u\|+\nu\right) \leq M_{4} G_{1}\|u\|+\nu_{1},
\end{aligned}
$$

where $\nu_{1}=G_{1} \nu(\nu$ is a positive constant). For $R>0$, we define

$$
B_{R}=\left\{u \in C([0,1]): \max _{t \in[0,1]}|u(t)|<R\right\}
$$

so that

$$
\|\Gamma u\| \leq M_{4} G_{1} R+\nu_{1}=R\left(M_{4} G_{1}+\frac{\nu_{1}}{R}\right) \leq R
$$

for sufficiently large R. Therefore, by Schauder fixed point theorem, Γ has a fixed point. This completes the proof.
Example 3.6. Consider the problem

$$
\left.\begin{array}{rl}
D_{\frac{1}{4}}^{3} u(t) & =\frac{1}{12}\left(\frac{1-u^{2}}{1+u^{2}}\right) \sin (2 \pi t), \quad 0 \tag{3.4}\\
u(0) & =0, \quad D_{\frac{1}{4}} u(0)=0, \quad u(1)
\end{array}\right)=0 .
$$

Clearly $f(t, u)=\frac{1}{12}\left(\frac{1-u^{2}}{1+u^{2}}\right) \sin (2 \pi t)$ and

$$
G_{1}=\left.\frac{q^{2}(1+q)}{\left(1+q+q^{2}\right)^{4}}\right|_{q=1 / 4}=\frac{5120}{194481}
$$

Furthermore,

$$
\left|f_{u}(t, u)\right| \leq \frac{1}{3}\left(\frac{|u|}{\left(1+u^{2}\right)^{2}}\right)<\frac{1}{G_{1}}=\frac{194481}{5120}
$$

Thus, by Theorem 3.5 there exists one solution for problem (3.4).
Our final result deals with the uniqueness of solutions to 1.1 .

Theorem 3.7. Let $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be a jointly continuous function satisfying the condition

$$
|f(t, u)-f(t, v)| \leq L|u-v|, \quad \forall t \in[0,1], u, v \in \mathbb{R}
$$

where L is a Lipschitz constant. Then 1.1) has a unique solution provided that $L<1 / G_{1}$, where G_{1} is given by 2.9.
Proof. For $t \in[0,1]$, we define $\Gamma: C([0,1], \mathbb{R}) \rightarrow C([0,1], \mathbb{R})$ by

$$
\Gamma u=\int_{0}^{1} G(t, s ; q) f(s, u(s)) d_{q} s,
$$

where $G(t, s ; q)$ is the Green's function given by (2.7).
Let us set $M=\max _{t \in[0,1]}|f(t, 0)|$ and choose

$$
\begin{equation*}
r \geq \frac{M G_{1}}{1-L G_{1}} \tag{3.5}
\end{equation*}
$$

Now we show that $\Gamma B_{r} \subset B_{r}$, where $B_{r}=\{u \in C([0,1], \mathbb{R}):\|u\| \leq r\}$. For $u \in B_{r}$, we have

$$
\begin{aligned}
\|\Gamma u\| & =\max _{t \in[0,1]}\left|\int_{0}^{1} G(t, s ; q) f(s, u(s)) d_{q} s\right| \\
& =\max _{t \in[0,1]}\left|\int_{0}^{1} G(t, s ; q)[(f(s, u(s))-f(s, 0))+f(s, 0)] d_{q} s\right| \\
& \leq \max _{t \in[0,1]}\left|\int_{0}^{1} G(t, s ; q) d_{q} s\right|(L\|u\|+M \mid) \\
& \leq G_{1}(L r+M) \leq r .
\end{aligned}
$$

where we have used 3.5). Now, for $u, v \in \mathbb{R}$ and for each $t \in[0,1]$, we obtain

$$
\begin{aligned}
\|(\Gamma u)-(\Gamma v)\| & =\max _{t \in[0,1]}|(\Gamma u)(t)-(\Gamma v)(t)| \\
& \leq \max _{t \in[0,1]}\left|\int_{0}^{1} G(t, s ; q)[f(s, u(s))-f(s, v(s))] d_{q} s\right| \\
& \leq L \max _{t \in[0,1]}\left|\int_{0}^{1} G(t, s ; q) d_{q} s\right|\|u-v\| \\
& \leq L G_{1}\|u-v\| .
\end{aligned}
$$

As $L<1 / G_{1}$, therefore Γ is a contraction. Thus, the conclusion of the theorem follows by the contraction mapping principle. This completes the proof.
Example 3.8. Consider

$$
\begin{align*}
D_{\frac{3}{4}}^{3} u(t) & =L\left(\cos t+\tan ^{-1} u\right), \quad 0 \leq t \leq 1, \tag{3.6}\\
u(0) & =0, \quad D_{\frac{3}{4}} u(0)=0, \quad u(1)=0 .
\end{align*}
$$

With $f(t, u)=L\left(\cos t+\tan ^{-1} u\right)$, we find that

$$
|f(t, u)-f(t, v)| \leq L\left|\tan ^{-1} u-\tan ^{-1} v\right| \leq L|u-v|
$$

and

$$
G_{1}=\left.\frac{q^{2}(1+q)}{\left(1+q+q^{2}\right)^{4}}\right|_{q=3 / 4}=\frac{64512}{1874161}
$$

Fixing $L<\frac{1}{G_{1}}=\frac{1874161}{64512}$, it follows by Theorem 3.7 that (3.6) has a unique solution.

Remark 3.9. In the limit as $q \rightarrow 1$, our results reduce to the ones for the classical third-order boundary-value problem

$$
\begin{gathered}
u^{\prime \prime \prime}(t)=f(t, u(t)) \quad t \in[0,1] \\
u(0)=0, \quad u^{\prime}(0)=0, \quad u(1)=0
\end{gathered}
$$

Acknowledgments. The author wants to thank anonymous referees for their useful comments.

References

[1] C. R. Adams; On the linear ordinary q-difference equation, Annals Math. 30 (1928), 195-205.
[2] M. H. Annaby, Z. S. Mansour; q-Taylor and interpolation series for Jackson q-difference operators, J. Math. Anal. Appl., 344 (2008), 472-483.
[3] G. Bangerezako; Variational q-calculus, J. Math. Anal. Appl. 289 (2004), 650-665.
[4] M. Altman, A fixed point theorem in Banach space. Bull. Polish acad. Sci. 5 (1957), 19-22.
[5] B. Ahmad, S. K. Ntouyas; Boundary value problems for q-difference inclusions, Abstr. Appl. Anal. Vol. 2011, Article ID 292860, 15 pages.
[6] R. D. Carmichael; The general theory of linear q-difference equations, American J. Math. 34 (1912), 147-168.
[7] A. Dobrogowska, A. Odzijewicz; Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math. 193 (2006), 319-346.
[8] T. Ernst; A new notation for q-calculus and a new q-Taylor formula, U.U.D.M. Report 1999:25, ISSN 1101-3591, Department of Mathematics, Uppsala University, 1999.
[9] R. Finkelstein, E. Marcus; Transformation theory of the q-oscillator, J. Math. Phys. $\mathbf{3 6}$ (1995), 2652-2672.
[10] R. Finkelstein; The q-Coulomb problem, J. Math. Phys. 37 (1996), 2628-2636.
[11] R. Floreanini, L. Vinet; Automorphisms of the q-oscillator algebra and basic orthogonal polynomials, Phys. Lett. A 180 (1993), 393-401.
[12] R. Floreanini, L. Vinet; Symmetries of the q-difference heat equation, Lett. Math. Phys. 32 (1994), 37-44.
[13] R. Floreanini, L. Vinet; Quantum symmetries of q-difference equations, J. Math. Phys. 36 (1995), 3134-3156.
[14] P. G. O. Freund, A. V. Zabrodin; The spectral problem for the q-Knizhnik-Zamolodchikov equation and continuous q-Jacobi polynomials, Comm. Math. Phys. 173 (1995), 17-42.
[15] G. Gasper, M. Rahman; Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[16] G. Gasper, M. Rahman; Some Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 13 (2007), 389-405.
[17] M. E. H. Ismail, P. Simeonov; q-difference operators for orthogonal polynomials, J. Computat. Appl. Math. 233 (2009), 749-761.
[18] G. N. Han, J. Zeng; On a q-sequence that generalizes the median Genocchi numbers, Ann. Sci. Math. Quebec 23 (1999), 63-72.
[19] F. H. Jackson; On q-difference equations, American J. Math. 32(1910), 305-314.
[20] M. Jaulent, I. Miodek; Nonlinear evolution equations associated with 'energy-dependent Schrodinger potentials', Lett. Math. Phys. 1 (1976), 243-250.
[21] V. Kac, P. Cheung; Quantum Calculus, Springer, New York, 2002.
[22] T. E. Mason; On properties of the solutions of linear q-difference equations with entire function coefficients, American J. Math. 37 (1915), 439-444.
[23] M. El-Shahed, H. A. Hassan; Positive solutions of q-difference equation, Proc. Amer. Math. Soc. 138 (2010), 1733-1738.

Bashir Ahmad
Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box
80203 , Jeddah 21589, Saudi Arabia
E-mail address: bashir_qau@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 39A05, 39A13.
 Key words and phrases. q-difference equations; boundary value problems;
 Leray-Schauder degree theory; fixed point theorems.
 (C) 2011 Texas State University - San Marcos.

 Submitted December 2, 2010. Published July 28, 2011.

