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EXISTENCE RESULTS FOR A P-LAPLACIAN PROBLEM WITH
COMPETING NONLINEARITIES AND NONLINEAR

BOUNDARY CONDITIONS

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

Abstract. By using the fibering method we study the existence of non-
negative solutions for a class of quasilinear elliptic problems in the presence of
competing subcritical nonlinearities.

1. Introduction

In this paper we study the problem

∆pu = a(x)|u|p−2u− b(x)|u|q−2u in Ω

|∇u|p−2 ∂u

∂ν
= λc(x)|u|p−2u on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with a sufficiently smooth boundary ∂Ω, ν
is the outward unit normal vector on ∂Ω, 1 < q < p < N , a(·), b(·) ∈ L∞(Ω)
with a(x) > θ > 0, b(x) > 0 a.e., c(x) ∈ L∞(∂Ω), with c(x) > 0 a.e. As usual,
∆pu = div(|∇u|p−2∇u) denotes the p-Laplacian operator.

When b ≡ 0, problem (1.1) appears naturally in the study of the Sobolev trace in-
equality. Since the embedding W 1,p(Ω) ⊆ Lp(Ω) is compact there exists a constant
λ1 such that

λ
1/p
1 ‖u‖Lp(∂Ω) ≤ ‖u‖W 1,p(Ω).

The functions at which equality holds; that is,

λ1 := inf
u∈W 1,p(Ω)\{0}

‖u‖p
W 1,p(Ω)

‖u‖p
Lp(∂Ω)

, (1.2)

are called extremals and are the solutions to the problem

∆pu = a(x)|u|p−2u in Ω

|∇u|p−2 ∂u

∂ν
= λ1c(x)|u|p−2u on ∂Ω,

(1.3)

For more details we refer the reader to [9].
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Problems of the form ∆pu = ±λ|u|p−2u + f(x, u) with Dirichlet boundary con-
ditions has been extensively studied, see for example [1, 6, 7, 10, 13]. Recently, this
problem with nonlinear boundary conditions has been considered in [3, 4, 12].

In this paper we employ Pohozaev’s fibering method in order to show that if
λ < λ1, then (1.1) admits a nonnegative solution. In the case λ = λ1, the fibering
method is no longer applicable, so we introduce the term εd(·)|u|s−2u in the equa-
tion, where ε > 0 and d(·) ∈ L∞(Ω), d(·) > 0 a.e., and examine the behavior of the
solutions uε as ε → 0. It turns out that ‖uε‖W 1,p(Ω) → +∞ and the energy of the
solutions diverges to −∞.

2. Main results

Our reference space is W 1,p(Ω) equipped with the norm ‖u‖p =
∫
Ω
[|∇u|p +

a(x)|u|p]dx, which is equivalent to its usual one. In what follows, σ(·) is the surface
measure on the boundary of Ω.

The energy functional associated with (1.1) is

Φλ(u) :=
1
p

∫
Ω

[|∇u|pdx+a(x)|u|p]dx−1
q

∫
Ω

b(x)|u|qdx−λ

p

∫
∂Ω

c(x)|u|pdσ(x). (2.1)

Following [9], let λ1 ∈ R be the first positive eigenvalue of (1.3), given by (1.2).

Theorem 2.1. Suppose that 1 < q < p < N and λ < λ1. Then (1.1) admits a
nonnegative solution.

Proof. We employ the fibering method introduced in [11], see also [2] and [8], in
order to prove the existence of a negative energy solution of (1.1). Writing u = rv,
r > 0 and v ∈ W 1,p(Ω), we have

Φλ(rv) =
rp

p

∫
Ω

|∇v|pdx +
rp

p

∫
Ω

a(x)|v|pdx− rq

q

∫
Ω

b(x)|v|qdx

− λrp

p

∫
∂Ω

c(x)|v|pdσ(x).
(2.2)

For u 6= 0 to be a critical point, it should hold ∂Φλ(rv)
∂r = 0, from which we obtain

rp−q

∫
Ω

|∇v|pdx + rp−q

∫
Ω

a(x)|v|pdx− λrp−q

∫
∂Ω

c(x)|v|pdσ(x)

=
∫

Ω

b(x)|v|qdx,

(2.3)

ensuring the existence of a unique r = r(v) > 0 satisfying (2.3). By the implicit
function theorem [14, Thm. 4.B], the function v → r(v) is continuously differen-
tiable for v 6= 0. Notice that

r(kv)kv = r(v)v for k > 0. (2.4)

In view of (2.2) and (2.3),

Φλ(r(v)v) =
(1
p
− 1

q

)
r(v)q

∫
Ω

b(x)|v|qdx < 0.

Consider the functional

H(u) :=
∫

Ω

|∇u|pdx +
∫

Ω

a(x)|u|pdx− λ

∫
∂Ω

c(x)|u|pdσ(x).
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By the way we chose λ, for u ∈ W 1,p(Ω), H(u) ≥ 0 (equality holds exactly when
u = 0). Define V = {v ∈ W 1,p(Ω) : H(v) = 1}. Evidently, (H ′(v), v) 6= 0 for v ∈ V .
In view of [2, Lemma 3.4], any conditional critical point of Φ̂λ(v) = Φλ(r(v)v)
subject to H(v) = 1, provides a critical point r(v)v of Φλ. Notice that V is
bounded. To see this, let ε > 0 be such that λ + ε < λ1. Then, for v ∈ V , by the
definition of λ1,

λ + ε <

∫
Ω
|∇v|p +

∫
Ω
a|v|p∫

∂Ω
c(x)|v|pdσ(x)

,

which implies that

1 =
∫

Ω

|∇v|p +
∫

Ω

a|v|p − λ

∫
∂Ω

c(x)|v|pdσ(x) > ε

∫
∂Ω

c(x)|v|pdσ(x).

Thus
∫

∂Ω
c(x)|v|pdσ(x), v ∈ V , is bounded. Consequently, V is a bounded set. Be-

cause of the embedding W 1,p(Ω) ↪→ Lq(Ω), (2.3) guarantees that r(V ) is bounded.
Consequently, I = {Φλ,µ(r(v)v) : v ∈ V } is a bounded interval in R with endpoints
a and b, a < b ≤ 0. We are now going to show that a ∈ I. To this end, let {vn}n∈N

be a sequence in V , with Φλ(r(vn)vn) → a. Without loss of generality, we may
assume that vn → v weakly in W 1,p(Ω). We may also assume that r(vn) → r ∈ R.
Thus r(vn)vn → rv weakly in W 1,p(Ω). Since Φλ(·) is weakly lower semicontinuous,

Φλ(rv) ≤ lim inf
n→∞

Φλ(r(vn)vn) = a, (2.5)

ensuring that rv 6= 0. Because of the compactness of the Sobolev and trace embed-
dings, r(vn)vn → rv strongly in Lq(Ω), Lp(∂Ω), respectively. Taking into account
the lower semicontinuity of the norm in (2.3), we have

rp−qH(v) ≤
∫

Ω

b(x)|v|qdx. (2.6)

Combining (2.3) and (2.6), we get r ≤ r(v). Our purpose is to prove equality. Let
us assume the contrary; that is r < r(v). We define F (y) = Φλ(yv), y ≥ 0. For
y ∈ [r, r(v)], we have

F ′(y) = yq−1
(
yp−qH(v)−

∫
Ω

b(x)|v|qdx
)
, (2.7)

which is negative everywhere, but at y = r(v). Thus F (y) decreases strictly in the
considered interval, giving

Φλ(r(v)v) < Φλ(rv) ≤ a, (2.8)

because of (2.5). Notice that for suitable k ≥ 1, kv ∈ V . Then, combining (2.4)
and (2.8), we obtain

Φλ(r(kv)kv) = Φλ(r(v)v) < Φλ(rv) ≤ a,

which is a contradiction. So, r = r(v), and necessarily Φλ(r(kv)kv) = a. This
means that kv is a conditional critical point of Φ̂λ(·) subject to H(v) = 1, and,
consequently, r(kv)kv = r(v)v is a critical point of Φλ(·). Since for a minimizer w,
|w| is also a minimizer, we may assume v ≥ 0, and r(v)v is a nontrivial nonnegative
solution of (1.1). �

In attempting to obtain the existence of a solution to problem (1.1) for λ = λ1,
following a similar procedure, we encounter an unsurpassable difficulty, due to the
fact that (2.3) does no longer guarantee the existence of a suitable r(v). In order to
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study this situation, we add an additional term in (1.1), with the problem taking
the following form

∆pu = a(x)|u|p−2u− b(x)|u|q−2u + εd(x)|u|s−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ1c(x)|u|p−2u on ∂Ω,

(2.9)

where, ε > 0, q < s < p∗, and d(·) ∈ L∞(Ω) with d(·) > 0 a.e. in Ω. The energy
functional is

Fλ1,ε(u) := Φλ1(u) +
ε

s
D(u), (2.10)

where
D(u) :=

∫
Ω

d(x)|u|sdx.

Theorem 2.2. Suppose that 1 < q < s < p∗, ε > 0 and d(·) ∈ L∞(Ω) with d(·) > 0
a.e. in Ω.Then problem (2.9) admits a nonnegative solution uε for every ε > 0.
Furthermore, Fλ1,ε(uε) → −∞ and ‖uε‖ → +∞ as ε → 0.

Proof. Following a similar reasoning, we obtain the counterpart of (2.3),

rp−q
[ ∫

Ω

|∇v|pdx +
∫

Ω

a(x)|v|pdx− λ1

∫
∂Ω

c(x)|v|pdσ(x)
]

+ εrs−q

∫
Ω

d(x)|v|sdx

=
∫

Ω

b(x)|v|qdx.

(2.11)

The function R(y) = Hyp−q + εDys−q − B, with H ≥ 0, D, B > 0, has a unique
root in (0,+∞), since it is strictly increasing, R(0) = −B and R(y) → +∞, for
y → +∞. Thus, for v ∈ W 1,p(Ω) there exists a unique positive rε(v) satisfying
(2.11). The so defined function v → rε(v) is once more continuously differentiable
for v 6= 0, by another application of the implicit function theorem. In addition, it is
easily checked that (2.4) remains true. We notice also that, due to (2.11), if v 6= 0,

Fλ1,ε(rε(v)v) =
(1
p
− 1

q

)
rε(v)pH(v) + ε

(1
s
− 1

q

)
rε(v)sD(v) < 0. (2.12)

We define next the positive functional (except at u = 0),

L(u) := H(u) + D(u). (2.13)

Consider the set
W = {v ∈ W 1,p(Ω) : L(v) = 1}.

Because of our hypothesis on d(·), (L′(v), v) > D(v) > 0 for v ∈ W . As usual, the
conditional critical points of F̂λ1,ε(v) = Fλ1,ε(rε(v)v) subject to L(v) = 1 provide
critical points rε(v)v of Fλ1 . We claim that W is bounded. Indeed, if not, there
would exist vn ∈ W,n ∈ N, such that ‖vn‖ → +∞. Let vn := tnun with tn > 0 and
‖un‖ = 1. Since un, n ∈ N, is bounded, by passing to a subsequence if necessary,
we may assume that un → u0 weakly in W 1,p(Ω) and strongly in Lp(c, ∂Ω) and
Ls(Ω). By (2.13),

tpn
[ ∫

Ω

|∇un|pdx +
∫

Ω

a(x)|un|pdx

− λ1

∫
∂Ω

c(x)|un|pdσ(x)
]
+ tsn

∫
Ω

d(x)|un|sdx = 1,



EJDE-2011/95 P-LAPLACIAN PROBLEM WITH COMPETING NONLINEARITIES 5

and so

0 ≤
∫

Ω

|∇un|pdx +
∫

Ω

a(x)|un|pdx− λ1

∫
∂Ω

c(x)|un|pdσ(x) ≤ 1
tpn
→ 0 (2.14)

and

0 <

∫
Ω

d(x)|un|sdx ≤ 1
tsn
→ 0. (2.15)

By (2.15), u0 = 0. On the other hand, since ‖un‖ = 1, (2.14) yields

λ1

∫
∂Ω

c(x)|u0|pdσ(x) = 1

and so u0 6= 0, a contradiction, thereby proving the claim. We can now continue
as in the previous case. Namely, we notice that by the way it was defined, rε(v)
is bounded on W (we use now the embedding W 1,p(Ω) ↪→ Lq(Ω)). Thus I ′ =
{Fλ1,ε(rε(v)v) : v ∈ W} is a bounded interval with endpoints a′ and b′, a′ < b′ ≤ 0.
Let {vn}n∈N be a sequence of W with Fλ1,ε(rε(vn)vn) → a′. We may assume that
vn → vε weakly in W 1,p(Ω), and rε(vn) → rε ∈ R. Thus rε(vn)vn → rεvε weakly
in W 1,p(Ω) , and consequently, at least for a subsequence, strongly in Ls(Ω). Since
Φλ1(·) is weakly lower semicontinuous, so is Fλ1,ε(·), and the obvious counterpart of
(2.5) ensures that rεvε 6= 0. Combining (2.11) with the lower semicontinuity of the
involved norms, the compactness of the Sobolev and trace embeddings W 1,p(Ω) ↪→
Lq(Ω), W 1,p(Ω) ↪→ Ls(Ω), and W 1,p(Ω) ↪→ Lp(∂Ω), respectively, we obtain

rp−q
ε H(vε) + rs−q

ε εD(vε) ≤
∫

Ω

b(x)|vε|qdx = B(vε). (2.16)

Evidently, (2.11) and (2.16) ensure that rε ≤ rε(vε). We are going to prove equality.
Assuming the contrary, the function G(y) = Fλ1,ε(yvε), y > 0, has its derivative

G′(y) = yq−1
(
yp−qH(vε) + ys−qεD(vε)−B(vε)

)
which is negative in [rε, rε(vε)] except at y = rε(vε), where it is zero. Thus G(y)
decreases strictly in the above interval, meaning

Fλ1,ε(rε(vε)vε) < Fλ1,ε(rεvε) ≤ a′, (2.17)

since Fλ1,ε(rεvε) ≤ lim infn→+∞ Fλ1,ε(rε(vn)vn) = a′. Next we choose a positive
k, such that kvε ∈ W . Since (2.4) holds, we arrive at an obvious contradiction.
Thus rε = rε(vε), and Fλ1,ε(rε(kvε)kvε) = a′, thus obtaining a conditional critical
point of F̂λ1,ε(·) subject to L(v) = 1, and, consequently, uε := rε(vε)vε is a critical
point of Fλ1,ε(·). Once more, we may assume vε ≥ 0, and so uε is a nontrivial
nonnegative solution of (2.9).

Next we study the behavior of the solutions uε = rε(vε)vε as ε → 0. Let ϕ1 > 0
be the eigenfunction of (1.3) corresponding to λ1, with L(ϕ1) = 1. By (2.11),

rε(ϕ1)s−q =

∫
Ω

b(x)|ϕ1|qdx

ε
∫
Ω

d(x)|ϕ1|sdx
, (2.18)

which implies that rε(ϕ1) → +∞ as ε → 0. In view of (2.12) and (2.11)

Fλ1,ε(rε(ϕ1)ϕ1) = ε
(1
s
− 1

q

)
rε(ϕ1)sD(ϕ1) =

(1
s
− 1

q

)
rε(ϕ1)q

∫
Ω

b(x)|ϕ1|qdx.

Since Fλ1,ε(rε(vε)vε) ≤ Fλ1,ε(rε(ϕ1)ϕ1), we conclude that

Fλ1,ε(uε) = Fλ1,ε(rε(vε)vε) → −∞
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as ε → 0. By (2.12) we also get that rε(vε) → +∞ as ε → 0. Let v̂ be a weak
accumulation point of vε; that is, v̂ = w− limn→+∞ vεn where εn → 0 as n → +∞.
Since L(vεn) = 1, necessarily

0 ≤
∫

Ω

|∇vεn |pdx +
∫

Ω

a(x)|vεn |pdx− λ1

∫
∂Ω

c(x)|vεn |pdσ(x) → 0.

Consequently, either v̂ = 0 or v̂ = γϕ1 for some γ 6= 0. We cannot have v̂ = 0, be-
cause then, since vεn ∈ W , we would get that

∫
Ω

d(x)|v̂|sdx = lim
∫
Ω

d(x)|vεn |sdx =
1. Therefore, v̂ = γϕ1 and so ‖uεn‖ = rεn(vεn)‖vεn‖ → +∞ as n → +∞. �
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