Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 95, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE RESULTS FOR A P-LAPLACIAN PROBLEM WITH COMPETING NONLINEARITIES AND NONLINEAR BOUNDARY CONDITIONS

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

Abstract

By using the fibering method we study the existence of nonnegative solutions for a class of quasilinear elliptic problems in the presence of competing subcritical nonlinearities.

1. Introduction

In this paper we study the problem

$$
\begin{gather*}
\Delta_{p} u=a(x)|u|^{p-2} u-b(x)|u|^{q-2} u \quad \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda c(x)|u|^{p-2} u \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with a sufficiently smooth boundary $\partial \Omega, \nu$ is the outward unit normal vector on $\partial \Omega, 1<q<p<N, a(\cdot), b(\cdot) \in L^{\infty}(\Omega)$ with $a(x)>\theta>0, b(x)>0$ a.e., $c(x) \in L^{\infty}(\partial \Omega)$, with $c(x)>0$ a.e. As usual, $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ denotes the p-Laplacian operator.

When $b \equiv 0$, problem (1.1) appears naturally in the study of the Sobolev trace inequality. Since the embedding $W^{1, p}(\Omega) \subseteq L^{p}(\Omega)$ is compact there exists a constant λ_{1} such that

$$
\lambda_{1}^{1 / p}\|u\|_{L^{p}(\partial \Omega)} \leq\|u\|_{W^{1, p}(\Omega)}
$$

The functions at which equality holds; that is,

$$
\begin{equation*}
\lambda_{1}:=\inf _{u \in W^{1, p}(\Omega) \backslash\{0\}} \frac{\|u\|_{W^{1, p}(\Omega)}^{p}}{\|u\|_{L^{p}(\partial \Omega)}^{p}}, \tag{1.2}
\end{equation*}
$$

are called extremals and are the solutions to the problem

$$
\begin{gather*}
\Delta_{p} u=a(x)|u|^{p-2} u \quad \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda_{1} c(x)|u|^{p-2} u \quad \text { on } \partial \Omega \tag{1.3}
\end{gather*}
$$

For more details we refer the reader to 9 .

[^0]Problems of the form $\Delta_{p} u= \pm \lambda|u|^{p-2} u+f(x, u)$ with Dirichlet boundary conditions has been extensively studied, see for example [1, 6, 7, 10, 13]. Recently, this problem with nonlinear boundary conditions has been considered in [3, 4, 12].

In this paper we employ Pohozaev's fibering method in order to show that if $\lambda<\lambda_{1}$, then (1.1) admits a nonnegative solution. In the case $\lambda=\lambda_{1}$, the fibering method is no longer applicable, so we introduce the term $\varepsilon d(\cdot)|u|^{s-2} u$ in the equation, where $\varepsilon>0$ and $d(\cdot) \in L^{\infty}(\Omega), d(\cdot)>0$ a.e., and examine the behavior of the solutions u_{ε} as $\varepsilon \rightarrow 0$. It turns out that $\left\|u_{\varepsilon}\right\|_{W^{1, p}(\Omega)} \rightarrow+\infty$ and the energy of the solutions diverges to $-\infty$.

2. Main Results

Our reference space is $W^{1, p}(\Omega)$ equipped with the norm $\|u\|^{p}=\int_{\Omega}\left[|\nabla u|^{p}+\right.$ $\left.a(x)|u|^{p}\right] d x$, which is equivalent to its usual one. In what follows, $\sigma(\cdot)$ is the surface measure on the boundary of Ω.

The energy functional associated with 1.1 is

$$
\begin{equation*}
\Phi_{\lambda}(u):=\frac{1}{p} \int_{\Omega}\left[|\nabla u|^{p} d x+a(x)|u|^{p}\right] d x-\frac{1}{q} \int_{\Omega} b(x)|u|^{q} d x-\frac{\lambda}{p} \int_{\partial \Omega} c(x)|u|^{p} d \sigma(x) \tag{2.1}
\end{equation*}
$$

Following [9, let $\lambda_{1} \in \mathbb{R}$ be the first positive eigenvalue of 1.3$)$, given by 1.2 .
Theorem 2.1. Suppose that $1<q<p<N$ and $\lambda<\lambda_{1}$. Then (1.1) admits a nonnegative solution.

Proof. We employ the fibering method introduced in [11], see also [2] and [8], in order to prove the existence of a negative energy solution of (1.1). Writing $u=r v$, $r>0$ and $v \in W^{1, p}(\Omega)$, we have

$$
\begin{align*}
\Phi_{\lambda}(r v)= & \frac{r^{p}}{p} \int_{\Omega}|\nabla v|^{p} d x+\frac{r^{p}}{p} \int_{\Omega} a(x)|v|^{p} d x-\frac{r^{q}}{q} \int_{\Omega} b(x)|v|^{q} d x \tag{2.2}\\
& -\frac{\lambda r^{p}}{p} \int_{\partial \Omega} c(x)|v|^{p} d \sigma(x)
\end{align*}
$$

For $u \neq 0$ to be a critical point, it should hold $\frac{\partial \Phi_{\lambda}(r v)}{\partial r}=0$, from which we obtain

$$
\begin{align*}
& r^{p-q} \int_{\Omega}|\nabla v|^{p} d x+r^{p-q} \int_{\Omega} a(x)|v|^{p} d x-\lambda r^{p-q} \int_{\partial \Omega} c(x)|v|^{p} d \sigma(x) \tag{2.3}\\
& =\int_{\Omega} b(x)|v|^{q} d x
\end{align*}
$$

ensuring the existence of a unique $r=r(v)>0$ satisfying (2.3). By the implicit function theorem [14, Thm. 4.B], the function $v \rightarrow r(v)$ is continuously differentiable for $v \neq 0$. Notice that

$$
\begin{equation*}
r(k v) k v=r(v) v \quad \text { for } k>0 . \tag{2.4}
\end{equation*}
$$

In view of 2.2 and 2.3 ,

$$
\Phi_{\lambda}(r(v) v)=\left(\frac{1}{p}-\frac{1}{q}\right) r(v)^{q} \int_{\Omega} b(x)|v|^{q} d x<0
$$

Consider the functional

$$
H(u):=\int_{\Omega}|\nabla u|^{p} d x+\int_{\Omega} a(x)|u|^{p} d x-\lambda \int_{\partial \Omega} c(x)|u|^{p} d \sigma(x)
$$

By the way we chose λ, for $u \in W^{1, p}(\Omega), H(u) \geq 0$ (equality holds exactly when $u=0)$. Define $V=\left\{v \in W^{1, p}(\Omega): H(v)=1\right\}$. Evidently, $\left(H^{\prime}(v), v\right) \neq 0$ for $v \in V$. In view of [2, Lemma 3.4], any conditional critical point of $\widehat{\Phi}_{\lambda}(v)=\Phi_{\lambda}(r(v) v)$ subject to $H(v)=1$, provides a critical point $r(v) v$ of Φ_{λ}. Notice that V is bounded. To see this, let $\varepsilon>0$ be such that $\lambda+\varepsilon<\lambda_{1}$. Then, for $v \in V$, by the definition of λ_{1},

$$
\lambda+\varepsilon<\frac{\int_{\Omega}|\nabla v|^{p}+\int_{\Omega} a|v|^{p}}{\int_{\partial \Omega} c(x)|v|^{p} d \sigma(x)}
$$

which implies that

$$
1=\int_{\Omega}|\nabla v|^{p}+\int_{\Omega} a|v|^{p}-\lambda \int_{\partial \Omega} c(x)|v|^{p} d \sigma(x)>\varepsilon \int_{\partial \Omega} c(x)|v|^{p} d \sigma(x)
$$

Thus $\int_{\partial \Omega} c(x)|v|^{p} d \sigma(x), v \in V$, is bounded. Consequently, V is a bounded set. Because of the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega), 2.3$ guarantees that $r(V)$ is bounded. Consequently, $I=\left\{\Phi_{\lambda, \mu}(r(v) v): v \in V\right\}$ is a bounded interval in \mathbb{R} with endpoints a and $b, a<b \leq 0$. We are now going to show that $a \in I$. To this end, let $\left\{v_{n}\right\}_{n \in \mathbf{N}}$ be a sequence in V, with $\Phi_{\lambda}\left(r\left(v_{n}\right) v_{n}\right) \rightarrow a$. Without loss of generality, we may assume that $v_{n} \rightarrow v$ weakly in $W^{1, p}(\Omega)$. We may also assume that $r\left(v_{n}\right) \rightarrow r \in \mathbb{R}$. Thus $r\left(v_{n}\right) v_{n} \rightarrow r v$ weakly in $W^{1, p}(\Omega)$. Since $\Phi_{\lambda}(\cdot)$ is weakly lower semicontinuous,

$$
\begin{equation*}
\Phi_{\lambda}(r v) \leq \liminf _{n \rightarrow \infty} \Phi_{\lambda}\left(r\left(v_{n}\right) v_{n}\right)=a \tag{2.5}
\end{equation*}
$$

ensuring that $r v \neq 0$. Because of the compactness of the Sobolev and trace embeddings, $r\left(v_{n}\right) v_{n} \rightarrow r v$ strongly in $L^{q}(\Omega), L^{p}(\partial \Omega)$, respectively. Taking into account the lower semicontinuity of the norm in 2.3$)$, we have

$$
\begin{equation*}
r^{p-q} H(v) \leq \int_{\Omega} b(x)|v|^{q} d x \tag{2.6}
\end{equation*}
$$

Combining (2.3) and (2.6), we get $r \leq r(v)$. Our purpose is to prove equality. Let us assume the contrary; that is $r<r(v)$. We define $F(y)=\Phi_{\lambda}(y v), y \geq 0$. For $y \in[r, r(v)]$, we have

$$
\begin{equation*}
F^{\prime}(y)=y^{q-1}\left(y^{p-q} H(v)-\int_{\Omega} b(x)|v|^{q} d x\right) \tag{2.7}
\end{equation*}
$$

which is negative everywhere, but at $y=r(v)$. Thus $F(y)$ decreases strictly in the considered interval, giving

$$
\begin{equation*}
\Phi_{\lambda}(r(v) v)<\Phi_{\lambda}(r v) \leq a \tag{2.8}
\end{equation*}
$$

because of 2.5. Notice that for suitable $k \geq 1, k v \in V$. Then, combining (2.4) and 2.8 , we obtain

$$
\Phi_{\lambda}(r(k v) k v)=\Phi_{\lambda}(r(v) v)<\Phi_{\lambda}(r v) \leq a,
$$

which is a contradiction. So, $r=r(v)$, and necessarily $\Phi_{\lambda}(r(k v) k v)=a$. This means that $k v$ is a conditional critical point of $\widehat{\Phi}_{\lambda}(\cdot)$ subject to $H(v)=1$, and, consequently, $r(k v) k v=r(v) v$ is a critical point of $\Phi_{\lambda}(\cdot)$. Since for a minimizer w, $|w|$ is also a minimizer, we may assume $v \geq 0$, and $r(v) v$ is a nontrivial nonnegative solution of (1.1).

In attempting to obtain the existence of a solution to problem 1.1 for $\lambda=\lambda_{1}$, following a similar procedure, we encounter an unsurpassable difficulty, due to the fact that (2.3) does no longer guarantee the existence of a suitable $r(v)$. In order to
study this situation, we add an additional term in 1.1, with the problem taking the following form

$$
\begin{gather*}
\Delta_{p} u=a(x)|u|^{p-2} u-b(x)|u|^{q-2} u+\varepsilon d(x)|u|^{s-2} u \quad \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda_{1} c(x)|u|^{p-2} u \quad \text { on } \partial \Omega \tag{2.9}
\end{gather*}
$$

where, $\varepsilon>0, q<s<p^{*}$, and $d(\cdot) \in L^{\infty}(\Omega)$ with $d(\cdot)>0$ a.e. in Ω. The energy functional is

$$
\begin{equation*}
F_{\lambda_{1}, \varepsilon}(u):=\Phi_{\lambda_{1}}(u)+\frac{\varepsilon}{s} D(u) \tag{2.10}
\end{equation*}
$$

where

$$
D(u):=\int_{\Omega} d(x)|u|^{s} d x
$$

Theorem 2.2. Suppose that $1<q<s<p^{*}, \varepsilon>0$ and $d(\cdot) \in L^{\infty}(\Omega)$ with $d(\cdot)>0$ a.e. in Ω. Then problem (2.9) admits a nonnegative solution u_{ε} for every $\varepsilon>0$. Furthermore, $F_{\lambda_{1}, \varepsilon}\left(u_{\varepsilon}\right) \rightarrow-\infty$ and $\left\|u_{\varepsilon}\right\| \rightarrow+\infty$ as $\varepsilon \rightarrow 0$.
Proof. Following a similar reasoning, we obtain the counterpart of (2.3),

$$
\begin{align*}
& r^{p-q}\left[\int_{\Omega}|\nabla v|^{p} d x+\int_{\Omega} a(x)|v|^{p} d x-\lambda_{1} \int_{\partial \Omega} c(x)|v|^{p} d \sigma(x)\right] \\
& +\varepsilon r^{s-q} \int_{\Omega} d(x)|v|^{s} d x \tag{2.11}\\
& =\int_{\Omega} b(x)|v|^{q} d x
\end{align*}
$$

The function $R(y)=H y^{p-q}+\varepsilon D y^{s-q}-B$, with $H \geq 0, D, B>0$, has a unique root in $(0,+\infty)$, since it is strictly increasing, $R(0)=-B$ and $R(y) \rightarrow+\infty$, for $y \rightarrow+\infty$. Thus, for $v \in W^{1, p}(\Omega)$ there exists a unique positive $r_{\varepsilon}(v)$ satisfying 2.11. The so defined function $v \rightarrow r_{\varepsilon}(v)$ is once more continuously differentiable for $v \neq 0$, by another application of the implicit function theorem. In addition, it is easily checked that 2.4 remains true. We notice also that, due to 2.11 , if $v \neq 0$,

$$
\begin{equation*}
F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}(v) v\right)=\left(\frac{1}{p}-\frac{1}{q}\right) r_{\varepsilon}(v)^{p} H(v)+\varepsilon\left(\frac{1}{s}-\frac{1}{q}\right) r_{\varepsilon}(v)^{s} D(v)<0 \tag{2.12}
\end{equation*}
$$

We define next the positive functional (except at $u=0$),

$$
\begin{equation*}
L(u):=H(u)+D(u) \tag{2.13}
\end{equation*}
$$

Consider the set

$$
W=\left\{v \in W^{1, p}(\Omega): L(v)=1\right\} .
$$

Because of our hypothesis on $d(\cdot),\left(L^{\prime}(v), v\right)>D(v)>0$ for $v \in W$. As usual, the conditional critical points of $\widehat{F}_{\lambda_{1}, \varepsilon}(v)=F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}(v) v\right)$ subject to $L(v)=1$ provide critical points $r_{\varepsilon}(v) v$ of $F_{\lambda_{1}}$. We claim that W is bounded. Indeed, if not, there would exist $v_{n} \in W, n \in \mathbb{N}$, such that $\left\|v_{n}\right\| \rightarrow+\infty$. Let $v_{n}:=t_{n} u_{n}$ with $t_{n}>0$ and $\left\|u_{n}\right\|=1$. Since $u_{n}, n \in \mathbb{N}$, is bounded, by passing to a subsequence if necessary, we may assume that $u_{n} \rightarrow u_{0}$ weakly in $W^{1, p}(\Omega)$ and strongly in $L^{p}(c, \partial \Omega)$ and $L^{s}(\Omega)$. By (2.13),

$$
\begin{aligned}
& t_{n}^{p}\left[\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x+\int_{\Omega} a(x)\left|u_{n}\right|^{p} d x\right. \\
& \left.-\lambda_{1} \int_{\partial \Omega} c(x)\left|u_{n}\right|^{p} d \sigma(x)\right]+t_{n}^{s} \int_{\Omega} d(x)\left|u_{n}\right|^{s} d x=1
\end{aligned}
$$

and so

$$
\begin{equation*}
0 \leq \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x+\int_{\Omega} a(x)\left|u_{n}\right|^{p} d x-\lambda_{1} \int_{\partial \Omega} c(x)\left|u_{n}\right|^{p} d \sigma(x) \leq \frac{1}{t_{n}^{p}} \rightarrow 0 \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\int_{\Omega} d(x)\left|u_{n}\right|^{s} d x \leq \frac{1}{t_{n}^{s}} \rightarrow 0 \tag{2.15}
\end{equation*}
$$

By (2.15), $u_{0}=0$. On the other hand, since $\left\|u_{n}\right\|=1$, 2.14) yields

$$
\lambda_{1} \int_{\partial \Omega} c(x)\left|u_{0}\right|^{p} d \sigma(x)=1
$$

and so $u_{0} \neq 0$, a contradiction, thereby proving the claim. We can now continue as in the previous case. Namely, we notice that by the way it was defined, $r_{\varepsilon}(v)$ is bounded on W (we use now the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$). Thus $I^{\prime}=$ $\left\{F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}(v) v\right): v \in W\right\}$ is a bounded interval with endpoints a^{\prime} and $b^{\prime}, a^{\prime}<b^{\prime} \leq 0$. Let $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of W with $F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(v_{n}\right) v_{n}\right) \rightarrow a^{\prime}$. We may assume that $v_{n} \rightarrow v_{\varepsilon}$ weakly in $W^{1, p}(\Omega)$, and $r_{\varepsilon}\left(v_{n}\right) \rightarrow r_{\varepsilon} \in \mathbb{R}$. Thus $r_{\varepsilon}\left(v_{n}\right) v_{n} \rightarrow r_{\varepsilon} v_{\varepsilon}$ weakly in $W^{1, p}(\Omega)$, and consequently, at least for a subsequence, strongly in $L^{s}(\Omega)$. Since $\Phi_{\lambda_{1}}(\cdot)$ is weakly lower semicontinuous, so is $F_{\lambda_{1}, \varepsilon}(\cdot)$, and the obvious counterpart of (2.5) ensures that $r_{\varepsilon} v_{\varepsilon} \neq 0$. Combining (2.11) with the lower semicontinuity of the involved norms, the compactness of the Sobolev and trace embeddings $W^{1, p}(\Omega) \hookrightarrow$ $L^{q}(\Omega), W^{1, p}(\Omega) \hookrightarrow L^{s}(\Omega)$, and $W^{1, p}(\Omega) \hookrightarrow L^{p}(\partial \Omega)$, respectively, we obtain

$$
\begin{equation*}
r_{\varepsilon}^{p-q} H\left(v_{\varepsilon}\right)+r_{\varepsilon}^{s-q} \varepsilon D\left(v_{\varepsilon}\right) \leq \int_{\Omega} b(x)\left|v_{\varepsilon}\right|^{q} d x=B\left(v_{\varepsilon}\right) \tag{2.16}
\end{equation*}
$$

Evidently, 2.11 and 2.16 ensure that $r_{\varepsilon} \leq r_{\varepsilon}\left(v_{\varepsilon}\right)$. We are going to prove equality. Assuming the contrary, the function $G(y)=F_{\lambda_{1}, \varepsilon}\left(y v_{\varepsilon}\right), y>0$, has its derivative

$$
G^{\prime}(y)=y^{q-1}\left(y^{p-q} H\left(v_{\varepsilon}\right)+y^{s-q} \varepsilon D\left(v_{\varepsilon}\right)-B\left(v_{\varepsilon}\right)\right)
$$

which is negative in $\left[r_{\varepsilon}, r_{\varepsilon}\left(v_{\varepsilon}\right)\right]$ except at $y=r_{\varepsilon}\left(v_{\varepsilon}\right)$, where it is zero. Thus $G(y)$ decreases strictly in the above interval, meaning

$$
\begin{equation*}
F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(v_{\varepsilon}\right) v_{\varepsilon}\right)<F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon} v_{\varepsilon}\right) \leq a^{\prime} \tag{2.17}
\end{equation*}
$$

since $F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon} v_{\varepsilon}\right) \leq \liminf _{n \rightarrow+\infty} F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(v_{n}\right) v_{n}\right)=a^{\prime}$. Next we choose a positive k, such that $k v_{\varepsilon} \in W$. Since (2.4) holds, we arrive at an obvious contradiction. Thus $r_{\varepsilon}=r_{\varepsilon}\left(v_{\varepsilon}\right)$, and $F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(k v_{\varepsilon}\right) k v_{\varepsilon}\right)=a^{\prime}$, thus obtaining a conditional critical point of $\widehat{F}_{\lambda_{1}, \varepsilon}(\cdot)$ subject to $L(v)=1$, and, consequently, $u_{\varepsilon}:=r_{\varepsilon}\left(v_{\varepsilon}\right) v_{\varepsilon}$ is a critical point of $F_{\lambda_{1}, \varepsilon}(\cdot)$. Once more, we may assume $v_{\varepsilon} \geq 0$, and so u_{ε} is a nontrivial nonnegative solution of 2.9 .

Next we study the behavior of the solutions $u_{\varepsilon}=r_{\varepsilon}\left(v_{\varepsilon}\right) v_{\varepsilon}$ as $\varepsilon \rightarrow 0$. Let $\varphi_{1}>0$ be the eigenfunction of (1.3) corresponding to λ_{1}, with $L\left(\varphi_{1}\right)=1$. By 2.11,

$$
\begin{equation*}
r_{\varepsilon}\left(\varphi_{1}\right)^{s-q}=\frac{\int_{\Omega} b(x)\left|\varphi_{1}\right|^{q} d x}{\varepsilon \int_{\Omega} d(x)\left|\varphi_{1}\right|^{s} d x} \tag{2.18}
\end{equation*}
$$

which implies that $r_{\varepsilon}\left(\varphi_{1}\right) \rightarrow+\infty$ as $\varepsilon \rightarrow 0$. In view of (2.12) and 2.11)

$$
F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(\varphi_{1}\right) \varphi_{1}\right)=\varepsilon\left(\frac{1}{s}-\frac{1}{q}\right) r_{\varepsilon}\left(\varphi_{1}\right)^{s} D\left(\varphi_{1}\right)=\left(\frac{1}{s}-\frac{1}{q}\right) r_{\varepsilon}\left(\varphi_{1}\right)^{q} \int_{\Omega} b(x)\left|\varphi_{1}\right|^{q} d x
$$

Since $F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(v_{\varepsilon}\right) v_{\varepsilon}\right) \leq F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(\varphi_{1}\right) \varphi_{1}\right)$, we conclude that

$$
F_{\lambda_{1}, \varepsilon}\left(u_{\varepsilon}\right)=F_{\lambda_{1}, \varepsilon}\left(r_{\varepsilon}\left(v_{\varepsilon}\right) v_{\varepsilon}\right) \rightarrow-\infty
$$

as $\varepsilon \rightarrow 0$. By 2.12 we also get that $r_{\varepsilon}\left(v_{\varepsilon}\right) \rightarrow+\infty$ as $\varepsilon \rightarrow 0$. Let \widehat{v} be a weak accumulation point of v_{ε}; that is, $\widehat{v}=w-\lim _{n \rightarrow+\infty} v_{\varepsilon_{n}}$ where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow+\infty$. Since $L\left(v_{\varepsilon_{n}}\right)=1$, necessarily

$$
0 \leq \int_{\Omega}\left|\nabla v_{\varepsilon_{n}}\right|^{p} d x+\int_{\Omega} a(x)\left|v_{\varepsilon_{n}}\right|^{p} d x-\lambda_{1} \int_{\partial \Omega} c(x)\left|v_{\varepsilon_{n}}\right|^{p} d \sigma(x) \rightarrow 0
$$

Consequently, either $\widehat{v}=0$ or $\widehat{v}=\gamma \varphi_{1}$ for some $\gamma \neq 0$. We cannot have $\widehat{v}=0$, because then, since $v_{\varepsilon_{n}} \in W$, we would get that $\int_{\Omega} d(x)|\widehat{v}|^{s} d x=\lim \int_{\Omega} d(x)\left|v_{\varepsilon_{n}}\right|^{s} d x=$ 1. Therefore, $\widehat{v}=\gamma \varphi_{1}$ and so $\left\|u_{\varepsilon_{n}}\right\|=r_{\varepsilon_{n}}\left(v_{\varepsilon_{n}}\right)\left\|v_{\varepsilon_{n}}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$.

References

[1] M. Chipot, M. Chlebik, M. Fila, and I. Shafrir; Existence of positive solutions of a semilinear elliptic equation in \mathbb{R}_{+}^{n} with a nonlinear boundary condition, J. Math. Anal. Appl. 223, no. 2 (1998) 429-471.
[2] P. Drábek and S. I. Pohozaev; Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 703-726.
[3] M. del Pino and C. Flores; Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Commun. in Partial Diff. Equations, 26(11\&12) (2001) 2189-2210.
[4] F. Faraci, A. Iannizzotto and C. Varga; Infinitely many bounded solutions for the p-Laplacian with nonlinear boundary conditions, Monatsh. Math. (to appear).
[5] J. Fernandez Bonder; Multiple solutions for the p-Laplace equation with nonlinear boundary conditions, Electron. J. Differential Equations 2006 no. 37 (2006) 1-7.
[6] J. P. Garcia Azorero and I. Peral Alonso; Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, Commun. in Partial Diff. Equations, 12(12) (1987) 1389-1430.
[7] B. Hu; Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations 7, no. 2 (1994) 301-313.
[8] D. A. Kandilakis and A. N. Lyberopoulos; Indefinite quasilinear elliptic problems with subcritical and supercritical nonlinearities on unbounded domains, J. Differential Equations 230 (2006) 337-361.
[9] S. Martinez and J. D. Rossi; Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition, Abstr. Appl. Anal. 7, no. 5 (2002) 287-293.
[10] M. Mihailescu; Existence and multiplicity of weak solutions for a class of degenerate nonlinear elliptic equations, Boundary Value Problems, Article ID 41295 (2006) 1-17.
[11] S. I. Pohozaev; The fibering method in nonlinear variational problems, in Topological and Variational Methods for Nonlinear Boundary Value Problems, Pitman Res. Notes Math. Ser., vol. 365, Longman, Harlow, 1997, pp. 35-88.
[12] X. Song, W. Wang and P. Zhao; Positive solutions of elliptic equations with nonlinear boundary conditions, Nonlinear Analysis 70 (2009) 328-334.
[13] S. Terraccini; Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations 8, no. 8 (1995) 1911-1922.
[14] E. Zeidler; Nonlinear Functional Analysis and its Applications, Vol. I. (New York: SpringerVerlag, 1986).

Dimitrios A. Kandilakis
Department of Sciences, Technical University of Crete, 73100 Chania, Greece
E-mail address: dkan@science.tuc.gr
Manolis Magiropoulos
Department of Sciences, Technological Educational Institute of Crete, 71500 Heraklion, Greece

E-mail address: mageir@staff.teicrete.gr

[^0]: 2000 Mathematics Subject Classification. 35J60, 35J92, 35J25.
 Key words and phrases. Quasilinear elliptic problems; subcritical nonlinearities; fibering method.
 (C) 2011 Texas State University - San Marcos.

 Submitted July 14, 2010. Published July 28, 2011.

