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EXISTENCE RESULTS FOR A P-LAPLACIAN PROBLEM WITH
COMPETING NONLINEARITIES AND NONLINEAR
BOUNDARY CONDITIONS

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

ABSTRACT. By using the fibering method we study the existence of non-
negative solutions for a class of quasilinear elliptic problems in the presence of
competing subcritical nonlinearities.

1. INTRODUCTION

In this paper we study the problem
Apu = a(2)|uP2u — b(z)|u|?*u  in Q

Ou (1.1)
_— = p—2
£y Ac(z)|ulP~“u  on 09,

where € is a bounded domain in RY with a sufficiently smooth boundary 0%, v
is the outward unit normal vector on 99, 1 < ¢ < p < N, a(-), b(-) € L>=()
with a(z) > 6 > 0, b(z) > 0 a.e., c(x) € L®(9N), with c(x) > 0 a.e. As usual,
Apu = div(]Vu|P~2Vu) denotes the p-Laplacian operator.

When b = 0, problem appears naturally in the study of the Sobolev trace in-
equality. Since the embedding WP(Q2) C LP(1Q) is compact there exists a constant
A1 such that

[VulP~?

APl Loony < llullwie -
The functions at which equality holds; that is,

||UH€VLP(Q)
A= in ) (1.2)
ueWbr(Q)\{0} Hu”LP(aQ)
are called extremals and are the solutions to the problem
Apu = a(z)|uP"?u in Q
(1.3)

|V“|p72? = Aic(x)|uP"%u  on 09,
v

For more details we refer the reader to [9].

2000 Mathematics Subject Classification. 35J60, 35J92, 35J25.

Key words and phrases. Quasilinear elliptic problems; subcritical nonlinearities;
fibering method.

(©2011 Texas State University - San Marcos.

Submitted July 14, 2010. Published July 28, 2011.

1



2 D. A. KANDILAKIS, M. MAGIROPOULOS EJDE-2011/95

Problems of the form A,u = £A|u[P"2u + f(z,u) with Dirichlet boundary con-
ditions has been extensively studied, see for example [I} [6] [7, 10, T3]. Recently, this
problem with nonlinear boundary conditions has been considered in [3] 4, [T2].

In this paper we employ Pohozaev’s fibering method in order to show that if
A < A1, then admits a nonnegative solution. In the case A = A1, the fibering
method is no longer applicable, so we introduce the term ed(-)|u|*~2u in the equa-
tion, where € > 0 and d(-) € L>(Q),d(-) > 0 a.e., and examine the behavior of the
solutions u. as € — 0. It turns out that |uc|w1.r() — +00 and the energy of the
solutions diverges to —oo.

2. MAIN RESULTS

Our reference space is WP(Q) equipped with the norm [ju||P = [,[|VulP +
a(x)|ulP]dz, which is equivalent to its usual one. In what follows, o(-) is the surface
measure on the boundary of €.

The energy functional associated with is

! p ”a:—1 sr:uqa:—é c(z)|ulPdo(x
B (u) :=5/Q[|Vu| d-+a(z)ul?)d q/ﬂb( )Jultd p/w (@)|ulPdo(z). (2.1)

Following [9], let A\; € R be the first positive eigenvalue of (1.3)), given by ([1.2)).

Theorem 2.1. Suppose that 1 < g < p < N and A < A\;. Then (1.1) admits a
nonnegative solution.

Proof. We employ the fibering method introduced in [I1], see also [2] and [§], in
order to prove the existence of a negative energy solution of (1.1f). Writing u = rv,
r >0 and v € WHP(Q), we have

P TP rd
B (rv) = 7/ \Vv|pdac—|——/ a(a:)|v|pda:——/ b()|v|7dz
P Ja P Ja qa Jao

(2.2)
ArP
A c(x)|v|Pdo(x).
P Jaa
For u # 0 to be a critical point, it should hold a(}%ig_w) = 0, from which we obtain
r”_q/ [VolPdz + rp_q/ a(z)|v|Pdx — )\rp_q/ c(x)|v|Pdo(x)

= [ s

ensuring the existence of a unique r = r(v) > 0 satisfying (2.3)). By the implicit
function theorem [I4, Thm. 4.B], the function v — r(v) is continuously differen-
tiable for v # 0. Notice that

r(kv)kv = r(v)v for k > 0. (2.4)
In view of and ,

Dx(r(v)v) = (

1 a Uy
5)7‘(1}) /Qb(x)|v| dx < 0.

D=

Consider the functional

H(u) ::/Q\Vu|pdﬂc—|-/Qa(ac)|u|pal:1:—)\/(9Q c(x)|ulPdo(z).
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By the way we chose \, for u € W1P(Q), H(u) > 0 (equality holds exactly when
u = 0). Define V = {v € WHP(Q) : H(v) = 1}. Evidently, (H'(v),v) # 0forv € V.
In view of [2, Lemma 3.4], any conditional critical point of ®y(v) = ®,(r(v)v)
subject to H(v) = 1, provides a critical point r(v)v of ®,. Notice that V is
bounded. To see this, let € > 0 be such that A + ¢ < A;. Then, for v € V, by the
definition of Ay,

JoIVol? + [alv]?

fag )|v|Pdo(x) ’

Ade<

which implies that

1—/|wp+/a|v|p /\/ 2)oPdo(z )>e[99¢(x)\u|pda(x).

Thus faﬂc x)|v|Pdo(x), v € V, is bounded. Consequently, V' is a bounded set. Be-
cause of the embedding W1?(Q) — LI(Q), guarantees that (V') is bounded.
Consequently, I = {®) ,(r(v)v) : v € V'} is a bounded interval in R with endpoints
a and b, a < b < 0. We are now going to show that a € I. To this end, let {v, }nen
be a sequence in V, with ®)(r(v,)v,) — a. Without loss of generality, we may
assume that v, — v weakly in WP(Q2). We may also assume that 7(v,) — r € R.
Thus r(vy, )v, — rv weakly in WHP(Q). Since ®,(+) is weakly lower semicontinuous,

D) (rv) < liminf @y (r(vy)v,) = a, (2.5)
n—oo

ensuring that rv # 0. Because of the compactness of the Sobolev and trace embed-
dings, (v, )v, — rv strongly in LI(Q2), LP(0N), respectively. Taking into account
the lower semicontinuity of the norm in (2.3]), we have

rP=9H (v) S/Qb(;c)|v|qu. (2.6)

Combining (2.3 and (2.6)), we get » < r(v). Our purpose is to prove equality. Let
us assume the contrary; that is r < r(v). We define F(y) = ®5(yv), y > 0. For
y € [r, r(v)], we have

) =y (1) = [ Hololtd), (27)

which is negative everywhere, but at y = r(v). Thus F(y) decreases strictly in the
considered interval, giving

D)\ (r(v)v) < Pa(rv) < a, (2.8)

because of (2.5)). Notice that for suitable k& > 1, kv € V. Then, combining (2.4))
and (2.8]), we obtain

D) (r(kv)kv) = ®p(r(v)v) < Px(rv) < a,
which is a contradiction. So, r = r(v), and necessarily ®(r(kv)kv) = a. This
means that kv is a conditional critical point of ®,(-) subject to H(v) = 1, and,
consequently, r(kv)kv = r(v)v is a critical point of ®,(-). Since for a minimizer w,

|w| is also a minimizer, we may assume v > 0, and 7(v)v is a nontrivial nonnegative

solution of (1.1)). d

In attempting to obtain the existence of a solution to problem (1.1]) for A = Ay,
following a similar procedure, we encounter an unsurpassable difficulty, due to the
fact that (2.3) does no longer guarantee the existence of a suitable r(v). In order to
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study this situation, we add an additional term in (1.1]), with the problem taking
the following form
Apu = a(2)|uP2u — b(z)|u|? *u + ed(x)|u*u in Q,
(2.9)
|Vu|p72? = \ic(z)|ulP"2u  on 99,
v

where, € > 0, ¢ < s < p*, and d(-) € L>°(Q) with d(-) > 0 a.e. in Q. The energy
functional is .

Fkl,&(u) = (I))\l (u) + ;D(U), (210)
where

D(u) := /Qd(:c)|u|sdx.

Theorem 2.2. Suppose that 1 < ¢ < s < p*, e >0 and d(-) € L= (Q) with d(-) > 0
a.e. in Q.Then problem (2.9) admits a nonnegative solution u. for every ¢ > 0.
Furthermore, Fy, c(us) — —00 and ||uc|| — 400 as e — 0.

Proof. Following a similar reasoning, we obtain the counterpart of (2.3)),
7"”_"[/ [Vo[Pdx +/ a(z)|v|Pdz — Al/ e(x)|v[Pdo ()]
Q@ Q E19)
67"5_‘1/ d(x)|v|*dx (2.11)

/ b(x)|v|?dx.

The function R(y) = Hy?P~9 4+ eDy*~9 — B, with H > 0, D, B > 0, has a unique
root in (0,+00), since it is strictly increasing, R(0) = —B and R(y) — +o0, for
y — +o00. Thus, for v € W1P(Q) there exists a unique positive r.(v) satisfying
(2.11). The so defined function v — r.(v) is once more continuously differentiable
for v # 0, by another application of the implicit function theorem. In addition, it is
easily checked that remains true. We notice also that, due to 7 ifv#£0,

1 1 1 1

Fy, c(re(v)v) = (]; — g)rg(v)pH(v) + E(; — a)rg(v)sD(v) < 0. (2.12)
We define next the positive functional (except at u = 0),
L(u) :== H(u) + D(u). (2.13)

Consider the set
W={veWw"?(Q): L(v) =1}.

Because of our hypothesis on d(-), (L'(v),v) > D(v) > 0 for v € W. As usual, the
conditional critical points of 13)\1,5(1)) = F), «(r-(v)v) subject to L(v) = 1 provide
critical points r.(v)v of Fy,. We claim that W is bounded. Indeed, if not, there
would exist v, € W,n € N, such that ||v,|| — +o0. Let v, := t,u, with ¢, > 0 and
|lun]| = 1. Since u,, n € N, is bounded, by passing to a subsequence if necessary,
we may assume that u, — ug weakly in W1P(Q) and strongly in LP(c,dQ) and

). By G139
] / Vi |Pdz + / o) un|Pda
Q Q

-\ /em c(z)|un|Pdo(z)] + tf“b/ﬂd(x)|un|sdx _1,
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and so
1
0 g/ \Vun|pdx+/ a()|un | — )\1/ (@) funlPdo(a) < & -0 (2.14)
Q Q o0 tn

and )
0< / d(z)|u,|*dx < . 0. (2.15)
Q

n

By (2.15)), up = 0. On the other hand, since |u,|| = 1, (2.14) yields
M / o(@)|uo|Pdo () = 1
o0

and so uy # 0, a contradiction, thereby proving the claim. We can now continue
as in the previous case. Namely, we notice that by the way it was defined, r.(v)
is bounded on W (we use now the embedding WP(Q) — L%(Q)). Thus I’ =
{Fx, e(r-(v)v) : v € W} is a bounded interval with endpoints o’ and ¥, ' < b’ < 0.
Let {v, }nen be a sequence of W with Fy, o(re(vy,)v,) — o/. We may assume that
vp, — ve weakly in WHP(Q), and r.(v,) — 7. € R. Thus re(v,)v, — 7.0v. weakly
in WhP(€) , and consequently, at least for a subsequence, strongly in L*(£2). Since
®,, (+) is weakly lower semicontinuous, so is Fy, .(-), and the obvious counterpart of
([2.5)) ensures that r.v. # 0. Combining with the lower semicontinuity of the
involved norms, the compactness of the Sobolev and trace embeddings WP () —
Li(Q), WhP(Q) — L3(Q), and WHP(Q) — LP(99), respectively, we obtain

P79 H (ve) + 79D (ve) < /Qb(a:)|v€\qu = B(v.). (2.16)

Evidently, (2.11]) and (2.16)) ensure that r. < r.(v.). We are going to prove equality.
Assuming the contrary, the function G(y) = Fi, «(yve), y > 0, has its derivative

G'(y) = y" ' (y* " H (ve) +y* %eD(ve) — B(v:))

which is negative in [re, rc(ve)] except at y = r-(ve), where it is zero. Thus G(y)
decreases strictly in the above interval, meaning

Fy, c(re(ve)ve) < Fy, c(reve) < d (2.17)
since Fy, e(reve) < liminf, 4o F), c(re(vn)v,) = a’. Next we choose a positive
k, such that kv. € W. Since (2.4) holds, we arrive at an obvious contradiction.
Thus re = 7-(ve), and Fi, o(re(kv:)kv:.) = o, thus obtaining a conditional critical
point of Fy, () subject to L(v) = 1, and, consequently, u. := r.(ve)v, is a critical
point of Fy, ¢(-). Once more, we may assume v. > 0, and so u. is a nontrivial
nonnegative solution of ([2.9).

Next we study the behavior of the solutions u, = 7"5(115)11E ab € —0. Let o1 >0
be the eigenfunction of ([1.3)) corresponding to A\, with L(p;) = 1. By (2.11] -,
_ w1|%dz
re(p1)° 1 = —fQ il E
e fod(z)|e1]Pdn’
which implies that r-(¢1) — 400 as € — 0. In view of ( and (2.11)
11 . 11
Fy e(r(p1)pr) = (= = =)re(@1)"Dlg1) = (= - *)Te(sﬂl)q/ b(z)|p1| dz.
s q s q Q
Since Fy, o(re(ve)ve) < Fi, o(re(¢1)91), we conclude that

(2.18)

F)\175(u5) = Fkl,s(re(ve)ve) — —00
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as ¢ — 0. By (2.12) we also get that r.(ve) — +o00 as ¢ — 0. Let ¥ be a weak
accumulation point of v.; that is, ¥ = w — lim, .1 o, v, where €, — 0 as n — +oc.
Since L(ve, ) = 1, necessarily

0 S/ \van|pdx+/ a(x)|ve, [Pdx — )\1/ c(z)|ve, |Pdo(z) — 0.
Q Q 89

Consequently, either ¥ = 0 or ¥ = y¢; for some v # 0. We cannot have v = 0, be-

cause then, since ve,, € W, we would get that [, d(z)[0]*dz = lim [, d(z)|v, |*dz =
1. Therefore, ¥ = y¢1 and so ||ue, || = ¢, (ve, )||ve, || = +00 as n — +o0. O
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