Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 95, pp. 1–6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE RESULTS FOR A P-LAPLACIAN PROBLEM WITH COMPETING NONLINEARITIES AND NONLINEAR BOUNDARY CONDITIONS

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

ABSTRACT. By using the fibering method we study the existence of nonnegative solutions for a class of quasilinear elliptic problems in the presence of competing subcritical nonlinearities.

1. INTRODUCTION

In this paper we study the problem

$$\Delta_p u = a(x)|u|^{p-2}u - b(x)|u|^{q-2}u \quad \text{in } \Omega$$

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \lambda c(x)|u|^{p-2}u \quad \text{on } \partial\Omega,$$

(1.1)

where Ω is a bounded domain in \mathbb{R}^N with a sufficiently smooth boundary $\partial\Omega$, ν is the outward unit normal vector on $\partial\Omega$, 1 < q < p < N, $a(\cdot)$, $b(\cdot) \in L^{\infty}(\Omega)$ with $a(x) > \theta > 0$, b(x) > 0 a.e., $c(x) \in L^{\infty}(\partial\Omega)$, with c(x) > 0 a.e. As usual, $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ denotes the *p*-Laplacian operator.

When $b \equiv 0$, problem (1.1) appears naturally in the study of the Sobolev trace inequality. Since the embedding $W^{1,p}(\Omega) \subseteq L^p(\Omega)$ is compact there exists a constant λ_1 such that

$$\lambda_1^{1/p} \|u\|_{L^p(\partial\Omega)} \le \|u\|_{W^{1,p}(\Omega)}.$$

The functions at which equality holds; that is,

$$\lambda_1 := \inf_{u \in W^{1,p}(\Omega) \setminus \{0\}} \frac{\|u\|_{W^{1,p}(\Omega)}^p}{\|u\|_{L^p(\partial\Omega)}^p},\tag{1.2}$$

are called extremals and are the solutions to the problem

$$\Delta_p u = a(x)|u|^{p-2}u \quad \text{in } \Omega$$

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \lambda_1 c(x)|u|^{p-2}u \quad \text{on } \partial\Omega,$$

(1.3)

For more details we refer the reader to [9].

²⁰⁰⁰ Mathematics Subject Classification. 35J60, 35J92, 35J25.

Key words and phrases. Quasilinear elliptic problems; subcritical nonlinearities; fibering method.

^{©2011} Texas State University - San Marcos.

Submitted July 14, 2010. Published July 28, 2011.

Problems of the form $\Delta_p u = \pm \lambda |u|^{p-2}u + f(x, u)$ with Dirichlet boundary conditions has been extensively studied, see for example [1, 6, 7, 10, 13]. Recently, this problem with nonlinear boundary conditions has been considered in [3, 4, 12].

In this paper we employ Pohozaev's fibering method in order to show that if $\lambda < \lambda_1$, then (1.1) admits a nonnegative solution. In the case $\lambda = \lambda_1$, the fibering method is no longer applicable, so we introduce the term $\varepsilon d(\cdot)|u|^{s-2}u$ in the equation, where $\varepsilon > 0$ and $d(\cdot) \in L^{\infty}(\Omega), d(\cdot) > 0$ a.e., and examine the behavior of the solutions u_{ε} as $\varepsilon \to 0$. It turns out that $||u_{\varepsilon}||_{W^{1,p}(\Omega)} \to +\infty$ and the energy of the solutions diverges to $-\infty$.

2. Main results

Our reference space is $W^{1,p}(\Omega)$ equipped with the norm $||u||^p = \int_{\Omega} ||\nabla u|^p + a(x)|u|^p dx$, which is equivalent to its usual one. In what follows, $\sigma(\cdot)$ is the surface measure on the boundary of Ω .

The energy functional associated with (1.1) is

$$\Phi_{\lambda}(u) := \frac{1}{p} \int_{\Omega} [|\nabla u|^p dx + a(x)|u|^p] dx - \frac{1}{q} \int_{\Omega} b(x)|u|^q dx - \frac{\lambda}{p} \int_{\partial\Omega} c(x)|u|^p d\sigma(x).$$
(2.1)

Following [9], let $\lambda_1 \in \mathbb{R}$ be the first positive eigenvalue of (1.3), given by (1.2).

Theorem 2.1. Suppose that 1 < q < p < N and $\lambda < \lambda_1$. Then (1.1) admits a nonnegative solution.

Proof. We employ the fibering method introduced in [11], see also [2] and [8], in order to prove the existence of a negative energy solution of (1.1). Writing u = rv, r > 0 and $v \in W^{1,p}(\Omega)$, we have

$$\Phi_{\lambda}(rv) = \frac{r^p}{p} \int_{\Omega} |\nabla v|^p dx + \frac{r^p}{p} \int_{\Omega} a(x)|v|^p dx - \frac{r^q}{q} \int_{\Omega} b(x)|v|^q dx - \frac{\lambda r^p}{p} \int_{\partial\Omega} c(x)|v|^p d\sigma(x).$$

$$(2.2)$$

For $u \neq 0$ to be a critical point, it should hold $\frac{\partial \Phi_{\lambda}(rv)}{\partial r} = 0$, from which we obtain

$$r^{p-q} \int_{\Omega} |\nabla v|^{p} dx + r^{p-q} \int_{\Omega} a(x) |v|^{p} dx - \lambda r^{p-q} \int_{\partial \Omega} c(x) |v|^{p} d\sigma(x)$$

=
$$\int_{\Omega} b(x) |v|^{q} dx,$$
 (2.3)

ensuring the existence of a unique r = r(v) > 0 satisfying (2.3). By the implicit function theorem [14, Thm. 4.B], the function $v \to r(v)$ is continuously differentiable for $v \neq 0$. Notice that

$$r(kv)kv = r(v)v \quad \text{for } k > 0.$$
(2.4)

In view of (2.2) and (2.3),

$$\Phi_{\lambda}(r(v)v) = \left(\frac{1}{p} - \frac{1}{q}\right)r(v)^{q}\int_{\Omega}b(x)|v|^{q}dx < 0.$$

Consider the functional

$$H(u) := \int_{\Omega} |\nabla u|^p dx + \int_{\Omega} a(x) |u|^p dx - \lambda \int_{\partial \Omega} c(x) |u|^p d\sigma(x)$$

EJDE-2011/95

By the way we chose λ , for $u \in W^{1,p}(\Omega)$, $H(u) \geq 0$ (equality holds exactly when u = 0). Define $V = \{v \in W^{1,p}(\Omega) : H(v) = 1\}$. Evidently, $(H'(v), v) \neq 0$ for $v \in V$. In view of [2, Lemma 3.4], any conditional critical point of $\widehat{\Phi}_{\lambda}(v) = \Phi_{\lambda}(r(v)v)$ subject to H(v) = 1, provides a critical point r(v)v of Φ_{λ} . Notice that V is bounded. To see this, let $\varepsilon > 0$ be such that $\lambda + \varepsilon < \lambda_1$. Then, for $v \in V$, by the definition of λ_1 ,

$$\lambda + \varepsilon < \frac{\int_{\Omega} |\nabla v|^p + \int_{\Omega} a |v|^p}{\int_{\partial \Omega} c(x) |v|^p d\sigma(x)},$$

which implies that

$$1 = \int_{\Omega} |\nabla v|^p + \int_{\Omega} a |v|^p - \lambda \int_{\partial \Omega} c(x) |v|^p d\sigma(x) > \varepsilon \int_{\partial \Omega} c(x) |v|^p d\sigma(x).$$

Thus $\int_{\partial\Omega} c(x)|v|^p d\sigma(x), v \in V$, is bounded. Consequently, V is a bounded set. Because of the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$, (2.3) guarantees that r(V) is bounded. Consequently, $I = \{\Phi_{\lambda,\mu}(r(v)v) : v \in V\}$ is a bounded interval in \mathbb{R} with endpoints a and $b, a < b \leq 0$. We are now going to show that $a \in I$. To this end, let $\{v_n\}_{n \in \mathbb{N}}$ be a sequence in V, with $\Phi_{\lambda}(r(v_n)v_n) \to a$. Without loss of generality, we may assume that $v_n \to v$ weakly in $W^{1,p}(\Omega)$. We may also assume that $r(v_n) \to r \in \mathbb{R}$. Thus $r(v_n)v_n \to rv$ weakly in $W^{1,p}(\Omega)$. Since $\Phi_{\lambda}(\cdot)$ is weakly lower semicontinuous,

$$\Phi_{\lambda}(rv) \le \liminf_{n \to \infty} \Phi_{\lambda}(r(v_n)v_n) = a, \tag{2.5}$$

ensuring that $rv \neq 0$. Because of the compactness of the Sobolev and trace embeddings, $r(v_n)v_n \to rv$ strongly in $L^q(\Omega)$, $L^p(\partial\Omega)$, respectively. Taking into account the lower semicontinuity of the norm in (2.3), we have

$$r^{p-q}H(v) \le \int_{\Omega} b(x)|v|^q dx.$$
(2.6)

Combining (2.3) and (2.6), we get $r \leq r(v)$. Our purpose is to prove equality. Let us assume the contrary; that is r < r(v). We define $F(y) = \Phi_{\lambda}(yv), y \geq 0$. For $y \in [r, r(v)]$, we have

$$F'(y) = y^{q-1} \Big(y^{p-q} H(v) - \int_{\Omega} b(x) |v|^q dx \Big),$$
(2.7)

which is negative everywhere, but at y = r(v). Thus F(y) decreases strictly in the considered interval, giving

$$\Phi_{\lambda}(r(v)v) < \Phi_{\lambda}(rv) \le a, \tag{2.8}$$

because of (2.5). Notice that for suitable $k \ge 1$, $kv \in V$. Then, combining (2.4) and (2.8), we obtain

$$\Phi_{\lambda}(r(kv)kv) = \Phi_{\lambda}(r(v)v) < \Phi_{\lambda}(rv) \le a,$$

which is a contradiction. So, r = r(v), and necessarily $\Phi_{\lambda}(r(kv)kv) = a$. This means that kv is a conditional critical point of $\widehat{\Phi}_{\lambda}(\cdot)$ subject to H(v) = 1, and, consequently, r(kv)kv = r(v)v is a critical point of $\Phi_{\lambda}(\cdot)$. Since for a minimizer w, |w| is also a minimizer, we may assume $v \ge 0$, and r(v)v is a nontrivial nonnegative solution of (1.1).

In attempting to obtain the existence of a solution to problem (1.1) for $\lambda = \lambda_1$, following a similar procedure, we encounter an unsurpassable difficulty, due to the fact that (2.3) does no longer guarantee the existence of a suitable r(v). In order to

study this situation, we add an additional term in (1.1), with the problem taking the following form

$$\Delta_p u = a(x)|u|^{p-2}u - b(x)|u|^{q-2}u + \varepsilon d(x)|u|^{s-2}u \quad \text{in } \Omega,$$

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \lambda_1 c(x)|u|^{p-2}u \quad \text{on } \partial\Omega,$$

(2.9)

where, $\varepsilon > 0$, $q < s < p^*$, and $d(\cdot) \in L^{\infty}(\Omega)$ with $d(\cdot) > 0$ a.e. in Ω . The energy functional is

$$F_{\lambda_1,\varepsilon}(u) := \Phi_{\lambda_1}(u) + \frac{\varepsilon}{s} D(u), \qquad (2.10)$$

where

$$D(u) := \int_{\Omega} d(x) |u|^s dx.$$

Theorem 2.2. Suppose that $1 < q < s < p^*$, $\varepsilon > 0$ and $d(\cdot) \in L^{\infty}(\Omega)$ with $d(\cdot) > 0$ a.e. in Ω . Then problem (2.9) admits a nonnegative solution u_{ε} for every $\varepsilon > 0$. Furthermore, $F_{\lambda_1,\varepsilon}(u_{\varepsilon}) \to -\infty$ and $||u_{\varepsilon}|| \to +\infty$ as $\varepsilon \to 0$.

Proof. Following a similar reasoning, we obtain the counterpart of (2.3),

$$r^{p-q} \Big[\int_{\Omega} |\nabla v|^{p} dx + \int_{\Omega} a(x) |v|^{p} dx - \lambda_{1} \int_{\partial \Omega} c(x) |v|^{p} d\sigma(x) \Big]$$

+ $\varepsilon r^{s-q} \int_{\Omega} d(x) |v|^{s} dx$ (2.11)
= $\int_{\Omega} b(x) |v|^{q} dx.$

The function $R(y) = Hy^{p-q} + \varepsilon Dy^{s-q} - B$, with $H \ge 0$, D, B > 0, has a unique root in $(0, +\infty)$, since it is strictly increasing, R(0) = -B and $R(y) \to +\infty$, for $y \to +\infty$. Thus, for $v \in W^{1,p}(\Omega)$ there exists a unique positive $r_{\varepsilon}(v)$ satisfying (2.11). The so defined function $v \to r_{\varepsilon}(v)$ is once more continuously differentiable for $v \ne 0$, by another application of the implicit function theorem. In addition, it is easily checked that (2.4) remains true. We notice also that, due to (2.11), if $v \ne 0$,

$$F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v)v) = \left(\frac{1}{p} - \frac{1}{q}\right)r_{\varepsilon}(v)^p H(v) + \varepsilon\left(\frac{1}{s} - \frac{1}{q}\right)r_{\varepsilon}(v)^s D(v) < 0.$$
(2.12)

We define next the positive functional (except at u = 0),

$$L(u) := H(u) + D(u).$$
(2.13)

Consider the set

$$W = \{ v \in W^{1,p}(\Omega) : L(v) = 1 \}.$$

Because of our hypothesis on $d(\cdot)$, (L'(v), v) > D(v) > 0 for $v \in W$. As usual, the conditional critical points of $\widehat{F}_{\lambda_1,\varepsilon}(v) = F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v)v)$ subject to L(v) = 1 provide critical points $r_{\varepsilon}(v)v$ of F_{λ_1} . We claim that W is bounded. Indeed, if not, there would exist $v_n \in W, n \in \mathbb{N}$, such that $||v_n|| \to +\infty$. Let $v_n := t_n u_n$ with $t_n > 0$ and $||u_n|| = 1$. Since $u_n, n \in \mathbb{N}$, is bounded, by passing to a subsequence if necessary, we may assume that $u_n \to u_0$ weakly in $W^{1,p}(\Omega)$ and strongly in $L^p(c, \partial\Omega)$ and $L^s(\Omega)$. By (2.13),

$$t_n^p \Big[\int_{\Omega} |\nabla u_n|^p dx + \int_{\Omega} a(x) |u_n|^p dx \\ - \lambda_1 \int_{\partial \Omega} c(x) |u_n|^p d\sigma(x) \Big] + t_n^s \int_{\Omega} d(x) |u_n|^s dx = 1.$$

 $\mathrm{EJDE}\text{-}2011/95$

and so

$$0 \le \int_{\Omega} |\nabla u_n|^p dx + \int_{\Omega} a(x) |u_n|^p dx - \lambda_1 \int_{\partial \Omega} c(x) |u_n|^p d\sigma(x) \le \frac{1}{t_n^p} \to 0 \qquad (2.14)$$

and

$$0 < \int_{\Omega} d(x) |u_n|^s dx \le \frac{1}{t_n^s} \to 0.$$
(2.15)

By (2.15), $u_0 = 0$. On the other hand, since $||u_n|| = 1$, (2.14) yields

$$\lambda_1 \int_{\partial \Omega} c(x) |u_0|^p d\sigma(x) = 1$$

and so $u_0 \neq 0$, a contradiction, thereby proving the claim. We can now continue as in the previous case. Namely, we notice that by the way it was defined, $r_{\varepsilon}(v)$ is bounded on W (we use now the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$). Thus $I' = \{F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v)v) : v \in W\}$ is a bounded interval with endpoints a' and $b', a' < b' \leq 0$. Let $\{v_n\}_{n\in\mathbb{N}}$ be a sequence of W with $F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_n)v_n) \to a'$. We may assume that $v_n \to v_{\varepsilon}$ weakly in $W^{1,p}(\Omega)$, and $r_{\varepsilon}(v_n) \to r_{\varepsilon} \in \mathbb{R}$. Thus $r_{\varepsilon}(v_n)v_n \to r_{\varepsilon}v_{\varepsilon}$ weakly in $W^{1,p}(\Omega)$, and consequently, at least for a subsequence, strongly in $L^s(\Omega)$. Since $\Phi_{\lambda_1}(\cdot)$ is weakly lower semicontinuous, so is $F_{\lambda_1,\varepsilon}(\cdot)$, and the obvious counterpart of (2.5) ensures that $r_{\varepsilon}v_{\varepsilon} \neq 0$. Combining (2.11) with the lower semicontinuity of the involved norms, the compactness of the Sobolev and trace embeddings $W^{1,p}(\Omega) \hookrightarrow$ $L^q(\Omega), W^{1,p}(\Omega) \hookrightarrow L^s(\Omega)$, and $W^{1,p}(\Omega) \hookrightarrow L^p(\partial\Omega)$, respectively, we obtain

$$r_{\varepsilon}^{p-q}H(v_{\varepsilon}) + r_{\varepsilon}^{s-q}\varepsilon D(v_{\varepsilon}) \le \int_{\Omega} b(x)|v_{\varepsilon}|^{q}dx = B(v_{\varepsilon}).$$
(2.16)

Evidently, (2.11) and (2.16) ensure that $r_{\varepsilon} \leq r_{\varepsilon}(v_{\varepsilon})$. We are going to prove equality. Assuming the contrary, the function $G(y) = F_{\lambda_1,\varepsilon}(yv_{\varepsilon}), y > 0$, has its derivative

$$G'(y) = y^{q-1} \left(y^{p-q} H(v_{\varepsilon}) + y^{s-q} \varepsilon D(v_{\varepsilon}) - B(v_{\varepsilon}) \right)$$

which is negative in $[r_{\varepsilon}, r_{\varepsilon}(v_{\varepsilon})]$ except at $y = r_{\varepsilon}(v_{\varepsilon})$, where it is zero. Thus G(y) decreases strictly in the above interval, meaning

$$F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_{\varepsilon})v_{\varepsilon}) < F_{\lambda_1,\varepsilon}(r_{\varepsilon}v_{\varepsilon}) \le a',$$
(2.17)

since $F_{\lambda_1,\varepsilon}(r_{\varepsilon}v_{\varepsilon}) \leq \liminf_{n \to +\infty} F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_n)v_n) = a'$. Next we choose a positive k, such that $kv_{\varepsilon} \in W$. Since (2.4) holds, we arrive at an obvious contradiction. Thus $r_{\varepsilon} = r_{\varepsilon}(v_{\varepsilon})$, and $F_{\lambda_1,\varepsilon}(r_{\varepsilon}(kv_{\varepsilon})kv_{\varepsilon}) = a'$, thus obtaining a conditional critical point of $\widehat{F}_{\lambda_1,\varepsilon}(\cdot)$ subject to L(v) = 1, and, consequently, $u_{\varepsilon} := r_{\varepsilon}(v_{\varepsilon})v_{\varepsilon}$ is a critical point of $F_{\lambda_1,\varepsilon}(\cdot)$. Once more, we may assume $v_{\varepsilon} \geq 0$, and so u_{ε} is a nontrivial nonnegative solution of (2.9).

Next we study the behavior of the solutions $u_{\varepsilon} = r_{\varepsilon}(v_{\varepsilon})v_{\varepsilon}$ as $\varepsilon \to 0$. Let $\varphi_1 > 0$ be the eigenfunction of (1.3) corresponding to λ_1 , with $L(\varphi_1) = 1$. By (2.11),

$$r_{\varepsilon}(\varphi_1)^{s-q} = \frac{\int_{\Omega} b(x) |\varphi_1|^q dx}{\varepsilon \int_{\Omega} d(x) |\varphi_1|^s dx},$$
(2.18)

which implies that $r_{\varepsilon}(\varphi_1) \to +\infty$ as $\varepsilon \to 0$. In view of (2.12) and (2.11)

$$F_{\lambda_1,\varepsilon}(r_{\varepsilon}(\varphi_1)\varphi_1) = \varepsilon \Big(\frac{1}{s} - \frac{1}{q}\Big)r_{\varepsilon}(\varphi_1)^s D(\varphi_1) = \Big(\frac{1}{s} - \frac{1}{q}\Big)r_{\varepsilon}(\varphi_1)^q \int_{\Omega} b(x)|\varphi_1|^q dx.$$

Since $F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_{\varepsilon})v_{\varepsilon}) \leq F_{\lambda_1,\varepsilon}(r_{\varepsilon}(\varphi_1)\varphi_1)$, we conclude that

$$F_{\lambda_1,\varepsilon}(u_{\varepsilon}) = F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_{\varepsilon})v_{\varepsilon}) \to -\infty$$

as $\varepsilon \to 0$. By (2.12) we also get that $r_{\varepsilon}(v_{\varepsilon}) \to +\infty$ as $\varepsilon \to 0$. Let \hat{v} be a weak accumulation point of v_{ε} ; that is, $\hat{v} = w - \lim_{n \to +\infty} v_{\varepsilon_n}$ where $\varepsilon_n \to 0$ as $n \to +\infty$. Since $L(v_{\varepsilon_n}) = 1$, necessarily

$$0 \leq \int_{\Omega} |\nabla v_{\varepsilon_n}|^p dx + \int_{\Omega} a(x) |v_{\varepsilon_n}|^p dx - \lambda_1 \int_{\partial \Omega} c(x) |v_{\varepsilon_n}|^p d\sigma(x) \to 0.$$

Consequently, either $\hat{v} = 0$ or $\hat{v} = \gamma \varphi_1$ for some $\gamma \neq 0$. We cannot have $\hat{v} = 0$, because then, since $v_{\varepsilon_n} \in W$, we would get that $\int_{\Omega} d(x) |\hat{v}|^s dx = \lim \int_{\Omega} d(x) |v_{\varepsilon_n}|^s dx = 1$. Therefore, $\hat{v} = \gamma \varphi_1$ and so $||u_{\varepsilon_n}|| = r_{\varepsilon_n} (v_{\varepsilon_n}) ||v_{\varepsilon_n}|| \to +\infty$ as $n \to +\infty$.

References

- M. Chipot, M. Chlebik, M. Fila, and I. Shafrir; Existence of positive solutions of a semilinear elliptic equation in Rⁿ₊ with a nonlinear boundary condition, J. Math. Anal. Appl. 223, no. 2 (1998) 429–471.
- [2] P. Drábek and S. I. Pohozaev; Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 703-726.
- [3] M. del Pino and C. Flores; Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Commun. in Partial Diff. Equations, 26(11&12) (2001) 2189-2210.
- [4] F. Faraci, A. Iannizzotto and C. Varga; Infinitely many bounded solutions for the p-Laplacian with nonlinear boundary conditions, Monatsh. Math. (to appear).
- [5] J. Fernandez Bonder; Multiple solutions for the p-Laplace equation with nonlinear boundary conditions, Electron. J. Differential Equations 2006 no. 37 (2006) 1-7.
- [6] J. P. Garcia Azorero and I. Peral Alonso; Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, Commun. in Partial Diff. Equations, 12(12) (1987) 1389-1430.
- [7] B. Hu; Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations 7, no. 2 (1994) 301–313.
- [8] D. A. Kandilakis and A. N. Lyberopoulos; Indefinite quasilinear elliptic problems with subcritical and supercritical nonlinearities on unbounded domains, J. Differential Equations 230 (2006) 337–361.
- [9] S. Martinez and J. D. Rossi; Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition, Abstr. Appl. Anal. 7, no. 5 (2002) 287-293.
- [10] M. Mihailescu; Existence and multiplicity of weak solutions for a class of degenerate nonlinear elliptic equations, Boundary Value Problems, Article ID 41295 (2006) 1-17.
- [11] S. I. Pohozaev; The fibering method in nonlinear variational problems, in Topological and Variational Methods for Nonlinear Boundary Value Problems, Pitman Res. Notes Math. Ser., vol. 365, Longman, Harlow, 1997, pp. 35-88.
- [12] X. Song, W. Wang and P. Zhao; Positive solutions of elliptic equations with nonlinear boundary conditions, Nonlinear Analysis 70 (2009) 328-334.
- [13] S. Terraccini; Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations 8, no. 8 (1995) 1911–1922.
- [14] E. Zeidler; Nonlinear Functional Analysis and its Applications, Vol. I. (New York: Springer-Verlag, 1986).

DIMITRIOS A. KANDILAKIS

DEPARTMENT OF SCIENCES, TECHNICAL UNIVERSITY OF CRETE, 73100 CHANIA, GREECE E-mail address: dkan@science.tuc.gr

Manolis Magiropoulos

DEPARTMENT OF SCIENCES, TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE, 71500 HERAK-LION, GREECE

E-mail address: mageir@staff.teicrete.gr