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POSITIVE PERIODIC SOLUTIONS OF NONLINEAR
FIRST-ORDER FUNCTIONAL DIFFERENCE EQUATIONS WITH

A PARAMETER

YANQIONG LU

Abstract. We obtain the existence and multiplicity of positive T -periodic
solutions for the difference equations

∆x(n) = a(n, x(n))− λb(n)f(x(n− τ(n)))

and
∆x(n) + a(n, x(n)) = λb(n)f(x(n− τ(n))),

where f(·) may be singular at x = 0. Using a fixed point theorem in cones, we
extend recent results in the literature.

1. Introduction

In recent years, there has been considerable interest in the existence of periodic
solutions of the equation

x′(t) = ã(t, x(t))− λb̃(t)f̃(x(t− τ(t))), (1.1)

where λ > 0 is a positive parameter, ã is continuous in x and T -periodic in
t, b̃ ∈ C(R, [0,∞)) and τ ∈ C(R, R) are T -periodic functions,

∫ T

0
b̃(t)dt > 0,

f ∈ C([0,∞), [0,∞)). (1.1) has been proposed as a model for a variety of phys-
iological processes and conditions including production of blood cells, respiration,
and cardiac arrhythmias. See, for example, [1, 2, 4, 6, 7, 13, 11, 14, 15, 16] and the
references therein.

In this article, we study the existence of positive T -periodic solutions of a discrete
analogues to (1.1) of the form

∆x(n) = a(n, x(n))− λb(n)f(x(n− τ(n))), n ∈ Z (1.2)

and
∆x(n) + a(n, x(n)) = λb(n)f(x(n− τ(n))), n ∈ Z, (1.3)

where Z is the set of integer numbers, T ∈ N is a fixed integer, a : Z×[0,∞) → [0,∞)
is continuous in x and T -periodic in n, b : Z → [0,+∞), τ : Z → Z are T -periodic
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and
∑T−1

n=0 b(n) > 0, f ∈ C((0,+∞), (0,+∞)) and may have a repulsive singularity
near x = 0, λ > 0 is a parameter.

So far, relatively little is known about the existence of positive periodic solutions
of (1.2) and (1.3). To our best knowledge, Ma [10] dealt with the special equations
of (1.2) and (1.3) of the form

∆x(n) = a(n)g(x(n))x(n)− λb(n)f(x(n− τ(n))) (1.4)

and
∆x(n) + a(n)g(x(n))x(n) = λb(n)f(x(n− τ(n))), (1.5)

with certain values of λ, for which there exist positive T -periodic solutions of (1.4)
and (1.5), respectively. If g(x(n)) ≡ 1, this special case see [8, 9, 12]. All these
authors [8, 9, 10, 12] focus their attention on the fact that the number of positive
T -periodic solutions can be determined by the behaviors of the quotient of f(x)/x
at {0,+∞}. However, our main results show the number of positive T -periodic
solutions can be determined by the behaviors of the quotient of f(x)/x at [0,∞].

It is the purpose of this paper to study more general equations (1.2) and (1.3)
and generalize the main results of Ma [10]. We also establish some existence and
multiplicity for (1.2) and (1.3), respectively. The main tool we will use is the fixed
point index theory [3, 5]. Throughout this paper, we denote the product of x(n)
from n = a to n = b by

∏b
n=a x(n) with the understanding that

∏b
n=a x(n) = 1 for

all a > b.
The rest of the paper is arranged as follows: In Section 2, we give some prelim-

inary results. In Section 3 we state and prove some existence results of positive
periodic solutions for (1.2) and (1.3). Finally, Section 4 is devoted to improving
some results of Ma [10]. For related results on the associated differential equations,
see Weng and Sun [14].

2. Preliminaries

In this article, we make the following assumptions:

(H1) There exist functions a1, a2 : Z → [0,+∞) are T−periodic functions such
that

∑T−1
n=0 a1(n) > 0,

∑T−1
n=0 a2(n) > 0 and a1(n)x(n) ≤ a(n, x(n)) ≤

a2(n)x(n) for n ∈ Z and x > 0. In addition, limx→0
a(n,x)

x exists for n ∈ Z.
(H2) a(n, x) is continuous in x and T -periodic in n, b : Z → [0,+∞), τ : Z → Z

are T -periodic and B :=
∑T−1

n=0 b(n) > 0; f ∈ C((0,+∞), (0,+∞)) and
may have a repulsive singularity near x = 0.

Denote

σi =
T−1∏
s=0

(1 + ai(s))−1, i = 1, 2, m =
σ2

1− σ2
, M =

1
1− σ1

.

From (H1), it is clear that 0 < m
M < 1. Let

E := {x : Z → R : x(n + T ) = x(n)}

be the Banach space with the norm ‖x‖ = maxn∈Z |x(n)|. Define the cone

P := {x ∈ E : x(n) ≥ 0, x(n) ≥ m

M
‖x‖},
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and the operator Aλ : P → E by

(Aλx)(n) = λ

n+T−1∑
s=n

Gx(n, s)b(s)f(x(s− τ(s))), n ∈ Z,

where

Gx(n, s) =

∏s
k=n(1 + a(k,x(k))

x(k) )−1

1−
∏T

k=1(1 + a(k,x(k))
x(k) )−1

, n ≤ s ≤ n + T.

It follows from (H1) that
m ≤ Gx(n, s) ≤ M.

If (H1) and (H2) hold and x ∈ P , then

λm

n+T−1∑
s=n

b(s)f(x(s− τ(s))) ≤ ‖Aλx‖ ≤ λM

n+T−1∑
s=n

b(s)f(x(s− τ(s))). (2.1)

The construction of Gx(n, s) is due to Ma [10]. Following the approach in [10],
we can easily prove the following two Lemmas. Similar arguments have been also
employed in [12]. We remark that the process of proofs are similar and are omitted.

Lemma 2.1. Assume that (H1), (H2) hold. Then Aλ(P ) ⊂ P and Aλ : P → P is
compact and continuous.

Lemma 2.2. Assume that (H1), (H2) hold. Then x ∈ P is a solution of (1.2) if
and only if x is a fixed point of Aλ in P .

The following well-known result of the fixed point index is crucial in our argu-
ments.

Lemma 2.3 ([3, 5]). Let E be a Banach space and K be a cone in E. For r > 0,
define Kr = {u ∈ K : ‖u‖ < r}. Assume that T : Kr → K is completely continuous
such that Tu 6= u for u ∈ ∂Kr = {u ∈ K : ‖u‖ = r}.

(i) If ‖Tu‖ ≥ ‖u‖ for u ∈ ∂Kr, then i(T,Kr,K) = 0.
(ii) If ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kr, then i(T,Kr,K) = 1.

3. Existence of positive periodic solutions for (1.2) and (1.3)

In this section, we shall provide two explicit intervals of λ such that (1.2) and
(1.3) have at least one positive T -periodic solution.

Theorem 3.1. Assume that (H1), (H2) hold and there exist R, r such that R >
r > 0 and

m2 min
x∈[ m

M r,r]

f(x)
x

> M2 max
x∈[R, M

m R]

f(x)
x

. (3.1)

Then, for each λ satisfying

M

m2B minx∈[ m
M r,r]

f(x)
x

< λ ≤ 1

MB maxx∈[R, M
m R]

f(x)
x

, (3.2)

equation (1.2) has a positive T -periodic solution x satisfying r < x ≤ M
m R.
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Proof. According to (3.1), the set {λ : λ satisfies (3.2)} is nonempty. It follows
from (3.2) that

f(x)
x

>
M

λm2B
, ∀x ∈ [

m

M
r, r] and

f(x)
x

≤ 1
λMB

, x ∈ [R,
M

m
R].

Define the open sets

Ω1 := {x ∈ E : ‖x‖ < r}, Ω2 := {x ∈ E : ‖x‖ <
M

m
R}.

If x ∈ ∂Ω1 ∩ P , then ‖x‖ = r and m
M r ≤ x ≤ r. According to (2.1), it follows that

Aλx(n) ≥ λm

n+T−1∑
s=n

b(s)f(x(s− τ(s)))

> λm

n+T−1∑
s=n

b(s)
M

λm2B
x(s− τ(s)))

≥ M

mB

T−1∑
s=0

b(s)
m

M
r = r = ‖x‖.

Hence ‖Aλx‖ > ‖x‖, x ∈ ∂Ω1 ∩ P . From Lemma 2.3, we have that

i(Aλ,Ω1 ∩ P, P ) = 0.

If x ∈ ∂Ω2 ∩ P , then ‖x‖ = M
m R and R ≤ x ≤ M

m R. According to (2.1), it follows
that

‖Aλx‖ ≤ λM

n+T−1∑
s=n

b(s)f(x(s− τ(s)))

≤ λM

n+T−1∑
s=n

b(s)
1

λMB
x(s− τ(s)))

≤ 1
B

T−1∑
s=0

b(s)
M

m
R =

M

m
R = ‖x‖.

Hence ‖Aλx‖ ≤ ‖x‖, x ∈ ∂Ω2 ∩ P . From Lemma 2.3, we have that

i(Aλ,Ω2 ∩ P, P ) = 1.

Thus i(Aλ,Ω2\Ω̄1, P ) = 1 and Aλ has a fixed point in Ω2\Ω̄1, which is a positive
T -periodic solution of (1.2) and

r < x(n) ≤ M

m
R, n ∈ Z.

�

Theorem 3.2. Assume that (H1), (H2) hold and there exist R, r such that R >
r > 0 and

m2 min
x∈[R, M

m R]
f(x)/x > M2 max

x∈[ m
M r,r]

f(x)/x. (3.3)

Then, for each λ satisfying
M

m2B minx∈[R,MR/m] f(x)/x
≤ λ <

1
MB maxx∈[m/rM,r] f(x)/x

, (3.4)

equation (1.2) has a positive T -periodic solution x satisfying r < x ≤ M
m R.
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Proof. By (3.3), the set {λ : λ satisfies (3.4)} is nonempty. It follows from (3.4)
that

f(x)
x

<
1

λMB
, ∀x ∈ [

m

M
r, r] and

f(x)
x

≥ M

λm2B
, x ∈ [R,

M

m
R].

The rest of the proof is similar to the proof of Theorem 3.1 and is omitted. �

Next we turn our attention to (1.3); i.e.,

x(n + 1) = [1− a(n, x(n))
x(n)

]x(n) + λb(n)f(x(n− τ(n))), n ∈ Z, (3.5)

where λ, a(n), b(n), f(x(n − τ(n))) satisfy the same assumptions stated for (1.2)
except that

0 <

T−1∏
k=0

(1− a2(k)) ≤
T−1∏
k=0

(1− a1(k)) < 1,

for all n ∈ Z. In view of (1.3) we have

x(n) = λ

n+T−1∑
s=n

Kx(n, s)b(s)f(x(s− τ(s))), (3.6)

where

Kx(n, s) =

∏n+T−1
k=s+1 (1− a(k,x(k))

x(k) )

1−
∏T−1

k=0 (1− a(k,x(k))
x(k) )

, s ∈ [n, n + T − 1]. (3.7)

Note that since 0 ≤ a1(n) ≤ a(n, x(n)) ≤ a2(n) < 1 for all n ∈ Z, we have

m̄ :=
ρ2

1− ρ2
≤ Kx(n, s) ≤ 1

1− ρ1
:= M̄, n ≤ s ≤ n + T − 1,

here

ρi =
T−1∏
k=0

(1− ai(k)), i = 1, 2 and 0 <
ρ2(1− ρ1)

1− ρ2
< 1.

Similarly, we can get the following theorems.

Theorem 3.3. Assume that (H1), (H2) hold and 0 ≤ a1(n) ≤ a2(n) < 1 for n ∈ Z.
Moreover, there exist R, r such that R > r > 0 and

m̄2 min
x∈[ m̄

M̄
r,r]

f(x)
x

> M̄2 max
x∈[R, M̄

m̄ R]

f(x)
x

.

Then, for each λ satisfying

M̄

m̄2B minx∈[ m̄
M̄

r,r]
f(x)

x

< λ ≤ 1

M̄B maxx∈[R, M̄
m̄ R]

f(x)
x

,

equation (1.3) has a positive T -periodic solution x satisfying r < x ≤ M̄
m̄ R.

Theorem 3.4. Assume that (H1)-(H2) hold and 0 ≤ a1(n) ≤ a2(n) < 1 for n ∈ Z.
In addition, there exist R, r such that R > r > 0 and

m̄2 min
x∈[R, M̄

m̄ R]

f(x)
x

> M̄2 max
x∈[ m̄

M̄
r,r]

f(x)
x

.
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Then, for each λ satisfying

M̄

m̄2B minx∈[R, M̄
m̄ R]

f(x)
x

≤ λ <
1

M̄B maxx∈[ m̄
M̄

r,r]
f(x)

x

,

equation (1.3) has a positive T -periodic solution x satisfying r < x ≤ M̄
m̄ R.

4. Multiplicity of positive periodic solutions for (1.2) and (1.3)

To illustrate applications of Theorems 3.1-3.4, we will provide four corollaries in
this section. For convenience, we introduce the notation

i0 = number of zeros in the set {f0, f∞},
i∞ = number of infinities in the set {f0, f∞}.

It is clear that i0, i∞ = 0, 1 or 2. Then we shall show that (1.2) has i0 or i∞ positive
T -periodic solution(s) for sufficiently large or small λ, respectively.

Corollary 4.1. Assume that (H1), (H2) hold and c ∈ (0,∞) is a fixed constant,
then

(i) If i0 = 1 or 2, then (1.2) has i0 positive T -periodic solution(s) for λ >
M

m2B minx∈[mc/M,c] f(x)/x .
(ii) If i∞ = 1 or 2, then (1.2) has i∞ positive T -periodic solution(s) for 0 <

λ < 1
MB maxx∈[c,Mc/m] f(x)/x .

Proof. (i) If f0 = 0, then there exists small enough r1 such that c > r1 > 0 and

m2 min
x∈[mc/M,c]

f(x)
x

≥ M2 max
x∈[ m2

M2 r1, m
M r1]

f(x)
x

→ 0 (as r1 → 0).

By applying Theorem 3.2 with R = m
M c and r = m

M r1, Equation (1.2) has a positive
T -periodic solution x satisfying

m

M
r1 < x ≤ c.

If f∞ = 0, then there exists large enough R1 such that R1 > c > 0 and

m2 min
x∈[mc/M,c]

f(x)
x

≥ M2 max
x∈[ M

m R1, M2

m2 R1]

f(x)
x

→ 0 (as R1 →∞).

Thus, by applying Theorem 3.1 with R = M
m R1 and r = c, there exists a positive

T -solution x of Eq.(1.2) satisfying

c < x ≤ M2

m2
R.

(ii) If f0 = ∞, then there exists small enough r2 such that c > r2 > 0 and

M2 max
x∈[c, M

m c]

f(x)
x

≤ m2 min
x∈[ m2

M2 r2, m
M r2]

f(x)
x

→∞ (as r2 → 0).

Thus, by applying Theorem 3.1 with R = c and r = m
M r2, Equation (1.2) has a

positive T -periodic solution x satisfying
m

M
r2 < x ≤ M

m
c.
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If f∞ = ∞, then there exists large enough R2 > c > 0 such that

M2 max
x∈[c, M

m c]

f(x)
x

≤ m2 min
x∈[ M

m R2, M2

m2 R2]

f(x)
x

→∞ (as R2 →∞).

Thus, by applying Theorem 3.2 with R = M
m R2 and r = M

m c, there exists a positive
T -solution x of (1.2) satisfying

M

m
c < x ≤ M2

m2
R2.

�

Corollary 4.2. Assume that (H1), (H2) hold and i0 = i∞ = 0, then
(1) If m2f0 > M2f∞, Equation (1.2) has a positive T -periodic solution for

M

m2Bf0
< λ <

1
MBf∞

.

(2) If m2f∞ > M2f0, Equation (1.2) has a positive T -periodic solution for

M

m2Bf∞
< λ <

1
MBf0

.

Proof. (1) Since m2f0 > M2f∞, inequality (3.1) is satisfied by taking r small
enough and R large enough. According to Theorem 3.1, Equation (1.2) has a
positive T -periodic solution for

M

m2B(f0 + ε)
< λ <

1
MB(f∞ − ε)

,

where ε > 0 is sufficiently small.
(2) Since m2f∞ > M2f0, inequality (3.3) is satisfied by taking r small enough

and R large enough. As a consequence of Theorem 3.2, Equation (1.2) has a positive
T -periodic solution for

M

m2B(f∞ + ε)
< λ <

1
MB(f0 − ε)

,

where ε > 0 is sufficiently small. �

Remark 4.3. Corollary 4.1 improves the results in Ma [10, Theorem 4.1]. Since
assertion (b) in [10, Theorem 4.1] fails to the case limx→0+ f(x) = +∞, which is
due to the definition of M(r) = max{f(x) : 0 ≤ x ≤ r}. However, Corollary 4.1 is
valid to the case limx→0+ f(x) = +∞ and provides more desirable intervals of λ.

If a(n, x) of (1.2) is replaced with a(n)g(x(n))x(n) of (1.4), then Corollary 4.2
is exactly the same as [10, Theorem 4.3].

The following results are direct consequences of Theorems 3.3 and 3.4.

Corollary 4.4. Assume that (H1), (H2) hold and c ∈ (0,∞) is a fixed constant,
then

(i) If i0 = 1 or 2, then (1.3) has i0 positive T -periodic solutions for

λ >
M̄

m̄2B minx∈[ m̄
M̄

c,c] f(x)/x
.
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(ii) If i∞ = 1 or 2, then (1.3) has i∞ positive T -periodic solutions for

0 < λ <
1

M̄B maxx∈[c, M̄
m̄ c] f(x)/x

.

Corollary 4.5. Assume that (H1), (H2) hold and i0 = i∞ = 0, then
(1) If m̄2f0 > M̄2f∞, Equation (1.3) has a positive T -periodic solution for

M̄

m̄2Bf0
< λ <

1
M̄Bf∞

.

(2) If m̄2f∞ > M̄2f0, Equation (1.3) has a positive T -periodic solution for

M̄

m̄2Bf∞
< λ <

1
M̄Bf0

.

Remark 4.6. Corollary 4.4 improves the results in [10, Theorem 4.4]. Since asser-
tion (b) in [10, Theorem 4.4] fails to the case limx→0+ f(x) = +∞, which is due to
the definition of M(r) = max{f(x) : 0 ≤ x ≤ r}. However, Corollary 4.4 is valid to
the case limx→0+ f(x) = +∞ and provides more desirable intervals of λ.

If a(n, x) of (1.3) is replaced with a(n)g(x(n))x(n) of (1.5), then Corollary 4.5
is exactly the same as [10, Theorem 4.6].
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