Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 96, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

# POSITIVE PERIODIC SOLUTIONS OF NONLINEAR FIRST-ORDER FUNCTIONAL DIFFERENCE EQUATIONS WITH 

 A PARAMETERYANQIONG LU

$$
\begin{aligned}
& \text { AbSTRACT. We obtain the existence and multiplicity of positive } T \text {-periodic } \\
& \text { solutions for the difference equations } \\
& \qquad \Delta x(n)=a(n, x(n))-\lambda b(n) f(x(n-\tau(n))) \\
& \text { and } \\
& \qquad \Delta x(n)+a(n, x(n))=\lambda b(n) f(x(n-\tau(n)))
\end{aligned}
$$

where $f(\cdot)$ may be singular at $x=0$. Using a fixed point theorem in cones, we extend recent results in the literature.

## 1. Introduction

In recent years, there has been considerable interest in the existence of periodic solutions of the equation

$$
\begin{equation*}
x^{\prime}(t)=\tilde{a}(t, x(t))-\lambda \tilde{b}(t) \tilde{f}(x(t-\tau(t))) \tag{1.1}
\end{equation*}
$$

where $\lambda>0$ is a positive parameter, $\tilde{a}$ is continuous in $x$ and $T$-periodic in $t, \tilde{b} \in C(\mathbb{R},[0, \infty))$ and $\tau \in C(\mathbb{R}, \mathbb{R})$ are $T$-periodic functions, $\int_{0}^{T} \tilde{b}(t) d t>0$, $f \in C([0, \infty),[0, \infty))$. 1.1 has been proposed as a model for a variety of physiological processes and conditions including production of blood cells, respiration, and cardiac arrhythmias. See, for example, [1, 2, 4, 6, 7, 13, 11, 14, 15, 16] and the references therein.

In this article, we study the existence of positive $T$-periodic solutions of a discrete analogues to 1.1 of the form

$$
\begin{equation*}
\Delta x(n)=a(n, x(n))-\lambda b(n) f(x(n-\tau(n))), \quad n \in \mathbb{Z} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta x(n)+a(n, x(n))=\lambda b(n) f(x(n-\tau(n))), \quad n \in \mathbb{Z} \tag{1.3}
\end{equation*}
$$

where $\mathbb{Z}$ is the set of integer numbers, $T \in \mathbb{N}$ is a fixed integer, $a: \mathbb{Z} \times[0, \infty) \rightarrow[0, \infty)$ is continuous in $x$ and $T$-periodic in $n, b: \mathbb{Z} \rightarrow[0,+\infty), \tau: \mathbb{Z} \rightarrow \mathbb{Z}$ are $T$-periodic

[^0]and $\sum_{n=0}^{T-1} b(n)>0, f \in C((0,+\infty),(0,+\infty))$ and may have a repulsive singularity near $x=0, \lambda>0$ is a parameter.

So far, relatively little is known about the existence of positive periodic solutions of 1.2 and (1.3). To our best knowledge, Ma [10] dealt with the special equations of 1.2 and 1.3 of the form

$$
\begin{equation*}
\Delta x(n)=a(n) g(x(n)) x(n)-\lambda b(n) f(x(n-\tau(n))) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta x(n)+a(n) g(x(n)) x(n)=\lambda b(n) f(x(n-\tau(n))), \tag{1.5}
\end{equation*}
$$

with certain values of $\lambda$, for which there exist positive $T$-periodic solutions of 1.4 and 1.5 , respectively. If $g(x(n)) \equiv 1$, this special case see [8, 9, 12. All these authors $8,9,10,12$ focus their attention on the fact that the number of positive $T$-periodic solutions can be determined by the behaviors of the quotient of $f(x) / x$ at $\{0,+\infty\}$. However, our main results show the number of positive $T$-periodic solutions can be determined by the behaviors of the quotient of $f(x) / x$ at $[0, \infty]$.

It is the purpose of this paper to study more general equations $\sqrt[1.2]{ }$ and 1.3 ) and generalize the main results of Ma [10]. We also establish some existence and multiplicity for $\sqrt{1.2}$ and $\sqrt{1.3}$, respectively. The main tool we will use is the fixed point index theory [3, 5]. Throughout this paper, we denote the product of $x(n)$ from $n=a$ to $n=b$ by $\prod_{n=a}^{b} x(n)$ with the understanding that $\prod_{n=a}^{b} x(n)=1$ for all $a>b$.

The rest of the paper is arranged as follows: In Section 2, we give some preliminary results. In Section 3 we state and prove some existence results of positive periodic solutions for 1.2 and 1.3 . Finally, Section 4 is devoted to improving some results of Ma [10. For related results on the associated differential equations, see Weng and Sun [14].

## 2. Preliminaries

In this article, we make the following assumptions:
(H1) There exist functions $a_{1}, a_{2}: \mathbb{Z} \rightarrow[0,+\infty)$ are $T$-periodic functions such that $\sum_{n=0}^{T-1} a_{1}(n)>0, \sum_{n=0}^{T-1} a_{2}(n)>0$ and $a_{1}(n) x(n) \leq a(n, x(n)) \leq$ $a_{2}(n) x(n)$ for $n \in \mathbb{Z}$ and $x>0$. In addition, $\lim _{x \rightarrow 0} \frac{a(n, x)}{x}$ exists for $n \in \mathbb{Z}$.
(H2) $a(n, x)$ is continuous in $x$ and $T$-periodic in $n, b: \mathbb{Z} \rightarrow[0,+\infty), \tau: \mathbb{Z} \rightarrow \mathbb{Z}$ are $T$-periodic and $B:=\sum_{n=0}^{T-1} b(n)>0 ; f \in C((0,+\infty),(0,+\infty))$ and may have a repulsive singularity near $x=0$.
Denote

$$
\sigma_{i}=\prod_{s=0}^{T-1}\left(1+a_{i}(s)\right)^{-1}, \quad i=1,2, \quad m=\frac{\sigma_{2}}{1-\sigma_{2}}, \quad M=\frac{1}{1-\sigma_{1}}
$$

From (H1), it is clear that $0<\frac{m}{M}<1$. Let

$$
E:=\{x: \mathbb{Z} \rightarrow \mathbb{R}: x(n+T)=x(n)\}
$$

be the Banach space with the norm $\|x\|=\max _{n \in \mathbb{Z}}|x(n)|$. Define the cone

$$
P:=\left\{x \in E: x(n) \geq 0, x(n) \geq \frac{m}{M}\|x\|\right\}
$$

and the operator $A_{\lambda}: P \rightarrow E$ by

$$
\left(A_{\lambda} x\right)(n)=\lambda \sum_{s=n}^{n+T-1} G_{x}(n, s) b(s) f(x(s-\tau(s))), \quad n \in \mathbb{Z}
$$

where

$$
G_{x}(n, s)=\frac{\prod_{k=n}^{s}\left(1+\frac{a(k, x(k))}{x(k)}\right)^{-1}}{1-\prod_{k=1}^{T}\left(1+\frac{a(k, x(k))}{x(k)}\right)^{-1}}, \quad n \leq s \leq n+T
$$

It follows from (H1) that

$$
m \leq G_{x}(n, s) \leq M
$$

If (H1) and (H2) hold and $x \in P$, then

$$
\begin{equation*}
\lambda m \sum_{s=n}^{n+T-1} b(s) f(x(s-\tau(s))) \leq\left\|A_{\lambda} x\right\| \leq \lambda M \sum_{s=n}^{n+T-1} b(s) f(x(s-\tau(s))) . \tag{2.1}
\end{equation*}
$$

The construction of $G_{x}(n, s)$ is due to Ma 10. Following the approach in 10, we can easily prove the following two Lemmas. Similar arguments have been also employed in [12. We remark that the process of proofs are similar and are omitted.
Lemma 2.1. Assume that (H1), (H2) hold. Then $A_{\lambda}(P) \subset P$ and $A_{\lambda}: P \rightarrow P$ is compact and continuous.

Lemma 2.2. Assume that (H1), (H2) hold. Then $x \in P$ is a solution of (1.2) if and only if $x$ is a fixed point of $A_{\lambda}$ in $P$.

The following well-known result of the fixed point index is crucial in our arguments.

Lemma 2.3 ([3, [5]). Let $E$ be a Banach space and $K$ be a cone in $E$. For $r>0$, define $K_{r}=\{u \in K:\|u\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T u \neq u$ for $u \in \partial K_{r}=\{u \in K:\|u\|=r\}$.
(i) If $\|T u\| \geq\|u\|$ for $u \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=0$.
(ii) If $\|T u\| \leq\|u\|$ for $u \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=1$.

## 3. Existence of positive periodic solutions for 1.2 and 1.3

In this section, we shall provide two explicit intervals of $\lambda$ such that 1.2 and (1.3) have at least one positive $T$-periodic solution.

Theorem 3.1. Assume that (H1), (H2) hold and there exist $R$, $r$ such that $R>$ $r>0$ and

$$
\begin{equation*}
m^{2} \min _{x \in\left[\frac{m}{M} r, r\right]} \frac{f(x)}{x}>M^{2} \max _{x \in\left[R, \frac{M}{m} R\right]} \frac{f(x)}{x} \tag{3.1}
\end{equation*}
$$

Then, for each $\lambda$ satisfying

$$
\begin{equation*}
\frac{M}{m^{2} B \min _{x \in\left[\frac{m}{M} r, r\right]} \frac{f(x)}{x}}<\lambda \leq \frac{1}{M B \max _{x \in\left[R, \frac{M}{m} R\right]} \frac{f(x)}{x}} \tag{3.2}
\end{equation*}
$$

equation (1.2) has a positive T-periodic solution $x$ satisfying $r<x \leq \frac{M}{m} R$.

Proof. According to (3.1), the set $\{\lambda: \lambda$ satisfies 3.2) $\}$ is nonempty. It follows from (3.2) that

$$
\frac{f(x)}{x}>\frac{M}{\lambda m^{2} B}, \quad \forall x \in\left[\frac{m}{M} r, r\right] \quad \text { and } \quad \frac{f(x)}{x} \leq \frac{1}{\lambda M B}, \quad x \in\left[R, \frac{M}{m} R\right]
$$

Define the open sets

$$
\Omega_{1}:=\{x \in E:\|x\|<r\}, \quad \Omega_{2}:=\left\{x \in E:\|x\|<\frac{M}{m} R\right\} .
$$

If $x \in \partial \Omega_{1} \cap P$, then $\|x\|=r$ and $\frac{m}{M} r \leq x \leq r$. According to 2.1), it follows that

$$
\begin{aligned}
A_{\lambda} x(n) & \geq \lambda m \sum_{s=n}^{n+T-1} b(s) f(x(s-\tau(s))) \\
& \left.>\lambda m \sum_{s=n}^{n+T-1} b(s) \frac{M}{\lambda m^{2} B} x(s-\tau(s))\right) \\
& \geq \frac{M}{m B} \sum_{s=0}^{T-1} b(s) \frac{m}{M} r=r=\|x\|
\end{aligned}
$$

Hence $\left\|A_{\lambda} x\right\|>\|x\|, x \in \partial \Omega_{1} \cap P$. From Lemma 2.3, we have that

$$
i\left(A_{\lambda}, \Omega_{1} \cap P, P\right)=0
$$

If $x \in \partial \Omega_{2} \cap P$, then $\|x\|=\frac{M}{m} R$ and $R \leq x \leq \frac{M}{m} R$. According to 2.1, it follows that

$$
\begin{aligned}
\left\|A_{\lambda} x\right\| & \leq \lambda M \sum_{s=n}^{n+T-1} b(s) f(x(s-\tau(s))) \\
& \left.\leq \lambda M \sum_{s=n}^{n+T-1} b(s) \frac{1}{\lambda M B} x(s-\tau(s))\right) \\
& \leq \frac{1}{B} \sum_{s=0}^{T-1} b(s) \frac{M}{m} R=\frac{M}{m} R=\|x\|
\end{aligned}
$$

Hence $\left\|A_{\lambda} x\right\| \leq\|x\|, x \in \partial \Omega_{2} \cap P$. From Lemma 2.3, we have that

$$
i\left(A_{\lambda}, \Omega_{2} \cap P, P\right)=1
$$

Thus $i\left(A_{\lambda}, \Omega_{2} \backslash \bar{\Omega}_{1}, P\right)=1$ and $A_{\lambda}$ has a fixed point in $\Omega_{2} \backslash \bar{\Omega}_{1}$, which is a positive $T$-periodic solution of 1.2 and

$$
r<x(n) \leq \frac{M}{m} R, \quad n \in \mathbb{Z}
$$

Theorem 3.2. Assume that (H1), (H2) hold and there exist $R$, $r$ such that $R>$ $r>0$ and

$$
\begin{equation*}
m^{2} \min _{x \in\left[R, \frac{M}{m} R\right]} f(x) / x>M^{2} \max _{x \in\left[\frac{m}{M} r, r\right]} f(x) / x \tag{3.3}
\end{equation*}
$$

Then, for each $\lambda$ satisfying

$$
\begin{equation*}
\frac{M}{m^{2} B \min _{x \in[R, M R / m]} f(x) / x} \leq \lambda<\frac{1}{M B \max _{x \in[m / r M, r]} f(x) / x} \tag{3.4}
\end{equation*}
$$

equation (1.2) has a positive T-periodic solution $x$ satisfying $r<x \leq \frac{M}{m} R$.

Proof. By (3.3), the set $\{\lambda: \lambda$ satisfies $(3.4\}$ is nonempty. It follows from (3.4) that

$$
\frac{f(x)}{x}<\frac{1}{\lambda M B}, \quad \forall x \in\left[\frac{m}{M} r, r\right] \quad \text { and } \quad \frac{f(x)}{x} \geq \frac{M}{\lambda m^{2} B}, \quad x \in\left[R, \frac{M}{m} R\right] .
$$

The rest of the proof is similar to the proof of Theorem 3.1 and is omitted.
Next we turn our attention to (1.3); i.e.,

$$
\begin{equation*}
x(n+1)=\left[1-\frac{a(n, x(n))}{x(n)}\right] x(n)+\lambda b(n) f(x(n-\tau(n))), \quad n \in \mathbb{Z} \tag{3.5}
\end{equation*}
$$

where $\lambda, a(n), b(n), f(x(n-\tau(n)))$ satisfy the same assumptions stated for 1.2 except that

$$
0<\prod_{k=0}^{T-1}\left(1-a_{2}(k)\right) \leq \prod_{k=0}^{T-1}\left(1-a_{1}(k)\right)<1
$$

for all $n \in \mathbb{Z}$. In view of 1.3 we have

$$
\begin{equation*}
x(n)=\lambda \sum_{s=n}^{n+T-1} K_{x}(n, s) b(s) f(x(s-\tau(s))) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{x}(n, s)=\frac{\prod_{k=s+1}^{n+T-1}\left(1-\frac{a(k, x(k))}{x(k)}\right)}{1-\prod_{k=0}^{T-1}\left(1-\frac{a(k, x(k))}{x(k)}\right)}, \quad s \in[n, n+T-1] . \tag{3.7}
\end{equation*}
$$

Note that since $0 \leq a_{1}(n) \leq a(n, x(n)) \leq a_{2}(n)<1$ for all $n \in \mathbb{Z}$, we have

$$
\bar{m}:=\frac{\rho_{2}}{1-\rho_{2}} \leq K_{x}(n, s) \leq \frac{1}{1-\rho_{1}}:=\bar{M}, \quad n \leq s \leq n+T-1
$$

here

$$
\rho_{i}=\prod_{k=0}^{T-1}\left(1-a_{i}(k)\right), \quad i=1,2 \quad \text { and } \quad 0<\frac{\rho_{2}\left(1-\rho_{1}\right)}{1-\rho_{2}}<1
$$

Similarly, we can get the following theorems.
Theorem 3.3. Assume that (H1), (H2) hold and $0 \leq a_{1}(n) \leq a_{2}(n)<1$ for $n \in \mathbb{Z}$. Moreover, there exist $R$, $r$ such that $R>r>0$ and

$$
\bar{m}^{2} \min _{x \in\left[\frac{\bar{m}}{M} r, r\right]} \frac{f(x)}{x}>\bar{M}^{2} \max _{x \in\left[R, \frac{M}{\bar{m}} R\right]} \frac{f(x)}{x} .
$$

Then, for each $\lambda$ satisfying

$$
\frac{\bar{M}}{\bar{m}^{2} B \min _{x \in\left[\frac{\bar{m}}{M} r, r\right]} \frac{f(x)}{x}}<\lambda \leq \frac{1}{\bar{M} B \max _{x \in\left[R, \frac{\bar{M}}{\bar{m}} R\right]} \frac{f(x)}{x}}
$$

equation (1.3) has a positive T-periodic solution $x$ satisfying $r<x \leq \frac{\bar{M}}{\bar{m}} R$.
Theorem 3.4. Assume that (H1)-(H2) hold and $0 \leq a_{1}(n) \leq a_{2}(n)<1$ for $n \in \mathbb{Z}$. In addition, there exist $R$, $r$ such that $R>r>0$ and

$$
\bar{m}^{2} \min _{x \in\left[R, \frac{M}{m} R\right]} \frac{f(x)}{x}>\bar{M}^{2} \max _{x \in\left[\frac{\bar{m}}{M} r, r\right]} \frac{f(x)}{x} .
$$

Then, for each $\lambda$ satisfying

$$
\frac{\bar{M}}{\bar{m}^{2} B \min _{x \in\left[R, \frac{\bar{M}}{\bar{m}} R\right]} \frac{f(x)}{x}} \leq \lambda<\frac{1}{\bar{M} B \max _{x \in\left[\frac{\bar{m}}{M} r, r\right] \frac{f(x)}{x}}}
$$

equation (1.3) has a positive $T$-periodic solution $x$ satisfying $r<x \leq \frac{\bar{M}}{\bar{m}} R$.
4. Multiplicity of positive periodic solutions for 1.2 and 1.3

To illustrate applications of Theorems $3.1 \mid 3.4$ we will provide four corollaries in this section. For convenience, we introduce the notation

$$
\begin{gathered}
i_{0}=\text { number of zeros in the set }\left\{f_{0}, f_{\infty}\right\} \\
i_{\infty}=\text { number of infinities in the set }\left\{f_{0}, f_{\infty}\right\}
\end{gathered}
$$

It is clear that $i_{0}, i_{\infty}=0,1$ or 2 . Then we shall show that 1.2 has $i_{0}$ or $i_{\infty}$ positive $T$-periodic solution(s) for sufficiently large or small $\lambda$, respectively.

Corollary 4.1. Assume that (H1), (H2) hold and $c \in(0, \infty)$ is a fixed constant, then
(i) If $i_{0}=1$ or 2 , then 1.2 has $i_{0}$ positive T-periodic solution(s) for $\lambda>$ $\frac{M}{m^{2} B \min _{x \in[m c / M, c]} f(x) / x}$.
(ii) If $i_{\infty}=1$ or 2 , then 1.2 has $i_{\infty}$ positive $T$-periodic solution(s) for $0<$ $\lambda<\frac{1}{M B \max _{x \in[c, M c / m]} f(x) / x}$.

Proof. (i) If $f_{0}=0$, then there exists small enough $r_{1}$ such that $c>r_{1}>0$ and

$$
m^{2} \min _{x \in[m c / M, c]} \frac{f(x)}{x} \geq M^{2} \max _{x \in\left[\frac{m^{2}}{M^{2}} r_{1}, \frac{m}{M} r_{1}\right]} \frac{f(x)}{x} \rightarrow 0 \quad\left(\text { as } r_{1} \rightarrow 0\right)
$$

By applying Theorem 3.2 with $R=\frac{m}{M} c$ and $r=\frac{m}{M} r_{1}$, Equation 1.2 has a positive $T$-periodic solution $x$ satisfying

$$
\frac{m}{M} r_{1}<x \leq c .
$$

If $f_{\infty}=0$, then there exists large enough $R_{1}$ such that $R_{1}>c>0$ and

$$
m^{2} \min _{x \in[m c / M, c]} \frac{f(x)}{x} \geq M^{2} \max _{x \in\left[\frac{M}{m} R_{1}, \frac{M^{2}}{m^{2}} R_{1}\right]} \frac{f(x)}{x} \rightarrow 0 \quad\left(\text { as } R_{1} \rightarrow \infty\right)
$$

Thus, by applying Theorem 3.1 with $R=\frac{M}{m} R_{1}$ and $r=c$, there exists a positive $T$-solution $x$ of Eq. $\sqrt{1.2}$ satisfying

$$
c<x \leq \frac{M^{2}}{m^{2}} R .
$$

(ii) If $f_{0}=\infty$, then there exists small enough $r_{2}$ such that $c>r_{2}>0$ and

$$
M^{2} \max _{x \in\left[c, \frac{M}{m} c\right]} \frac{f(x)}{x} \leq m^{2} \min _{x \in\left[\frac{m^{2}}{M^{2}} r_{2}, \frac{m}{M} r_{2}\right]} \frac{f(x)}{x} \rightarrow \infty \quad\left(\text { as } r_{2} \rightarrow 0\right)
$$

Thus, by applying Theorem 3.1 with $R=c$ and $r=\frac{m}{M} r_{2}$, Equation (1.2 has a positive $T$-periodic solution $x$ satisfying

$$
\frac{m}{M} r_{2}<x \leq \frac{M}{m} c .
$$

If $f_{\infty}=\infty$, then there exists large enough $R_{2}>c>0$ such that

$$
M^{2} \max _{x \in\left[c, \frac{M}{m} c\right]} \frac{f(x)}{x} \leq m^{2} \min _{x \in\left[\frac{M}{m} R_{2}, \frac{M^{2}}{m^{2}} R_{2}\right]} \frac{f(x)}{x} \rightarrow \infty \quad\left(\text { as } R_{2} \rightarrow \infty\right)
$$

Thus, by applying Theorem 3.2 with $R=\frac{M}{m} R_{2}$ and $r=\frac{M}{m} c$, there exists a positive $T$-solution $x$ of 1.2 satisfying

$$
\frac{M}{m} c<x \leq \frac{M^{2}}{m^{2}} R_{2}
$$

Corollary 4.2. Assume that (H1), (H2) hold and $i_{0}=i_{\infty}=0$, then
(1) If $m^{2} f_{0}>M^{2} f_{\infty}$, Equation (1.2) has a positive T-periodic solution for

$$
\frac{M}{m^{2} B f_{0}}<\lambda<\frac{1}{M B f_{\infty}}
$$

(2) If $m^{2} f_{\infty}>M^{2} f_{0}$, Equation 1.2 has a positive $T$-periodic solution for

$$
\frac{M}{m^{2} B f_{\infty}}<\lambda<\frac{1}{M B f_{0}}
$$

Proof. (1) Since $m^{2} f_{0}>M^{2} f_{\infty}$, inequality (3.1) is satisfied by taking $r$ small enough and $R$ large enough. According to Theorem 3.1. Equation 1.2 has a positive $T$-periodic solution for

$$
\frac{M}{m^{2} B\left(f_{0}+\epsilon\right)}<\lambda<\frac{1}{M B\left(f_{\infty}-\epsilon\right)},
$$

where $\epsilon>0$ is sufficiently small.
(2) Since $m^{2} f_{\infty}>M^{2} f_{0}$, inequality (3.3) is satisfied by taking $r$ small enough and $R$ large enough. As a consequence of Theorem 3.2. Equation 1.2 has a positive $T$-periodic solution for

$$
\frac{M}{m^{2} B\left(f_{\infty}+\epsilon\right)}<\lambda<\frac{1}{M B\left(f_{0}-\epsilon\right)},
$$

where $\epsilon>0$ is sufficiently small.
Remark 4.3. Corollary 4.1 improves the results in Ma [10, Theorem 4.1]. Since assertion (b) in [10, Theorem 4.1] fails to the case $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$, which is due to the definition of $M(r)=\max \{f(x): 0 \leq x \leq r\}$. However, Corollary 4.1 is valid to the case $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$ and provides more desirable intervals of $\lambda$.

If $a(n, x)$ of $\sqrt{1.2}$ is replaced with $a(n) g(x(n)) x(n)$ of $\sqrt{1.4}$, then Corollary 4.2 is exactly the same as [10, Theorem 4.3].

The following results are direct consequences of Theorems 3.3 and 3.4 .
Corollary 4.4. Assume that (H1), (H2) hold and $c \in(0, \infty)$ is a fixed constant, then
(i) If $i_{0}=1$ or 2 , then 1.3 has $i_{0}$ positive $T$-periodic solutions for

$$
\lambda>\frac{\bar{M}}{\bar{m}^{2} B \min _{x \in\left[\frac{\bar{m}}{M} c, c\right]} f(x) / x}
$$

(ii) If $i_{\infty}=1$ or 2 , then 1.3 has $i_{\infty}$ positive T-periodic solutions for

$$
0<\lambda<\frac{1}{\bar{M} B \max _{x \in\left[c, \frac{\bar{M}}{\bar{m}} c\right]} f(x) / x}
$$

Corollary 4.5. Assume that (H1), (H2) hold and $i_{0}=i_{\infty}=0$, then
(1) If $\bar{m}^{2} f_{0}>\bar{M}^{2} f_{\infty}$, Equation 1.3) has a positive T-periodic solution for

$$
\frac{\bar{M}}{\bar{m}^{2} B f_{0}}<\lambda<\frac{1}{\bar{M} B f_{\infty}}
$$

(2) If $\bar{m}^{2} f_{\infty}>\bar{M}^{2} f_{0}$, Equation (1.3) has a positive T-periodic solution for

$$
\frac{\bar{M}}{\bar{m}^{2} B f_{\infty}}<\lambda<\frac{1}{\bar{M} B f_{0}}
$$

Remark 4.6. Corollary 4.4 improves the results in [10, Theorem 4.4]. Since assertion (b) in [10, Theorem 4.4] fails to the case $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$, which is due to the definition of $M(r)=\max \{f(x): 0 \leq x \leq r\}$. However, Corollary 4.4 is valid to the case $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$ and provides more desirable intervals of $\lambda$.

If $a(n, x)$ of 1.3 is replaced with $a(n) g(x(n)) x(n)$ of 1.5 , then Corollary 4.5 is exactly the same as [10, Theorem 4.6].

## References

[1] S. Cheng, G. Zhang; Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differential Equations 59 (2001) 1-8.
[2] S. N. Chow; Existence of periodic solutions of autonomous functional differential equations, J. Differential Equations 15 (1974) 350-378.
[3] K. Deimling; Nonlinear Functional Analysis, Springer, Berlin, 1985.
[4] H. I. Freedman, J. Wu; Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal. 23 (1992) 689-701.
[5] D. Guo, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.
[6] W. S. Gurney, S. P. Blythe, R. N. Nisbet; Nicholson's blowflies revisited, Nature 287 (1980) 17-21.
[7] D. Jiang, J. Wei; Existence of positive periodic solutions of nonautonomous functional differential equations, Chinese Ann. Math. A 20 (6) (1999) 715-720 (in Chinese).
[8] Y. Li, L. Zhu, P. Liu; Positive periodic solutions of nonlinear functional difference equations depending on a parameter, Comput. Math. Appl. 48 (2004) 1453-1459.
[9] M. Ma, J. Yu; Existence of multiple positive periodic solutions for nonlinear functional difference equations, J. Math. Anal. Appl. 305 (2005) 483-490.
[10] R. Ma, T. Chen, Y. Lu; Positive periodic solutions of nonlinear first-order functional difference equations, Discrete Dynamics in Nature and Society 2010 (2010), Article ID 419536, 15 pages doi:10.1155/2010/419536.
[11] M. C. Mackey, L. Glass; Oscillations and chaos in physiological control systems, Science 197 (1997) 287-289.
[12] Y. N. Raffoul; Positive periodic Solutions of nonlinear functional difference equations, Electronic Journal of Differential Equations, 2002(2002), 1-8.
[13] H. Wang; Positive periodic solutions of functional differential systems, J. Differential Equations 202 (2004) 354-366.
[14] A. Weng, J. Sun; Positive periodic solutions of first-order functional differential equations with parameter, J. Comput. Appl. Math. 229 (2009) 327-332.
[15] M. Wazewska-Czyzewska, A. Lasota; Mathematical problems of the dynamics of a system of red blood cells, Mat. Stosow. 6 (1976) 23-40. (in Polish).
[16] D. Ye, M. Fan, H. Wang; Periodic solutions for scalar functional differential equations, Nonlinear Anal. 62 (2005) 1157-1181.

Yangiong Lu
Department of Mathematics, Northwest Normal University Lanzhou, 730070, China
E-mail address: linmu8610@163.com


[^0]:    2000 Mathematics Subject Classification. 34G20.
    Key words and phrases. Positive periodic solutions; existence; nonexistence;
    difference equations; fixed point.
    © 2011 Texas State University - San Marcos.
    Submitted June 29, 2011. Published July 28, 2011.
    Supported by grant 11061030 from the NSFC, the Fundamental Research Funds for the
    Gansu Universities.

