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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A
SINGULAR SEMILINEAR ELLIPTIC PROBLEM IN R2

MANASSÉS DE SOUZA

Abstract. Using minimax methods we study the existence and multiplicity of
nontrivial solutions for a singular class of semilinear elliptic nonhomogeneous
equation where the potentials can change sign and the nonlinearities may be
unbounded in x and behaves like exp(αs2) when |s| → +∞. We establish the
existence of two distinct solutions when the perturbation is suitable small.

1. Introduction

In this article, we consider the semilinear elliptic equation

−∆u+ V (x)u =
g(x)f(u)
|x|a

+ h(x) in R2, (1.1)

where a ∈ [0, 2), the functions V, g : R2 → R and f : R → R are continuous with
f(0) = 0 and h ∈ (H1(R2))∗ ≡ H−1 is a small perturbation, h 6≡ 0. We are
interested in finding nontrivial solutions of (1.1) when the nonlinearity f(s) has
the maximal growth which allows to treat (1.1) variationally in the Sobolev space
H1(R2).

On the potentials we assume the hypothesis
(V1) There exist D > 0 such that V (x) ≥ −D, for all x ∈ R2;
(V2) λ1 = infu∈E\{0} ‖u‖2

E/‖u‖2
2 > 0;

where E is the following subspace of H1(R2)

E =
{
u ∈ H1(R2) :

∫
R2
V (x)u2 dx <∞

}
,

which is a Hilbert space endowed with the scalar product

〈u, v〉E =
∫

R2
[∇u · ∇v + V (x)uv]dx

to which corresponds the norm ‖u‖E = 〈u, u〉1/2
E (see [17, Lemma 2.1 and Proposi-

tion 3.1]). Here, as usual, H1(R2) denotes the Sobolev spaces modelled in L2(R2)
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with norm

‖u‖1,2 =
( ∫

R2
(|∇u|2 + |u|2) dx

)1/2

.

To ensure the continuous imbedding of E into H1(R2), we assume the condition
(V2) on the first eigenvalue of the operator A = −∆ + V (x) (see [17, Proposition
2.2]).

We use the following notation: if Ω ⊂ R2 is open and s ≥ 2, we set

νs(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
[|∇u|2 + V (x)u2] dx( ∫

Ω
|u|s dx

)2/s
,

and we put νs(∅) = ∞. To obtain a compactness result, we shall consider the
following assumptions:

(V3) limR→∞ νs(R2\BR) = ∞.
(V4) There exist a function K(x) ∈ L∞loc(R2), with K(x) ≥ 1, and constants

α > 1, c0, R0 > 0 such that

K(x) ≤ c0[1 + (V +(x))1/α],

for all |x| ≥ R0, where V +(x) = maxx∈R2{0, V (x)}.
It is also well known that assumptions (V3)–(V4) imply that the imbeddings of E
into Lq(R2) are compact for all 2 ≤ q <∞ (see [17, Proposition 3.1]).

Concerning the function g, we assume that it is strictly positive and does not
have to be bounded in x provided that the growth of g is controlled by the growth
of V (x). More precisely:

(H1) There exists a0, b0 > 0 such that a0 ≤ g(x) ≤ b0K(x) for all x ∈ R2.
Moreover, we suppose that f(s) satisfies the following conditions:

(H2) lims→0
f(s)

s = 0.
(H3) There is a number µ > 2 such that for all s ∈ R\{0}

0 < µF (s) := µ

∫ s

0

f(t)dt ≤ sf(s).

Motivated by Trudinger-Moser inequality (see [14, 19]) and by pioneer works of
Adimurthi [1] and de Figueiredo et al. [6] we treat the so-called subcritical case,
which we define next. We say that a function f(s) has subcritical growth at +∞ if
for all β > 0

lim
|s|→+∞

|f(s)|
eβs2 = 0. (1.2)

Throughout this paper, we denote by H−1 the dual space of H1(R2) with the usual
norm ‖ · ‖H−1 .

Next we state our existence result.

Theorem 1.1. If f(s) has subcritical growth at +∞ and (V1)–(V4), (H1)–(H3)
are satisfied then problem (1.1) has a weak solution with positive energy if h ≡ 0.
Moreover, if h 6≡ 0, there exists δ > 0 such that if ‖h‖H−1 < δ, problem (1.1) has
at least two weak solutions. One of them with positive energy, while the other one
with negative energy.

The results in this paper were in part motivated by several recent papers on
elliptic problems involving exponential growth. See for example de Souza [7] for
the singular and homogeneous case, Giacomoni-Sreenadh [13] for the singular and
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nonhomogeneous case, do Ó et al. [12] and Tonkes [18] for the nonsingular and
nonhomogeneous case, Cao [5], de Figueiredo et al. [6] and do Ó [11] for the
nonsingular and homogeneous case. Our paper is closely related to the recent
works of do Ó et al. [12] and Rabelo [15]. Indeed, we improve and complement
the results in do Ó et al. [12] for the subcritical case in the sense that we use
nonlinearities unbounded in x and potentials which can change sign. Moreover in
[12] was studied the existence and multiplicity of weak solutions of (1.1) in terms
of the Trudinger-Moser inequality for the nonsingular case. We point out that ours
results are closely related with results in [3, 7, 8, 9, 10].

The proofs of our existence results rely on minimization methods in combination
with the mountain-pass theorem. In the subcritical case we are able to prove that
the associated functional satisfies the Palais-Smale compactness condition which
allow us to obtain critical points for the functional. As a consequence we can
distinguish the local minimum solution from the mountain-pass solution.

Remark 1.2. The study of such a class of problem has been motivated in part
by the search for standing waves for the nonlinear Schrödinger equation (see for
instance [4] and [16])

i
∂ψ

∂t
= −∆ψ +W (x)ψ −G(|ψ|)ψ − eiλtL(x), x ∈ R2,

where ψ = ψ(t, x), ψ : R×R2 → C, λ is a positive constant, W : R2 → R is a given
potential and for suitable functions G : R+ → R, L : R2 → R.

This article is organized as follows. Section 2 contains some preliminary results
including a singular Trudinger-Moser inequality. In Section 3, contains the vari-
ational framework and we also check the geometric conditions of the associated
functional. In Section 4, we prove some properties of the Palais-Smale sequences.
Finally, in section 5 we complete the proofs of our main results.

2. Preliminary results

Let Ω be a bounded domain in R2, we know by the Trudinger-Moser inequality
that for all β > 0 and u ∈ H1

0 (Ω), eβu2 ∈ L1(Ω) (see [14, 19]). Moreover, there
exists a positive constant C such that

sup
u∈H1

0 (Ω) : ‖∇u‖2≤1

∫
Ω

eβu2
dx ≤ C|Ω| if β ≤ 4π,

where |Ω| denotes Lebesgue measure of Ω. This inequality is optimal, in the sense
that for any growth eβu2

with β > 4π the correspondent supremum is infinite.
Adimurthi-Sandeep [2] proved a singular Trudinger-Moser inequality, which in the
case N = 2 reads: ∫

Ω

eβu2

|x|a
dx <∞ for all u ∈ H1

0 (Ω), β > 0,

where Ω is a smooth bounded domain in R2 containing the origin and a ∈ [0, 2).
Moreover, there exists a positive constant C(β, a) such that

sup
u∈H1

0 (Ω):‖∇u‖2≤1

∫
Ω

eβu2

|x|a
dx ≤ C(β, a)|Ω| if and only if β/4π + a/2 ≤ 1. (2.1)
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Here we shall use the following extension of these results for the whole space R2

obtained by Giacomoni and Sreenadh in [13] (see also [7]):

Lemma 2.1. If β > 0, a ∈ [0, 2) and u ∈ H1(R2) then∫
R2

(eβu2 − 1)
|x|a

dx <∞. (2.2)

Moreover, if β/4π + a/2 < 1 and ‖u‖2 ≤ M , then there exists a positive constant
C = C(β,M) such that

sup
‖∇u‖2≤1

∫
R2

(eβu2 − 1)
|x|a

dx ≤ C(β,M). (2.3)

Our choice of the variational setting E ensures that the imbedding is continuous
in H1(R2) and compact in Ls(R2), for s ≥ 2 (see [17, Lemma 2.1 and Proposition
3.1]). This lemma in [17] provides a inequality which will be needed throughout
the paper:

‖u‖2
E ≥ ζ

∫
R2
|∇u|2 dx, (2.4)

for some ζ > 0 and for all u ∈ E.

Lemma 2.2. Let β > 0 and r ≥ 1. Then for each θ > r there exists a positive
constant C = C(θ) such that for all s ∈ R

(eβs2
− 1)r ≤ C(eθβs2

− 1).

In particular, for r ∈ [1, α), we have that K(x)r (eβu2 − 1)r

|x|a
belongs to L1(R2) for

all u ∈ H1(R2).

Proof. The proof of the inequality above is a consequence of L’Hospital Rule (see
[12, Lemma 2.2] for a proof). Now, as K(x) ∈ L∞loc(R2), for R > 1 we have that∫

R2
K(x)r (eβu2 − 1)r

|x|a
dx

≤ C1

∫
|x|≤R

(eβu2 − 1)r

|x|a
dx+

∫
|x|>R

K(x)r(eβu2
− 1)r dx

≤ C2

∫
|x|≤R

(eθβu2 − 1)
|x|a

dx+ C3

∫
|x|>R

K(x)r(eθβu2
− 1) dx.

From Lemma 2.1 it follows that the first term is integrable. To estimate the other
term, we note that∫

|x|>R

K(x)r(eθβu2
− 1) dx =

∞∑
m=1

(θβ)m

m!

∫
|x|>R

K(x)r|u|2m dx.

By (V4) and Hölder inequality, we have∫
R2
K(x)r|u|2m dx

≤ C4‖u‖2m
2m + C5

∫
|x|>R0

(
V +(x)

)r/α|u|2m dx
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≤ C4‖u‖2m
2m + C5

[ ∫
|x|>R0

V +(x)|u|2 dx
]r/α[ ∫

|x|>R0

|u|2(mα−r)/(α−r)
](α−r)/α

.

By (V2) and the continuous imbedding E ↪→ Ls(R2), for all s ≥ 2, we can conclude
that ∫

R2
K(x)r|u|2m dx ≤ C‖u‖2m

E .

Thus, we obtain∫
R2
K(x)r (eβu2 − 1)r

|x|a
dx

≤ C1

∫
|x|≤R

(eθβu2 − 1)
|x|a

dx+ C

∞∑
m=1

1
m!

(
θβ‖u‖2

E

)m

≤ C1

∫
|x|≤R

(eθβu2 − 1)
|x|a

dx+ C
[
exp

(
θβ‖u‖2

E

)
− 1

]
<∞,

(2.5)

which completes the proof. �

Corollary 2.3. If v ∈ E, β > 0, q > 0 and ‖v‖E ≤ M with βM2

4πζ + a
2 < 1, then

there exists C = C(β,M, q, ζ) > 0 such that∫
R2
K(x)|v|q (eβv2 − 1)

|x|a
dx ≤ C‖v‖q

E .

Proof. By Hölder inequality,∫
R2
K(x)|v|q (eβv2 − 1)

|x|a
dx ≤ ‖v‖q

qs

[ ∫
R2
K(x)r (eβv2 − 1)r

|x|ar
dx

]1/r

, (2.6)

where r > 1 is close to 1 and s = r/(r− 1). Now, we consider θ > r close to r such
that θβM2

4πζ + ar
2 < 1. By (2.5) and Lemma 2.1, we have that∫

R2
K(x)|v|q (eβv2 − 1)

|x|a
dx

≤
{
C1

∫
|x|≤R

[e
θβM2

ζ

“
v

‖∇v‖2

”2

− 1]
|x|ar

dx+ C2

[
exp

(
θβM2

)
− 1

] }1/r

‖v‖q
qs

≤ C3‖v‖q
E .

(2.7)

�

To show that the weak limit of a Palais-Smale sequence in E is a weak solution of
(1.1) we will use the following convergence result, which is a version of Lemma 2.1
in [6].

Lemma 2.4. Let Ω ⊂ R2 be a bounded domain and f : R → R a continuous
function. Then for any sequence (un) in L1(Ω) such that un → u in L1(Ω),

g(x)f(un)
|x|a

∈ L1(Ω) and
∫

Ω

g(x)|f(un)un|
|x|a

dx ≤ C1,

up to a subsequence we have
g(x)f(un)

|x|a
→ g(x)f(u)

|x|a
in L1(Ω).
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Proof. It suffices to prove∫
Ω

|g(x)f(un)|
|x|a

dx→
∫

Ω

|g(x)f(u)|
|x|a

dx.

Since u, g(x)f(u)/|x|a ∈ L1(Ω), for each ε > 0 there is a δ > 0 such that for any
measurable subset A ⊂ Ω,∫

A

|u|dx < ε and
∫

A

|g(x)f(u)|
|x|a

dx < ε if |A| ≤ δ. (2.8)

Next using the fact that u ∈ L1(Ω) we find M1 > 0 such that

|{x ∈ Ω : |u(x)| ≥M1}| ≤ δ. (2.9)

Let M = max{M1, C1/ε}. We write∣∣∣ ∫
Ω

|g(x)f(un)|
|x|a

dx−
∫

Ω

|g(x)f(u)|
|x|a

dx
∣∣∣ ≤ I1,n + I2,n + I3,n,

where

I1,n =
∫

[|un|≥M ]

|g(x)f(un)|
|x|a

dx,

I2,n =
∣∣∣ ∫

[|un|<M ]

|g(x)f(un)|
|x|a

dx−
∫

[|u|<M ]

|g(x)f(u)|
|x|a

dx
∣∣∣,

I3,n =
∫

[|u|≥M ]

|g(x)f(u)|
|x|a

dx.

Now we estimate each integral separately.

I1,n =
∫

[|un|≥M ]

|g(x)f(un)|
|x|a

dx =
∫

[|un|≥M ]

|g(x)f(un)un|
|un||x|a

dx ≤ C1

M
≤ ε.

From (2.8) and (2.9), we have I3,n ≤ ε.
Next we claim I2,n → 0 as n→ +∞. Indeed,

I2,n ≤
∣∣∣ ∫

Ω

X[|un|<M ](|g(x)f(un)| − |g(x)f(u)|)
|x|a

dx
∣∣∣

+
∣∣∣ ∫

Ω

(X[|un|<M ] −X[|u|<M ])|g(x)f(u)|
|x|a

dx
∣∣∣

and gn(x) = X[|un|<M ](|g(x)f(un)| − |g(x)f(u)|) → 0 almost everywhere in Ω.
Moreover,

|gn(x)| ≤

{
|g(x)f(u)| if |un(x)| ≥M,

C + |g(x)f(u)| if |un(x)| < M,

where C = sup{|g(x)f(t)| : (x, t) ∈ Ω× [−M,M ]}. So, by the Lebesgue dominated
convergence theorem, we obtain∣∣∣ ∫

Ω

X[|un|<M ](|g(x)f(un)| − |g(x)f(u)|)
|x|a

dx
∣∣∣ → 0 as n→∞.

Moreover,

{x ∈ Ω : |un(x)| < M} \ {x ∈ Ω : |u(x)| < M} ⊂ {x ∈ Ω : |u(x)| ≥M}.
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Hence by (2.8),∣∣∣ ∫
Ω

(X[|un|<M ] −X[|u|<M ])|g(x)f(u)|
|x|a

dx
∣∣∣ ≤ ∫

[|u|≥M ]

|g(x)f(u)|
|x|a

dx < ε,

which completes the proof. �

3. The variational framework

We now consider the functional I given by

I(u) =
1
2

∫
R2

[
|∇u|2 + V (x)u2

]
dx−

∫
R2

g(x)F (u)
|x|a

dx−
∫

R2
h(x)udx. (3.1)

Under our assumptions we have that I is well-defined and is C1 on E. Indeed, by
(H2), given ε > 0 there exists δ > 0 such that |f(s)| ≤ ε|s| always that |s| < δ.
On the other hand, for β > 0 we have that there exists C > 0 such that |f(s)| ≤
C(eβs2 − 1) for all s ≥ δ. Thus

|f(s)| ≤ ε|s|+ C1(eβs2
− 1), (3.2)

for all s ∈ R. By (H1), (H3), (V4) and Hölder inequality, we obtain∫
R2

g(x)F (u)
|x|a

dx ≤ ε

∫
R2

K(x)u2

|x|a
dx+ C2

∫
R2

K(x)|u|(eβu2 − 1)
|x|a

dx

≤ C1

∫
|x|≤1

u2

|x|a
dx+ ε

∫
|x|>1

K(x)u2 dx

+ C2‖u‖s

[ ∫
R2
K(x)r (eβu2 − 1)r

|x|ar
dx

]1/r

,

where r ∈ [1, α) and s = r/(r − 1), with ar < 2. Considering the continuous
imbedding E ↪→ Ls

K(x)(R
2) for s ≥ 2, a ∈ [0, 2) and Lemma 2.2, it follows that

g(x)F (u)/|x|a ∈ L1(R2) which implies that I is well defined.
Next, we show that I is in C1 on E. Indeed, lettingN(u) =

∫
R2 g(x)F (u)/|x|a dx,

we have by dominated convergence theorem that

〈I ′(u), φ〉 = 〈u, φ〉E − lim
t→0

1
t
[N(u+ tφ)−N(u)]−

∫
R2
h(x)φdx

= 〈u, φ〉E −
∫

R2

g(x)f(u)φ
|x|a

dx−
∫

R2
h(x)φdx,

for all φ ∈ E. As I ′(u) is linear and bounded, it suffices to show that the Gateaux
derivative of I is continuous. It is clear that the first and last term are C1. Hence,
it remains to prove that N is C1. Let un → u in E. By Proposition 2.7 in [12],
there exists a subsequence (unk

) in E and `(x) ∈ H1(R2) such that unk
(x) → u(x)

and |unk
(x)| ≤ `(x) almost everywhere in R2. Given ξ ∈ E, we define

Hnk
(x) =

g(x)f(unk
(x))ξ(x)

|x|a
.

Then

Hnk
(x) → H(x) =

g(x)f(u(x))ξ(x)
|x|a

almost everywhere in R2.



8 MANASSÉS DE SOUZA EJDE-2011/98

Using (3.2) and Lemma 2.1, we obtain that Hnk
(x) is integrable, it follows by

dominated convergence theorem that

lim
k→∞

∫
R2
Hnk

(x) dx =
∫

R2
H(x) dx.

Thus, for each ξ ∈ E with ‖ξ‖E = 1, we obtain

lim
k→∞

‖N ′(unk
)−N ′(u)‖E∗ = lim

k→∞
sup

‖ξ‖E=1

|〈N ′(unk
)−N ′(u), ξ〉|

= sup
‖ξ‖E=1

lim
k→∞

∫
R2

g(x)[f(unk
)− f(u)]ξ

|x|a
dx = 0

and the proof is complete.
The geometric conditions of the mountain-pass theorem for the functional I are

established by our next two lemmas.

Lemma 3.1. Suppose that (V1)-(V2), (V4), (H1)-(H3) and (1.2) are satisfied.
Then there exists δ > 0 such that for each h ∈ H1(R2) with ‖h‖H−1 < δ, there
exists ρh > 0 such that

I(u) > 0 whenever ‖u‖E = ρh.

Proof. In the same manner that (3.2) was obtained, we can see that

|f(s)| ≤ ε|s|+ C1|s|q(eβs2
− 1), (3.3)

with q > 2. Thus, considering the continuous imbedding E ↪→ Ls
K(x)(R

2) for s ≥ 2
(see [17, Proposition 3.1]), we obtain for ε > 0 sufficiently small

I(u) ≥ 1
2
‖u‖2

E − ε

∫
R2

K(x)u2

|x|a
dx− C1

∫
R2

K(x)|u|q+1(eβu2 − 1)
|x|a

dx−
∫

R2
h(x)u dx

≥
(1
2
− ε

)
‖u‖2

E − C1

∫
R2

K(x)|u|q+1(eβu2 − 1)
|x|a

dx−
∫

R2
h(x)u dx

and since βσ2

4πζ + a
2 < 1 if ‖u‖E < σ is sufficiently small, we can apply Corollary 2.3

to conclude that

I(u) ≥
(1
2
− ε

)
‖u‖2

E − C‖u‖q+1
E − ‖h‖H−1‖u‖E .

Thus there exists ρh > 0 such that I(u) > 0 whenever ‖u‖E = ρh and ‖h‖H−1 is
sufficiently small. Indeed, for ε > 0 sufficiently small and q > 2, we may choose
ρh > 0 such that (1

2
− ε

)
ρh − C1ρ

q
h > 0.

Thus, for ‖h‖H−1 sufficiently small there exists ρh > 0 such that I(u) > 0 if
‖u‖E = ρh. �

Lemma 3.2. Assume that (H1), (H3) and (1.2) are satisfied. Then there exists
e ∈ E with ‖e‖E > ρh such that

I(e) < inf
‖u‖=ρh

I(u).
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Proof. Let u ∈ E\{0} with compact support and u ≥ 0. Integrating (H3) we obtain
that there exist c, d > 0 such that

F (s) ≥ csµ − d

for all s ∈ R. Thus, denoting K = supp(u) and using (H1), we have that

I(tu) ≤ t2

2
‖u‖2

E − ctµ
∫

K

g(x)uµ

|x|a
dx+ d

∫
K

g(x)
|x|a

dx− t

∫
R2
h(x)u dx

≤ t2

2
‖u‖2

E − C1t
µ

∫
K

uµ

|x|a
dx+ C2(|K|)− t

∫
R2
h(x)u dx,

for all t > 0, which implies that I(tu) → −∞ as t→∞. Setting e = tu with t large
enough, the proof is complete. �

To find an appropriate ball to use a minimization argument we need the following
result.

Lemma 3.3. If f(s) satisfies (1.2) and h 6= 0, there exist η > 0 and v ∈ E with
‖v‖E = 1 such that I(tv) < 0 for all 0 < t < η. In particular,

inf
‖u‖≤η

I(u) < 0.

Proof. For each h ∈ H−1, by applying the Riesz representation theorem in the
space E, the problem

−∆v + V (x)v = h, x ∈ R2

has a unique weak solution v in E. Thus,∫
R2
h(x)v dx = ‖v‖2

E > 0 for each h 6= 0.

Since f(0) = 0, by continuity, it follows that there exists η > 0 such that

d
dt
I(tv) = t‖v‖2

E −
∫

R2

g(x)f(tv)v
|x|a

dx−
∫

R2
h(x)v dx < 0,

for all 0 < t < η. Using that I(0) = 0, it must hold that I(tv) < 0 for all
0 < t < η. �

4. Palais-Smale sequences

To prove that a Palais-Smale sequence converges to a solution of problem (1.1)
we need to establish the following lemma.

Lemma 4.1. Assume (H3) and that f(s) satisfies (1.2). Let (un) in E such that
I(un) → c and I ′(un) → 0. Then ‖un‖E ≤ C,∫

R2

g(x)|f(un)un|
|x|a

dx ≤ C and
∫

R2

g(x)F (un)
|x|a

dx ≤ C.

Proof. Let (un) ⊂ E be a sequence such that I(un) → c and I ′(un) → 0, that is,
for any ϕ ∈ E,

1
2
‖un‖2

E −
∫

R2

g(x)F (un)
|x|a

dx−
∫

R2
h(x)un dx = c+ δn (4.1)

and∣∣∣ ∫
R2

[∇un∇ϕ+V (x)unϕ] dx−
∫

R2

g(x)f(un)ϕ
|x|a

dx−
∫

R2
h(x)ϕ dx

∣∣∣ ≤ εn‖ϕ‖E , (4.2)
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where δn → 0 and εn → 0 as n → ∞. Taking ϕ = un in (4.2) and using (H3), we
have

µ(c+ δn) + εn‖un‖E + (µ− 1)
∫

R2
h(x)un dx

≥ (
µ

2
− 1)‖un‖2

E −
∫

R2

g(x)[µF (un)− f(un)un]
|x|a

dx

≥ (
µ

2
− 1)‖un‖2

E .

Consequently, ‖un‖E ≤ C and by (4.1) and (4.2), we obtain∫
R2

g(x)F (un)
|x|a

dx ≤ C and
∫

R2

g(x)|f(un)un|
|x|a

dx ≤ C.

�

Corollary 4.2. Let (un) a Palais-Smale sequence for I. Then (un) has a sub-
sequence, still denoted by (un), which is weakly convergent to a weak solution of
(1.1).

Proof. Using Lemma 4.1, up to a subsequence, we can assume that un ⇀ u weakly
in E. Now, from (4.2), taking the limit and using Lemma 2.4, we have∫

R2
(∇u∇ϕ+ V (x)uϕ)dx−

∫
R2

g(x)f(u)
|x|a

ϕdx−
∫

R2
h(x)ϕdx = 0,

for all ϕ ∈ C∞0 (R2). Since C∞0 (R2) is dense in E, we conclude that u is a weak
solution of (1.1). �

5. Proof of Theorem 1.1

Let (un) in E such that I(un) → c and I ′(un) → 0. We will use the Mountain-
Pass Theorem to obtain a nontrivial solution of (1.1). Since

‖un − u‖2
E = 〈I ′(un)− I ′(u), un − u〉+

∫
R2

g(x)[f(un)− f(u)]
|x|a

(un − u) dx,

we have that the Palais-Smale condition is satisfied if

lim
n→∞

∫
R2

g(x)[f(un)− f(u)]
|x|a

(un − u) dx = 0.

By (3.2) and Hölder inequality, we conclude that∫
R2

g(x)[f(un)− f(u)]
|x|a

|un − u|dx

≤ C1

∫
R2
K(x)|x|−a(|un|+ |u|)|un − u|dx

+ C2

∫
R2
K(x)

[ (eβu2
n − 1)
|x|a

+
(eβu2 − 1)

|x|a
]
|un − u|dx

≤ C1

∫
R2
K(x)|x|−a(|un|+ |u|)|un − u|dx

+ C2‖un − u‖s

{∫
R2
K(x)r

[ (eβu2
n − 1)r

|x|ar
+

(eβu2 − 1)r

|x|ar

]
dx

}1/r

,
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with r > 1 close to 1 such that ar < 2 and s = r/(r− 1). Since f(s) has subcritical
growth and E ↪→ Ls(R2) is compact for s ≥ 2, the second term converges to zero.

Now, to estimate the other term we will use Hölder inequality, Young inequality
and that ‖un‖E ≤ C, thus we obtain∫

R2
K(x)|x|−a(|un|+ |u|)|un − u|dx

≤
√

2
( ∫

R2

K(x)|un|2

|x|a
dx+

∫
R2

K(x)|u|2

|x|a
dx

)1/2( ∫
R2

K(x)|un − u|2

|x|a
dx

)1/2

≤ C1

{
C2‖un − u‖2

s +
∫

R2
K(x)|un − u|2 dx

}1/2

.

(5.1)
Using (V4), we have∫

R2
K(x)|un − u|2 dx

=
∫
|x|≤R0

K(x)|un − u|2 dx+
∫
|x|>R0

K(x)|un − u|2 dx

≤ max
|x|≤R0

{K(x)}
∫
|x|≤R0

|un − u|2 dx

+
∫
|x|>R0

c0[1 + (V +(x))1/α]|un − u|2 dx

≤ C
{
‖un − u‖2

2 +
∫
|x|>R0

V +(x)1/α|un − u|2 dx
}
.

(5.2)

By Hölder inequality, we obtain∫
|x|>R0

V +(x)1/α|un − u|2 dx

≤
[ ∫

|x|>R0

V +(x)|un − u|2 dx
]1/α[ ∫

|x|>R0

|un − u|(2α−2)/(α−1) dx
](α−1)/α

(5.3)

and by (V1), we have∫
|x|>R0

V +(x)|un − u|2 dx

=
∫

R2
V (x)|un − u|2 dx−

∫
|x|≤R0

V (x)|un − u|2 dx−
∫
|x|>R0

V −(x)|un − u|2 dx

≤
∫

R2

[
|∇(un − u)|2 + V (x)|un − u|2

]
dx.

(5.4)
From (5.3), (5.4) in (5.2) and using (V3), we obtain∫

R2
K(x)|un − u|2 dx

≤ C
{
‖un − u‖2

2 +
(
‖un − u‖2

E +D‖un − u‖2
2

)1/α ‖un − u‖(2α−2)/α
(2α−2)/(α−1)

}
≤ C

{
‖un − u‖2

2 +
(
1 +

D

λ1

)1/α‖un − u‖2/α
E ‖un − u‖(2α−2)/α

(2α−2)/(α−1)

}
.

(5.5)
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Thus, by (5.1),∫
R2
K(x)|x|−a(|un|+ |u|)|un − u|dx

≤ C1

{
C2‖un − u‖2

s + ‖un − u‖2
2 + C3‖un − u‖2/α

E ‖un − u‖2(α−1)/α
2

}1/2
.

By compact embedding of E in Ls(R2) for any s ≥ 2, we obtain∫
R2
K(x)|x|−a(|un|+ |u|)|un − u|dx→ 0 as n→ +∞.

Hence the Palais-Smale condition is satisfied. Therefore, the functional I has a
critical point uM at minimax level

cM = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > 0,

Γ = {γ ∈ C(E,R) : γ(0) = 0, γ(1) = e}.

On the other hand, if h 6≡ 0, then we obtain a second solution of (1.1) with negative
energy. Indeed, let ρh be as in Lemma 3.1. Since Bρh

is a complete metric space
with the metric given by norm of E, convex and the functional I is of class C1 and
bounded below on Bρh

, it follows by Ekeland variational principle that there exists
a sequence (un) in Bρh

such that

I(un) → c0 = inf
‖u‖E≤ρh

I(u) and ‖I ′(un)‖E′ → 0. (5.6)

We now apply the argument above again to conclude that (1.1) possesses a solution
u0 such that I(u0) = c0 < 0.
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