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UNIQUE CONTINUATION FOR SOLUTIONS OF
p(x)-LAPLACIAN EQUATIONS

JOHNNY CUADRO, GABRIEL LÓPEZ

Abstract. We study the unique continuation property for solutions to the
quasilinear elliptic equation

div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u = 0 in Ω,

where Ω is a smooth bounded domain in RN and 1 < p(x) < N for x in Ω.

1. Introduction and preliminary results

In the recent years increasing attention has been paid to the study of differen-
tial and partial differential equations involving variable exponent conditions. The
interest in studying such problems was stimulated by their applications in elastic
mechanics, fluid dynamics and calculus of variations. For information on mod-
elling physical phenomena by equations involving p(x)-growth condition we refer
to [1, 36, 41]. The understanding of such physical models has been facilitated by
the development of variable Lebesgue and Sobolev spaces, Lp(x) and W 1,p(x), where
p(x) is a real-valued function. Variable exponent Lebesgue spaces appeared for the
first time in literature as early as 1931 in an article by Orlicz [32]. The spaces Lp(x)

are special cases of Orlicz spaces Lϕ originated by Nakano [31] and developed by
Musielak and Orlicz [29, 30], where f ∈ Lϕ if and only if

∫
ϕ(x, |f(x)|)dx < ∞

for a suitable ϕ. Variable exponent Lebesque spaces on the real line have been
independently developed by Russian researchers. In that context we refer to the
studies of Tsenov [40], Sharapudinov [38] and Zhikov [44, 45].

This article is motivated by the phenomena that can be modelled with the equa-
tion

−div(|∇u|p(x)−2∇u) = f(x, u) in Ω
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary and 1 < p(x),
p(x) ∈ C(Ω). Our goal to show strong unique continuation nontrivial for weak
solutions for (1.1) in the generalized Sobolev space W 1,p(x)(Ω) for some particular
nonlinearities of the type f(x, u). Problems of type (1.1) have been intensively
studied in the past decades. We refer to [2, 11, 12, 24, 25, 26, 27, 34, 35, 43], for
some interesting results. We point out the presence in (1.1) of the p(x)-Laplace

2000 Mathematics Subject Classification. 35D05, 35J60, 58E05.
Key words and phrases. p(x)-Laplace operator; unique continuation.
c©2012 Texas State University - San Marcos.
Submitted September 8, 2011. Published January 12, 2012.

1



2 J. CUADRO, G. LÓPEZ EJDE-2012/07

operator. This is a natural extension of the p-Laplace operator, with p a positive
constant. However, such generalizations are not trivial since the p(x)-Laplace oper-
ator possesses a more complicated structure than p-Laplace operator, for example
it is inhomogeneous.

We recall some definitions and properties of the variable exponent Lebesgue-
Sobolev spaces Lp(·)(Ω) and W

1,p(·)
0 (Ω), where Ω is a bounded domain in RN .

Roughly speaking, anisotropic Lebesgue and Sobolev spaces are functional spaces
of Lebesgue’s and Sobolev’s type in which different space directions have different
roles.

Set C+(Ω) = {h ∈ C(Ω) : minx∈Ω h(x) > 1}. For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(·)(Ω) =
{
u : u is a measurable real-valued function

such that
∫

Ω

|u(x)|p(x) dx < ∞
}
,

endowed with the so-called Luxemburg norm

|u|p(·) = inf
{
µ > 0;

∫
Ω

|u(x)
µ
|p(x) dx ≤ 1

}
,

which is a separable and reflexive Banach space. For basic properties of the variable
exponent Lebesgue spaces we refer to [22]. If 0 < |Ω| < ∞ and p1, p2 are variable
exponents in C+(Ω) such that p1 ≤ p2 in Ω, then the embedding Lp2(·)(Ω) ↪→
Lp1(·)(Ω) is continuous, [22, Theorem 2.8].

Let Lp′(·)(Ω) be the conjugate space of Lp(·)(Ω), obtained by conjugating the
exponent pointwise that is, 1/p(x) + 1/p′(x) = 1, [22, Corollary 2.7]. For any
u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the following Hölder type inequality∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(·)|v|p′(·) (1.2)

is valid.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by the p(·)-modular of the Lp(·)(Ω) space, which is the mapping ρp(·) :
Lp(·)(Ω) → R defined by

ρp(·)(u) =
∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(·)(Ω) then the following relations hold

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1) (1.3)

|u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·) (1.4)

|u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·) (1.5)

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0, (1.6)

since p+ < ∞. For a proof of these facts see [22]. Spaces with p+ = ∞ have been
studied by Edmunds, Lang and Nekvinda [8].
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Next, we define W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖p(x) = |∇u|p(x).

The space (W 1,p(x)
0 (Ω), ‖ ·‖p(x)) is a separable and reflexive Banach space. We note

that if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) ↪→

Lq(x)(Ω) is compact and continuous, where p∗(x) = Np(x)/(N − p(x)) if p(x) < N
or p∗(x) = +∞ if p(x) ≥ N [22, Theorem 3.9 and 3.3] (see also [10, Theorem 1.3
and 1.1]).

The bounded variable exponent p is said to be Log-Hölder continuous if there is
a constant C > 0 such that

|p(x)− p(y)| ≤ C

− log(|x− y|)

for all x, y ∈ RN , such that |x − y| ≤ 1/2. A bounded exponent p is Log-Hölder
continuous in Ω if and only if there exists a constant C > 0 such that

|B|p
−
B−p+

B ≤ C

for every ball B ⊂ Ω [7, Lemma 4.1.6, page 101]. As a result of the condition
Log-Hölder continuous we have

r−(p+
B−p−B) ≤ C, (1.7)

C−1r−p(y) ≤ rp(x) ≤ Cr−p(y) (1.8)

for all x, y ∈ B := B(x0, r) ⊂ Ω and the constant C depends only on the constant
Log-Hölder continuous. Under the Log-Hölder condition smooth function are dense
in variable exponent Sobolev space [7, Proposition 11.2.3, page 346].

Concerning to the Unique Continuation in his paper on Schrödinger semigroup
[39], B.Simon formulated the following conjecture:

Let Ω be a bounded subset RN and V a function defined in Ω
whose extension with values outside Ω belong to the Stummel-Kato
S(RN ). Then the Schrödinger operator H := −∆+V has the unique
continuation property.

That is, u ∈ H1(Ω) is a solutions of equations Hu = 0 which vanishes of infinite
order (For definitions see section 3.) at one point x0 ∈ Ω, then u must be identically
zero in Ω. A positive answer to Simon ’s conjeture was given by Fabes,Garofalo
and Lin for radial potential V .

At the same time Chanilo and Sawyer in [5] proved the unique continuation
property for solutions of the inequality |∆u| ≤ |V ||u|, assuming V in the Morrey
spaces Lr,N−2r(RN ) for r > N−1

2 . Jarison and Kening proved the continuation
unique for Schrödinger operator [20].The same work is done Gossez and Figueiredo,
but for linear elliptic operator in the case V ∈ L

N
2 (Ω), N > 2, [14]. Also, Loulit

extended this property to N = 2 by introducing Orlicz’s space [23]. In this paper
we extended to Variable Exponent Space a result of Zamboni [42] to the solution
of a quasilinear elliptic equation

div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u = 0 in Ω, (1.9)

where 1 < p(x) < N , V ∈ L
N

p(x) (Ω).
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2. Fefferman’s type inequality

For every u ∈ W
1,p(·)
0 (Ω) the norm Poincaré inequality

|u|Lp(·)(Ω) ≤ cdiam(Ω)|∇u|Lp(·)

c = C(N,Ω, c log(p)) holds (we refer to [19] for notation and proofs). Nevertheless,
the modular inequality∫

Ω

|u|p(x)dx ≤ C

∫
Ω

|∇u|p(x)dx, ∀u ∈ W
1,p(·)
0 (Ω) (2.1)

not always holds (see [12, Thm. 3.1]). It is known that (2.1) holds if, for instance:
i) N > 1, and the function f(t) := p(xo + tw) is monotone [12, Thm.3.4] with
xo + tw with an appropriate setting in Ω; ii) if there exists a function ξ ≥ 0 such
that ∇p · ∇ξ ≥ 0, ‖∇ξ‖ 6= 0 [3, Thm. 1]; iii) If there exists a : Ω → RN bounded
such that div a(x) ≥ a0 > 0 for all x ∈ Ω̄ and a(x) · ∇p(x) = 0 for all x ∈ Ω, [28,
Thm. 1]. To the best of our knowledge necessary and sufficient conditions in order
to ensure that

inf
u∈W 1,p(·)(Ω)/{0}

∫
Ω
|∇u|p(x)∫

Ω
|u|p(x)

> 0

has not been obtained yet, except in the case N = 1, [12, Thm. 3.2]. The following
definition is in order.

Definition 2.1. We say that p(·) belongs to the Modular Poincaré Inequality Class,
MPIC(Ω), if there exists necessary conditions to ensure that∫

Ω

|u|p(x) ≤ C

∫
Ω

|∇u|p(x), ∀u ∈ W
1,p(·)
0 (Ω)

C = C(N,Ω, clog(p)) > 0 holds.

Fefferman [13] proved the inequality∫
RN

|u(x)|p|f(x)| dx ≤ C

∫
RN

|∇u(x)|p dx ∀u ∈ C∞
0 (RN ). (2.2)

in the case p = 2, assuming f in the Morrey’s space Lr,N−2r(RN ), with 1 < r ≤ N
2 .

Later in [37] Schechter showed the same result taking f in the Stummel-Kato class
S(RN ). Chiarenza and Frasca [6] generalized Fefferman’s result proving (2.2) under
the assumption f ∈ Lr,N−pr(RN ), with 1 < r < N

p and 1 < p < N . Zamboni [42]
generalized Schecter’s result proving (2.2) under the assumption f ∈ M̃p(RN ),
with 1 < p < N . We stress out that is not possible to compare the assumptions
f ∈ Lr,N−pr(RN ) the Morrey class and f ∈ S(RN ), the Stumel-Kato class. The
theory for a variable exponent spaces is a growing area but Modular Fefferman type
inequalities are more scarce than Poincaré inequalities in variable exponent setting.
In the following theorem we provide a basic Fefferman’s type result, for variable
exponent spaces.

Theorem 2.2. Let p be a Log-Hölder continuous exponent with 1 < p(x) < N ,
and p ∈ MPIC(Ω). Let V ∈ L1

loc(Ω) with 0 < ε < V (x) a.e.. Then there exist a
positive constant C = C(N,Ω, clog(p)) such that∫

Ω

V (x)|u(x)|p(x) dx ≤ C

∫
Ω

|∇u(x)|p(x) dx

for any u ∈ W
1,p(x)
0 (Ω).
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Proof. Let u ∈ W
1,p(x)
0 (Ω) supported in B(x0, r). Given that V ∈ L1

loc(Ω) the
function

w(x) :=
( ∫ x1

x0
1

V (ξ1, x2, . . . , xn)dξ1, . . . ,

∫ xN

x0
N

V (x1, . . . , xN−1, ξN )dξN

)
,

where x0 = (x0
1, . . . , x

0
N ) and x = (x1, . . . , xN ) ∈ B(x0, r), is well defined. Notice

that
∫ xi

x0
i

V (x1, . . . , ξi, . . . , xn)dξi ∈ C[x0
i , xi] for i = 1, . . . , N [4, Lemme VIII.2]. So

that div w(x) = NV (x). Moreover

|V (x)|L1(B(x0,r)) ≥
∫ x1

x0
1

· · ·
∫ xN

x0
N

V (ξ) dξn · · · dξ1

where ξ = (ξ1, . . . , ξN ). Therefore, |w(x)| ≤
√

N |V (x)|L1(B(x0,r)).
A direct calculation leads to

div(|u|p(x)w(x)) = |u(x)|p(x) div w(x) + p(x)|u|p(x)−2u∇u · w(x)

+ |u|p(x) log u∇p(x) · w(x).

Now the Divergence Theorem implies
∫

B(x0,r)
div (|u|p(x)w(x)) = 0, and so∫

B(x0,r)

|u(x)|p(x) div w(x)dx ≤ p+

∫
B(x0,r)

|u(x)|p(x)−1|∇u(x)||w(x)|dx

+
∫

B(x0,r)

|u(x)|p(x) log |u(x)||∇p(x)||w(x)|dx.

Set

I1 := p+

∫
B(x0,r)

|u(x)|p(x)−1|∇u(x)||w(x)|dx

and

I2 :=
∫

B(x0,r)

|u(x)|p(x) log |u(x)||∇p(x)||w(x)|dx.

Now we estimate I2 by distinguishing the case when |u(x)| ≤ 1 and |u(x)| > 1.
Notice that the relations

sup
0≤t≤1

tη| log t| < ∞, (2.3)

sup
t>1

t−η log t < ∞ (2.4)

hold for η > 0. Let Ω1 =: {x ∈ Br : |u(x)| ≤ 1} and Ω2 =: {x ∈ Br : |u(x)| > 1},
then by (2.3) and (2.4) we have

I2 ≤ C1

∫
Ω1

|w(x)||u(x)|p(x)−η1dx + C2

∫
Ω2

|w(x)||u(x)|p(x)+η2dx.

We can choose k ∈ N such that p(x) − 1/k ≥ p−. Since u ∈ Lp−(B(x0, r)) and in
Ω1, |u(x)| ≤ 1 we have

|u(x)|p(x)−1/n ≤ |u(x)|p
−
,

for n > k. The Lebesgue Dominated Convergence Theorem implies

lim
n→∞

∫
Ω1

|u(x)|p(x)−1/ndx =
∫

Ω1

|u(x)|p(x)dx.
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For Ω2 we can choose k′ such that p(x) + 1/k′ ≤ (p(x))∗ = Np(x)/(N − p(x)). So

|u(x)|p(x)+1/n ≤ |u(x)|(p(x))∗ ,

for n > k′, and x ∈ Ω2. Since u ∈ L(p(x))∗(B(x0, r)) [7, Thm. 8.3.1] we may use
the Lebesgue Theorem again to obtain

lim
n→∞

∫
Ω2

|u(x)|p(x)+1/ndx =
∫

Ω2

|u(x)|p(x)dx.

Given that p ∈ MPI(Ω), we have

I2 ≤ C

∫
B(x0,r)

|u|p(x)dx ≤ C

∫
B(x0,r)

|∇u|p(x)dx.

Now we estimate I1 by using the modular Young’s inequality [19, Theorem 3.2.21],

I1 ≤ p+C1

∫
B(x0,r)

|w(x)|p(x)/(p(x)−1)|u(x)|p(x) + p+C2

∫
B(x0,r)

|∇u(x)|p(x).

Again, since p ∈ MPI(Ω) we obtain

I1 ≤ C

∫
B(x0,r)

|∇u|p(x)dx.

Finally, recalling that div w(x) = NV (x) we obtain

N

∫
B(xo,r)

V (x)|u(x)|p(x) ≤ C

∫
B(x0,r)

|∇u(x)|p(x)dx,

which leads to the claim of the theorem. �

3. Unique Continuation

Consider the equation

Hu := div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u = 0, x ∈ Ω, (3.1)

u ∈ W
1.p(x)
loc (Ω), 1 < p(x) < N , V ∈ L

N
p(x) (Ω). A weak solution of (3.1) is a function

u ∈ W
1.p(x)
loc (Ω) such that∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx +
∫

Ω

V (x)|u|p(x)−2u · ϕdx = 0, (3.2)

for all ϕ ∈ W
1,p(x)
0 (Ω).

Note that L
N

p(x) (Ω) implies V ∈ L1(Ω) by [19, Theorem 3.3.1]. The main interest
of this section is to prove some unique continuation results for solution of (3.1)
according to the following definitions.

Definition 3.1. A function u ∈ L
p(x)
loc (Ω) vanishes of infinite order in the p(x)-mean

at a point x0 ∈ Ω if , for each k ∈ N

lim
R→0

1
Rk

∫
|x−x0|<R

|u|p(x)dx = 0. (3.3)

Definition 3.2. The operator H has the unique continuation property in Ω if the
only solution to Hu = 0 such that u vanishes of infinity order in the p(x)-mean at
a point x0 ∈ Ω is u must be identically zero in Ω.
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Lemma 3.3 ([42]). Assume w ∈ L1locΩ, w ≥ 0 almost everywhere in Ω, w 6≡ 0.
If there exists C such that∫

B(x0,2r)

w(x) dx ≤ C

∫
B(x0,r)

w(x) dx, ∀r > 0

Then w(x) has no zero of infinity order in Ω.

Recall that Ω ⊂ RN is a bounded open set. We want to prove estimates inde-
pendent of p+ for bounded solutions. For this purpose we assume throughout this
section that 1 < p− ≤ p+ < ∞ and p is Lipschitz continuous. In particular, p
is Log-Hölder continuous. The new feature in the estimate is the choice of a test
function which include the variable exponent. This has both advantages and dis-
advantages: we need to assume that p is differentiable almost everywhere, but, on
the other hand, we avoid terms involving p+, which would be impossible to control
later, see[19].

In this section we prove the unique continuation property for the operator Hu,
defined in 3.1 extending in some sense the results obtained by Zamboni [42] to
variable exponent spaces. To prove this property we need the following Lemma.

Lemma 3.4. (Caccioppoli estimate) Let p : Ω → (1, N) be an exponent with 1 <
p− ≤ p+ < ∞ and such that p ∈ MPI(Ω) is Lipschitz continuous. Let u be a
non negative solution of (3.1) in Ω and η : Ω → [0, 1] be a Lipschitz function with
compact support in Ω satisfying η log 1

η ≤ a|∇η| a.e. in
{
η > 0

}
for some constant

a > 0. Then ∫
Ω

|∇ log u|p(x)ηp(x) dx ≤ C

∫
Ω

|η|p(x) dx

for non-negative Lipschitz function η ∈ C∞
0 .

Proof. Let x0 ∈ Ω, Let B(x0, h) be a ball such that B(x0, 2h) is contained in Ω.
Consider any ball B(x0, r) with r < h. Let η ∈ C∞

0 with compact support in
B(x0, 2r) such that η log 1

η ≤ a|∇η| a.e. in
{
x ∈ B2r : η > 0

}
for some constant

a > 0, and η = 1 in Br and |∇η| ≤ C
r . Then using

ϕ(x) = |u(x)|1−p(x)ηp(x)

as test function in (3.2) we obtain

0 =
∫

B2r

(1− p(x))ηp(x)|∇u|p(x)|u|−p(x) dx

−
∫

B2r

ηp(x)|∇u|p(x)−2∇u · ∇p(x)|u|1−p(x) log u

+
∫

B2r

p(x)ηp(x)−1∇u · ∇η|∇u|p(x)−2|u|1−p(x) dx

+
∫

B2r

|∇u|p(x)−2∇u · ∇p(x)|u|1−p(x)ηp(x) log η dx

+
∫

B2r

V |u|p(x)−2uηp(x)|u|1−p(x) dx;

therefore,

(p− − 1)
∫

B2r

ηp(x)|∇ log u|p(x) dx ≤ |I1|+ |I2|+ |I3|+ |I4|,
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where

I1 := −
∫

B2r

ηp(x)|∇u|p(x)−2∇u · ∇p(x)|u|1−p(x) log u dx,

I2 :=
∫

B2r

p(x)ηp(x)−1∇u∇η|∇u|p(x)−2|u|1−p(x) dx,

I3 :=
∫

B2r

|∇u|p(x)−2∇u∇p(x)|u|1−p(x)ηp(x) log η dx,

I4 :=
∫

B2r

V |u|p(x)−2uηp(x)|u|1−p(x) dx .

Now we estimate I1, I2, I3 and I4. We have

|I1| ≤
∫

B2r

ηp(x)|∇p(x)||∇u|p(x)−1|u|1−p(x) log u dx

≤
∫

B2r

ηp(x)|∇p(x)||∇u|p(x)−1|u|1−p(x)|u|±η dx ,

where η > 0 and

±η =

{
−η, if |u| ≤ 1,

η, if |u| > 1.

Using the Lebesgue Dominated Convergence Theorem as in the proof of Theorem
2.2 and Young’s inequality we obtain

I1 ≤
∫

B2r

ηp(x)|∇p(x)||∇u|p(x)−1|u|1−p(x) dx

≤ εCp

∫
B2r

ηp(x)|∇ log u|p(x)dx + εCp

∫
B2r

(1
ε

)p(x)−1
ηp(x)dx .

On the other hand,

|I2| ≤ p+|
∫

B2r

ηp(x)−1∇u · ∇η|∇u|p(x)−2|u|1−p(x) dx|

≤ p+

∫
B2r

ηp(x)−1|∇u||∇η||∇u|p(x)−2|u|1−p(x) dx

= p+

∫
B2r

ηp(x)−1|∇η||∇u|p(x)−1|u|1−p(x) dx

= p+

∫
B2r

|∇η|ηp(x)−1|∇ log u|p(x)−1 dx

≤ p+

∫
B2r

(
1
ε

)p(x)−1

|∇η|p(x)dx + p+ε

∫
B2r

|η|p(x)|∇ log u|p(x) dx .

For I3 we have

|I3| =
∣∣ ∫

B2r

|∇u|p(x)−2∇u · ∇p(x)|u|1−p(x)ηp(x)| log η| dx
∣∣

≤
∫

B2r

|∇u|p(x)−2|∇u||∇p(x)||u|1−p(x)ηp(x)| log η| dx

≤ L

∫
B2r

|∇u|p(x)−1|u|1−p(x)ηp(x)−1η| log η| dx
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= L

∫
B2r

ηp(x)−1|∇ log u|p(x)−1η log
1
η

dx

≤ aL

∫
B2r

|∇η|ηp(x)−1|∇ log u|p(x)−1 dx

≤ aL

∫
B2r

(
1
ε

)p(x)−1

|∇η|p(x)dx + aLε

∫
B2r

|η|p(x)|∇ log u|p(x) dx

and

I4 ≤
∫

B2r

V |u|p(x)−2uηp(x)|u|1−p(x) dx

≤
∫

B2r

V |u|p(x)−2|u|ηp(x)|u|1−p(x) dx

=
∫

B2r

V ηp(x) dx;

therefore,

(p− − 1)
∫

B2r

ηp(x)|∇ log u|p(x) dx

≤ (p+ + aL)ε
∫

B2r

ηp(x)|∇ log u|p(x) dx +
∫

B2r

V ηp(x) dx

+ (p+ + aL)
∫

B2r

(1
ε

)p(x)−1|∇η|p(x) dx

Let 0 < ε ≤ 1 such that ε < min
{
1, p−−1

2(p++aL)

}
. Since ( 1

ε )p(x)−1 ≤ 1
ε )p+−1, we

obtain ∫
B2r

ηp(x)|∇ log u|p(x) dx ≤ C

∫
B2r

|∇η|p(x) dx +
∫

B2r

V ηp(x) dx

and by Theorem 2.2, we have∫
B2r

ηp(x)|∇ log u|p(x) dx ≤ C

∫
B2r

|∇η|p(x) dx + C

∫
B2r

|∇η|p(x) dx

≤ C
(
p+, a, L,Ω

) ∫
B2r

|∇η|p(x) dx

= C

∫
B2r

|∇η|p(x) dx

Since C > 0, this completes the proof. �

Theorem 3.5. Let p : Ω → (1, N) be an exponent with 1 < p− ≤ p+ < ∞ and
such that p ∈ MPI(Ω) is Lipschitz continuous. Let u ∈ W 1,p(x)(Ω), u ≥ 0, be a
solution of (3.1), then u has no zero of infinite order in Ω, for all V ∈ L

N
p(x) (Ω).

Proof. Let ϕ(x) as in the proof of Lemma 3.4 then, we have∫
B2r

ηp(x)|∇ log u|p(x) dx ≤ C

∫
B2r

|∇η|p(x) dx.

And, since p(x) is Log-Hölder, r−p(x) ≤ Cr−p(x0) for all x0 ∈ B2r, by (1.7), we have∫
B2r

|∇η|p(x) dx ≤
∫

B2r

(C

r

)p(x)
dx
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≤ C

rp(x0)

∫
B2r

dx

≤ Cr−p(x0)|B2r|

≤ CrN−p(x0);

therefore, ∫
B2r

ηp(x)|∇ log u|p(x) dx ≤ CrN−p(x0)

and hence ∫
Br

|∇ log u|p(x) dx ≤ CrN−p(x0)

since η = 1 in Br. Now by the Poincaré inequality [7, Proposition 8.2.8],∫
Br

( |v − vBr |
r

)p(x)

dx ≤ C

∫
Br

|∇v|p(x) dx + C|Br|

for all v ∈ W 1,p(x)(Br). We apply this to the function v := log u:

–
∫

Br

( | log u− (log u)Br |
r

)p(x)

≤ C–
∫

Br

|∇ log u|p(x) dx + C

≤ Cr−p(x0)

by Log-Hölder continuity of p(x), we have

1
rp(x0)

–
∫

Br

| log u− (log u)Br
|p(x) dx ≤ –

∫
Br

( | log u− (log u)Br |
r

)p(x)

dx ≤ Cr−p(x0);

thus

–
∫

Br

| log u− (log u)Br |p(x) dx ≤ Cr−p(x0)rp(x0) = C,

and since

–
∫

Br

| log u− (log u)Br | dx ≤ –
∫

Br

| log u− (log u)Br |p(x) + 1 dx ≤ C,

it follows that log u ∈ BMO(Br) uniformly, see [15]. The measure theoretic John-
Nirenberg [21] implies that there exist positive constants α and C depending on
the BMO-norm such that

–
∫

Br

eα|f−fBr | dx ≤ C,

where f := log u. Using this we can conclude that

–
∫

Br

eαf dx–
∫

Br

e−αf dx = –
∫

Br

eα(f−fBr ) dx–
∫

Br

e−α(f−fBr ) dx

≤
(
–
∫

Br

eα|f−fBr | dx
)2

≤ C

which implies ∫
Br

eαf dx

∫
Br

e−αf dx ≤ C|Br|2.

So ∫
Br

|u|α dx

∫
Br

|u|−α dx ≤ C|Br|2;



EJDE-2012/07 UNIQUE CONTINUATIO 11

that is, |u|α belongs to the Muckenhoupt class A2 for α > 0, see [15]. Now it is
well known that A2 implies the doubling property for |u|α, that is the assumption
of Lemma(3.3). So the conclusion follows for |u|α and hence also for u. �
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Université libre de bruxelles, 1995 (French).



12 J. CUADRO, G. LÓPEZ EJDE-2012/07
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Addendum posted on October 14, 2012

The authors want to correct the following misprints:
Page 3, line 4: the inclusion is just continuous.
Page 6, Definition 3.1 must say:
Definition 3.1 Assume w ∈ L1

loc(Ω), w ≥ 0 almost everywhere in Ω. We say that
w has a zero of infinite order at x0 ∈ Ω if

lim
σ→0

∫
B(x0,σ)

w(x) dx

|B(x0, σ)|k
= 0, ∀k > 0.

Page 6, Definition 3.2 must say:
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Definition 3.2 The operator H has the strong unique continuation property in
Ω if the only solution to Hu = 0 such that u vanishes of infinity order at a point
x0 ∈ Ω is u ≡ 0 in Ω.
Page 7, in Lemma 3.3 must say: w ∈ L1

loc(Ω).
Page 7, in Lemma 3.4: The constant C is missing.
Page 9, Theorem 3.5 should include: “w 6≡ 0 a.e.”
Page 9, In Theorem 3.5: The constant C is missing.

End of addendum.
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