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SIMPLICITY AND STABILITY OF THE FIRST EIGENVALUE
OF A (p; q) LAPLACIAN SYSTEM

GHASEM A. AFROUZI, MARYAM MIRZAPOUR, QIHU ZHANG

Abstract. This article concerns special properties of the principal eigenvalue

of a nonlinear elliptic system with Dirichlet boundary conditions. In particular,
we show the simplicity of the first eigenvalue of

−∆pu = λ|u|α−1|v|β−1v in Ω,

−∆qv = λ|u|α−1|v|β−1u in Ω,

(u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω),

with respect to the exponents p and q, where Ω is a bounded domain in RN .

1. Preliminaries

Eigenvalue problems for p-Laplacian operators subject to Zero Dirichlet bound-
ary conditions on a bounded domain have been studied extensively during the past
two decades, and many interesting results have been obtained. Most of the investi-
gations have relied on variational methods and deduced the existence of a principal
eigenvalue as a consequence of minimization results of appropriate functionals.

In this article, we study the eigenvalue system

−∆pu = λ|u|α−1|v|β−1v in Ω,

−∆qv = λ|u|α−1|v|β−1u in Ω,

(u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω),

(1.1)

where Ω ⊂ RN is a bounded domain, p, q > 1 and α, β are real numbers satisfying

α > 0, β > 0,
α

p
+
β

q
= 1. (1.2)

We mention that problem (1.1) aries in several fields of application. For instance, in
the case where p > 2, problem (1.1) appears in the study of non-Newtonian fluids,
pseudoplastics for 1 < p < 2, and in reaction-diffusion problems, flows through
porous media, nonlinear elasticity, petroleum extraction, astronomy and glaciology
for p = 4/3 (see [3, 5]).
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The principal eigenvalue λ1(p; q) of (1.1) is obtained using the Ljusternick-
Schnirelman theory by minimizing the functional

J(u, v) =
α

p

∫
Ω

|∇u|pdx+
β

q

∫
Ω

|∇v|qdx,

on C1-manifold: {(u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω); Λ(u, v) = 1}, where

Λ(u, v) =
∫

Ω

|u|α−1|v|β−1uv dx.

We recall that λ1(p, q) can be variationally characterized as

λ1(p, q) = inf{J(u, v), (u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω); Λ(u, v) = 1} (1.3)

From the maximum principle of Vázquez, see [12], we deduce that the corresponding
eigenpair of λ1(p; q); that is, (u; v) is such that u; v > 0. We call it positive
eigenvector.

Definition 1.1. An open subset Ω of RN is said to have the segment property if
for any x ∈ ∂Ω, there exists an open set Gx ∈ RN with x ∈ Gx and a pair yx of
RN\{0} such that if z ∈ Ω ∩Gx and t ∈ (0, 1), then z + tyx ∈ Ω.

This property allows us to push the support of a function u in Ω by a translation
. The following results play an important role in the proof of Theorem 2.

Lemma 1.2. Let Ω be a bounded domain in RN having the segment property. If
u ∈W 1,p(Ω) ∩W 1,s

0 (Ω) for some s ∈ (1, p), then u ∈W 1,p
0 (Ω).

2. Simplicity

Firstly we introduce

Ap(u, ϕ) =
∫

Ω

|∇u|pdx+ (p− 1)
∫

Ω

|∇ϕ|p
( |u|
ϕ

)p
dx

− p
∫

Ω

|u|p−2u

ϕp−1
|∇ϕ|p−2∇ϕ∇udx

=
∫

Ω

|∇u|pdx+
∫

Ω

∆pϕ

ϕp−1
|u|pdx.

(2.1)

Lemma 2.1 ([4]). For all (u, ϕ) ∈ (W 1,p
0 (Ω) ∩ C1,γ(Ω))2 with ϕ > 0 in Ω and

γ ∈ (0, 1), we have Ap(u, ϕ); i.e.,∫
Ω

|∇u|pdx ≥
∫

Ω

∆pϕ

ϕp−1
|u|pdx,

and if Ap(u, ϕ) = 0 there is c ∈ R such that u = cϕ.

Proof. Using Young’s inequality (since 1
p + p−1

p = 1) we can write, for ε > 0,

∇u|∇ϕ|p−2∇ϕu|u|
p−2

ϕp−1
≤ |∇u||∇ϕ|p−1

( |u|
ϕ

)p−1

≤ εp

p
|∇u|p +

p− 1
pεp
|u
ϕ
|p|∇ϕ|p.

(2.2)

By choosing ε = 1 and integration over Ω, we have

p

∫
Ω

|∇ϕ|p−2∇ϕ∇u
(u|u|p−2

ϕp−1

)
dx ≤

∫
Ω

|∇u|pdx+ (p− 1)
∫

Ω

|u
ϕ
|p|∇ϕ|pdx. (2.3)
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Therefore, we conclude that Ap(u, ϕ) ≥ 0.
If Ap(u, ϕ) = 0, then we obtain

p

∫
Ω

|∇ϕ|p−2∇ϕ∇u
(u|u|p−2

ϕp−1

)
dx =

∫
Ω

|∇u|pdx+ (p− 1)
∫

Ω

|u
ϕ
|p|∇ϕ|pdx. (2.4)

Letting ε = 1 in (2.2), we obtain∫
Ω

∇u|∇ϕ|p−2∇ϕu|u|
p−2

ϕp−1
dx =

∫
Ω

|∇u||∇ϕ|p−1
( |u|
ϕ

)p−1

dx. (2.5)

Combining the two inequalities, we deduce that |∇u| = |
(
u
ϕ

)
∇ϕ|, it follows that

∇u = η
(
u
ϕ

)
∇ϕ, where |η| = 1. On the other hand, Ap(u, ϕ) = 0 implies that

η = 1 and ∇( uϕ ) = 0; that is, there is c ∈ R such that u = cϕ. This completes the
proof. �

Theorem 2.2. Let λ1(p, q) be defined by (1.3), then λ1(p, q) is simple.

Proof. Let (u, v) and (ϕ,ψ) be two eigenvectors associated with λ1(p, q). We show
that there exist real numbers k1, k2 such that u = k1ϕ and v = k2ψ. Using Young’s
inequality, by (1.2) and the definition of λ1(p, q), we can write

J(ϕ,ψ) = λ1(p, q)Λ(ϕ,ψ)

≤ λ1(p, q)
∫

Ω

uαvβ
|ϕ|α|ψ|β

uαvβ
dx

≤ λ1(p, q)
∫

Ω

uαvβ
[α
p

|ϕ|p

up
+
β

q

|ψ|q

vq

]
dx

≤ λ1(p, q)
∫

Ω

[α
p

uα−1vβ

up−1
|ϕ|p +

β

q

uαvβ−1

vq−1
|ψ|q

]
dx

≤ α

p

∫
Ω

−∆pu

up−1
|ϕ|pdx+

β

q

∫
Ω

−∆qv

vq−1
|ψ|qdx.

Due to Lemma 2.1, we obtain

J(u, v) =
α

p

∫
Ω

−∆pu

up−1
|ϕ|pdx+

β

q

∫
Ω

−∆qv

vq−1
|ψ|qdx.

Thus ∫
Ω

|∇ϕ|pdx =
∫

Ω

−∆pu

up−1
|ϕ|pdx,

∫
Ω

|∇ψ|qdx =
∫

Ω

−∆qv

vq−1
|ψ|qdx.

By Lemma 2.1, there exist real numbers k1 and k2 such that u = k1ϕ and v = k2ψ
and the theorem follows. �

3. Stability

Theorem 3.1. Let Ω be a bounded domain in RN having the segment property.
Then, the function (p, q)→ λ1(p, q) is continuous from Iα,β to R+, where

Iα,β = {(p, q) ∈ (1,+∞)× (1,+∞) such that (1.2) is satisfied}.

Proof. Let (tn)n≥1, tn = (pn, qn) be a sequence in Iα,β converging at t = (p, q) ∈
Iα,β . We will prove that

lim
n→∞

λ1(pn, qn) = λ1(p, q).
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Indeed, let (ϕ,ψ) ∈ C∞0 (Ω)× C∞0 (Ω) such that Λ(ϕ,ψ) > 0; hence,

λ1(pn, qn) ≤
α
pn
‖∇ϕ‖pnpn + β

qn
‖∇ψ‖qnqn

Λ(ϕ,ψ)
,

since λ1(pn, qn) is the infimum. Letting n tend to infinity, we deduce from Lebesgue’s
theorem

lim sup
n→∞

λ1(pn, qn) ≤
α
p ‖∇ϕ‖

p
p + β

q ‖∇ψ‖
q
q

Λ(ϕ,ψ)
.

Then
lim sup
n→∞

λ1(pn, qn) ≤ λ1(p, q). (3.1)

On the other hand, let {(pnk , qnk)}k≥1 be a subsequence of (tn)n such that

lim
k→∞

λ1(pnk , qnk) = lim inf
n→∞

λ1(pn, qn).

Let us fix ε0 > 0 small enough, so that for all ε ∈ (o, ε0), we have

1 < min(p− ε, q − ε), (3.2)

max(p+ ε, q + ε) < min((p− ε)∗, (q − ε)∗). (3.3)

For each k ∈ N, let (u(pnk ,qnk ), v(pnk ,qnk )) ∈W
1,pnk
0 (Ω)×W 1,qnk

0 (Ω) be a principal
eigenfunction of (Spnk ,qnk ) related with λ1(pnk , qnk). Then, by Holder’s inequality,
for ε ∈ (0, ε0), the following inequalities hold:

‖∇u(pnk ,qnk )‖p−ε ≤ ‖∇u(pnk ,qnk )‖pnk |Ω|
pnk

−p+ε
pnk

(p−ε) , (3.4)

‖∇v(pnk ,qnk )‖q−ε ≤ ‖∇v(pnk ,qnk )‖qnk |Ω|
qnk

−q+ε
qnk

(q−ε) . (3.5)

Combining these two inequalities and using the variational characterization of λ1,
we have

‖∇u(pnk ,qnk )‖p−ε ≤
{pnkλ1(pnk , qnk)

α

} 1
pnk |Ω|

pnk
−p+ε

pnk
(p−ε) (3.6)

‖∇v(pnk ,qnk )‖q−ε ≤
{qnkλ1(pnk , qnk)

β

} 1
qnk |Ω|

qnk
−q+ε

qnk
(q−ε) . (3.7)

Therefore, via (3.2) and (3.3), for a subsequence

(u(pnk ,qnk ), v(pnk ,qnk )) ⇀ (u, v) weakly in W 1,p−ε
0 (Ω)×W 1,q−ε

0 (Ω),

(u(pnk ,qnk ), v(pnk ,qnk ))→ (u, v) strongly in Lp+ε(Ω)× Lq+ε(Ω)

Passing to the limit in (3.6) and (3.7), respectively as k → ∞ and as ε → ∞, we
have

‖∇u‖pp ≤
p

α
lim
k→∞

λ1(pnk , qnk) <∞,

‖∇v‖qq ≤
q

β
lim
k→∞

λ1(pnk , qnk) <∞.

Then

u ∈W 1,p−ε
0 (Ω) ∩W 1,p(Ω) = W 1,p

0 (Ω), v ∈W 1,q−ε
0 (Ω) ∩W 1,q(Ω) = W 1,q

0 (Ω),

because Ω satisfies the segment property.
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On the other hand, from the variational characterization of λ1(pnk , qnk), (3.4),
(3.5), and using the weak lower semi continuity of the norm; it follows that

1
|Ω|

ε
p−ε

α

p
‖∇u‖pp−ε +

1
|Ω|

ε
q−ε

β

q
‖∇v‖qq−ε ≤ lim

k→+∞
λ1(pnk , qnk). (3.8)

Letting ε→ 0+ in (3.8), the Fatou lemma yields

α

p
‖∇u‖pp +

β

q
‖∇v‖qq ≤ lim

k→∞
λ1(pnk , qnk).

Since Λ(u(pnk ,qnk ), v(pnk ,qnk )) = 1 via compactness of Λ, (u, v) is admissible in the
variational characterization of λ1(p, q); hence

λ1(p, q) ≤ lim
k→∞

λ1(pnk , qnk) = lim inf
n→∞

λ1(pn, qn).

This and (3.1) will complete the proof. Observe that the segment property is used
only to prove that

λ1(p, q) ≤ lim inf
n→∞

λ1(pn, qn).

�
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Addendum posted by the editor on July 21, 2016

A reader informed the editors that the results in this article are a direct transfer
of the results in reference [6]; (0,∞) is considered in [1], while (−1,∞) is considered
here. The reader also informed us that most of the material was copied from [6]
without mentioning the source; which seems to be plagiarism.
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The authors response was: “Carrying the results from (0,∞) to (−1,∞) is an
important step. Some modifications were made in the second part of the proof of
Theorem 3.1 for our model” and “We should have stated that our proofs are based
on proofs in [6]”.

The author’s reason for copying without mentioning the source was “We men-
tioned [1] in the references but we should have mentioned it explicitly in the text.”

End of addendum.
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