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COMPLETE GEOMETRIC INVARIANT STUDY OF TWO
CLASSES OF QUADRATIC SYSTEMS

JOAN C. ARTÉS, JAUME LLIBRE, NICOLAE VULPE

Abstract. In this article, using affine invariant conditions, we give a com-
plete study for quadratic systems with center and for quadratic Hamiltonian
systems. There are two improvements over the results in [30] that studied cen-
ters up to GL-invariant, and over the results in [1] that classified Hamiltonian
quadratic systems without invariants. The geometrical affine invariant study
presented here is a crucial step toward the goal of the invariant classification
of all quadratic systems according to their singularities, finite and infinite.

1. Introduction and statement of results

Let R[x, y] be the ring of the polynomials in the variables x and y with coeffi-
cients in R. We consider a system of polynomial differential equations, or simply a
polynomial differential system, in R2 defined by

ẋ = P (x, y),

ẏ = Q(x, y),
(1.1)

where P,Q ∈ R[x, y]. We say that the maximum of the degrees of the polynomials
P and Q is the degree of system (1.1). A quadratic polynomial differential system
or simply a quadratic system (QS) is a polynomial differential system of degree 2.
We say that the quadratic system (1.1) is non-degenerate if the polynomials P and
Q are relatively prime or coprime; i.e., g.c.d. (P,Q) = 1.

During the previous one-hundred years quadratic vector fields have been inves-
tigated intensively as one of the easiest but far from trivial families of nonlinear
differential systems, and more than one thousand papers have been published about
these vectors fields (see for instance [24, 33, 32]). However, the problem of clas-
sifying all the quadratic vector fields (even integrable ones) remains open. For
more information on the integrable differential vector fields in dimension 2, see for
instance [9, 18].

Poincaré [23] defined the notion of a center for a real polynomial differential
system in the plane (i.e. an isolated singularity surrounded by periodic orbits).
The analysis of the limit cycles which bifurcate from a focus or a center of a qua-
dratic system was made by Bautin [7], by providing the structure of the power
series development of the displacement function defined near a focus or a center
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of a quadratic system. More recently the structure of this displacement function
has been understood for any weak focus of a polynomial differential system. More
precisely, first by using a linear change of coordinates and a rescaling of the inde-
pendent variable, we transform any polynomial differential system having a weak
focus or a center at the origin with eigenvalues ±ai 6= 0 (i.e. having a weak focus)
into the form

ẋ = y + P (x, y),

ẏ = −x + Q(x, y),
(1.2)

where P and Q are polynomials without constant and linear terms. Then the return
map x 7→ h(x) is defined for |x| < R, where R is a positive number sufficiently
small to insure that the power series expansion of h(x) at the origin is convergent.
Of course, limit cycles correspond to isolated zeros of the displacement function
d(x) = h(x) − x. The structure of the power series for the displacement function
is given by the following restatement of Bautin’s fundamental result (see [25] for
more details): There exists a positive integer m and a real number R > 0 such
that the displacement function in a neighborhood of the origin for the polynomial
differential system (1.2) can be written as

d(x) =
m∑

j=1

v2j+1x
2j+1

[
α0 +

∞∑
k=1

α2j+1
k xk

]
,

for |x| < R, where the v2j+1’s and the α2j+1
k ’s are homogeneous polynomials in the

coefficients of the polynomials P and Q.
The constants Vj = v2j+1 are called the focus quantities or the Poincaré-Liapunov

constants. A weak focus for which V1 = · · · = Vn−1 = 0 and Vn 6= 0 is a weak focus
of order n. If all the focus quantities are zero then the weak focus is a center. Note
that any weak focus has finitely many focus quantities, in our notation exactly m.

It is known that a polynomial differential system (1.2) has a center at the origin if
and only if there exists a local analytic first integral of the form H = x2+y2+F (x, y)
defined in a neighborhood of the origin, where F starts with terms of order higher
than 2. This result is due to Poincaré [23] (Moussu [20] gave a geometrical proof
of this result). Liapunov [17] extended Poincaré result for the analytic case.

Through the coefficients of a quadratic system every one of these systems can
be identified with a single point of R12. One of the first steps in a systematic
study of the subclasses of QS was achieved in the determining the subclass QC
of all QS having a center. Of course this problem is algebraically solvable in the
sense indicated by Coppel [10], because the classification of the quadratic centers
is algebraically solvable.

The phase portraits of the class QC were given by Vulpe in [30] and are here
denoted by Vul # using his classification. In that classification, only GL-invariants
were used which implied that systems could only be characterized after displacing
one center to the origin and adopting the standard normal form. Later papers
related with centers provide the bifurcation diagrams for the different types of
centers (see [26, 34, 22]).

The polynomial differential system (1.1) is Hamiltonian if there exists a poly-
nomial H = H(x, y) such that P = ∂H/∂y and Q = −∂H/∂x. Regarding Hamil-
tonian systems, apart from many papers using them in conservative systems, the
first complete classification for quadratic systems was done in [1] where quadratic
Hamiltonian systems were split into four normal forms and a bifurcation diagram
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was provided for each one of them. No invariants were used there. Later on in
[16] the affine–invariant conditions were established but they were constructed us-
ing invariant polynomials of high degree without explicit geometrical meaning. In
the later years the technique of the construction of invariant polynomials has been
greatly improved. Now, with these better tools, the invariants needed are of lower
degree and consistent with the set of all invariants needed to describe singular
points.

The main results of this article are the following two theorems.

Theorem 1.1. Consider a quadratic system of differential equations.
(i) This system possesses a center and the configuration of all its singularities

(finite and infinite) up to a congruent equivalence, given in Table 2 if and
only if the corresponding affine invariant conditions described in Table 2
hold.

(ii) We have a total of 41 congruently distinct configurations of singularities.
For each phase portrait of quadratic systems with a center we have the
following two possibilities:
(a) it corresponds to a unique configuration of singularities; there are 17

such phase portraits;
(b) it corresponds to several configurations of singularities; there are 14

such phase portraits. The richest example is V ul2 which could occur
with anyone of the 8 congruently distinct configurations 15, 17, 19, 20,
26, 37, 39, 41.

(iii) The phase portrait of a system with a center corresponds to the one of
31 topologically distinct phase portraits constructed in [30] (except the case
of a linear system) and either it is determined univocally by the respec-
tive configuration, or it is determined by the configuration and additional
conditions given in Table 3. More exactly we have 35 congruently distinct
configurations, each of which leads univocally to a unique phase portrait;
and there are 6 configurations each of which leads to several phase portraits
distinguished by the additional conditions according to Table 3.

Tables 2 and 3 can be found in section 6.

Theorem 1.2. Assume that a quadratic system of differential equations is Hamil-
tonian.

(i) This system possesses the configuration of all its singularities (finite and
infinite) up to a congruent equivalence, given in Table 4 if and only if the
corresponding affine invariant conditions described in Table 4 hold.

(ii) We have a total of 30 congruently distinct configurations of singularities.
For each phase portrait of Hamiltonian quadratic systems we have the fol-
lowing two possibilities:
(a) it corresponds to a unique configuration of singularities; there are 23

such phase portraits;
(b) it corresponds to several configurations of singularities; there are 5 such

phase portraits. The richest example is Ham11 which could occur with
anyone of the 5 congruently distinct configurations 7,11, 20,26,28.

(iii) The phase portrait of this system corresponds to the one of 28 topologically
distinct phase portraits constructed in [1] and either it is determined univo-
cally by the respective configuration, or it is determined by the configuration
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and additional conditions given in Table 5. More exactly we have 24 con-
gruently distinct configurations, each of which leads univocally to a unique
phase portrait; and there are 6 configurations each of which leads to several
phase portraits distinguished by the additional conditions according to Table
5.

Tables 4 and 5 can be found in section 7.
The work is organized as follows. In sections 2 and 3 we introduce the notation

that we use for describing the singular points. In section 4 we give some preliminary
results needed for the work. In section 5 we adapt a diagram from a previous paper
[5] to describe more easily the bifurcation tree of finite singularities, and we also
introduce the used invariants from [30] and [16]. Finally in sections 6 and 7 we
prove the main theorems of this paper.

2. Equivalence relations for singularities of planar polynomial
vector fields

We first recall the topological equivalence relation as it is used in most of the
literature. Two singularities p1 and p2 are topologically equivalent if there exist
open neighborhoods N1 and N2 of these points and a homeomorphism Ψ : N1 → N2

carrying orbits to orbits and preserving orientation. To reduce the number of cases,
by topological equivalence we shall mean here that the homeomorphism Ψ preserves
or reverses the orientation. In this article we use this second notion, which is
sometimes used in the literature (see [12, 2]).

Polynomial vector fields can be compactified using different techniques which
give a global view of the phase portraits including the trajectories close to infinity
which leads to the notion of infinite singular points (for more details see, for example
[19]).

Finite and infinite singular points may either be real or complex. Most of the
times one only needs to observe the real ones. We point out that the sum of the
multiplicities of all singular points of a quadratic system (with a finite number of
singular points) is always 7. The sum of the multiplicities of the infinite singu-
lar points is always at least 3, more precisely it is always 3 plus the sum of the
multiplicities of the finite points which have gone to infinity.

We use here the following terminology for singularities grouped in the families:
• We call elemental a singular point with its both eigenvalues not zero.
• We call semi-elemental a singular point with exactly one of its eigenvalues

equal to zero.
• We call nilpotent a singular point with its eigenvalues zero but its Jacobian

matrix is not identically zero.
• We call intricate a singular point with its Jacobian matrix identically zero.

This notation (except “nilpotent”) was proposed by Dana Schlomiuk
in a personal communication in order to avoid intersection with previous
well-known notations. We are grateful to her for the help.

We say that two points are Jordan relatives if they both belong to one of the
families above.

Roughly speaking a singular point p of an analytic differential system χ is a
multiple singularity of multiplicity m if p produces m singularities, as closed to p
as we wish, in analytic perturbations χε of this system and m is the maximum
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such number. In polynomial differential systems of fixed degree n we have several
possibilities for obtaining multiple singularities.

(i) A finite singular point can split into several finite singularities in n-degree
polynomial perturbations.

(ii) An infinite singular point could split into some finite and some infinite
singularities in n-degree polynomial perturbations.

(iii) n-degree perturbations of an infinite singularity produce only infinite sin-
gular points of the systems.

To all these cases we can give a precise mathematical meaning using the notion of
intersection multiplicity at a point p of two algebraic curves.

Two foci (or saddles) are order equivalent if their corresponding orders coincide.
Semi-elemental saddle-nodes are always topologically equivalent.

Definition 2.1. Two singularities p1 and p2 of two polynomial vector fields are
congruently equivalent if and only if they are topologically equivalent, they have
the same multiplicity, they are Jordan relatives and in case of foci or saddles they
are order equivalent.

In this work we discuss the behavior of quadratic vector fields globally around
their singularities.

Definition 2.2. Let χ1 and χ2 be two polynomial vector fields each having a
finite number of singularities. We say that χ1 and χ2 have congruent equivalent
configurations of singularities if and only if we have a bijection ϑ carrying the
singularities of χ1 to singularities of χ2 and for every singularity p of χ1, ϑ(p) is
congruently equivalent with p.

3. The notation for singular points

In this section we present the notation that we use for describing the singular
points. The complete notation for singular points will appear in our project of
classification of finite and infinite singular points of all QS.

This notation used here for describing finite and infinite singular points of qua-
dratic systems, can easily be extended to general polynomial systems.

We start by distinguishing the finite and infinite singularities denoting the first
ones with lower case letters and the second with capital letters. When describing in
a row both finite and infinite singular points, we will always order them first finite,
latter infinite with a semicolon (‘;’) separating them.

Starting with elemental points, we use the letters ‘s’,‘S’ for “saddles”; ‘n’, ‘N ’
for “nodes”; ‘f ’ for “foci” and ‘c’ for “centers”.

An elemental singular point is called a weak singularity if the trace of its Jacobian
is zero. It follows easily that such a singular point could be either a focus or a center
or a saddle. In order to determine the stability of weak focus one needs to compute
higher order terms of a certain function (see [17]). Depending on the number of
the terms of this function which vanish we can determine the order of the focus. A
similar technique can be used also in the case of a weak saddle.

Finite elemental foci (or saddles) are classified according to their order as weak
foci (or saddles). When the trace of the Jacobian matrix evaluated at those singular
points is not zero, we call them strong saddles and strong foci and we maintain the
standard notations ‘s’ and ‘f .’ But when the trace is zero, it is known that for
quadratic systems they may have up to 3 orders plus an integrable one, which
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corresponds to infinite order. So, from the order 1 to order 3 we denote them by
‘s(i)’ and ‘f (i)’ where i = 1, 2, 3 is the order. For the integrable case, the saddle
remains a topological saddle and it will be denoted by ‘$’. In the second case we
have a change in the topology of the local phase portrait which makes the singular
point a center and it is denoted by ‘c’.

Foci and centers cannot appear as isolated singular points at infinity and hence
it is not necessary to introduce their order in this case. In case of saddles, we can
have weak saddles at infinity but it is premature at this stage to describe them
since the maximum order of weak singularities in cubic systems is not yet known.

All non–elemental singular points are multiple points, in the sense that when
we perturb them within a nearby system they could split in at least two elemental
points. For finite singular points we denote with a subindex their multiplicity as in
‘s(5)’ or in ‘ês(3)’ (the meaning of the ‘ ’ and the ‘̂ ’ will be explained below). The
multiplicity of a singularity of a QS is the maximum number of singular points
which can appear from this singularity when we perturb it inside the class of all
QS. In order to describe the various kinds of multiplicity of infinite singular points
we use the concepts and notations introduced in [28]. Thus we denote by ‘

(
a
b

)
...’

the maximum number a (respectively b) of finite (respectively infinite) singularities
which can be obtained by perturbation of the multiple point. For example ‘

(
1
1

)
SN ’

means a saddle–node at infinity produced by the collision of one finite singularity
with an infinite one; ‘

(
0
3

)
S’ means a saddle produced by the collision of 3 infinite

singularities.
Semi–elemental points can either be nodes, saddles or saddle–nodes, finite or

infinite. We will denote them always with an overline, for example ‘sn’, ‘s’ and ‘n’
with the corresponding multiplicity. In the case of infinite points we will put the
‘ ’ on top of the parenthesis of multiplicity.

Nilpotent points can either be saddles, nodes, saddle–nodes, elliptic-saddles,
cusps, foci or centers. The first four of these could be at infinity. We denote
the finite ones with a hat ‘̂’ as in ês(3) for a finite nilpotent elliptic-saddle of mul-
tiplicity 3, and ĉp(2) for a finite nilpotent cusp point of multiplicity 2. In the case
of nilpotent infinite points, analogously to the case of semi-elemental points we will
put the ‘̂’ on top of the parenthesis of multiplicity. The relative position of the
sectors of an infinite nilpotent point with respect to the line at infinity can produce
topologically different phase portraits. This forces us to use a notation for these
points similar to the notation which we will use for the intricate points.

It is known that the neighborhood of any singular point of a polynomial vector
field (except foci and centers) is formed by a finite number of sectors which could
only be of three types: parabolic, hyperbolic and elliptic (see [11]). Then a rea-
sonable way to describe intricate points and nilpotent points at infinity is to use a
sequence formed by the types of their sectors. The description we give is the one
which appears in the clock–wise direction once the blow–down is done. Thus in
quadratic systems we have just seven possibilities for finite intricate singular points
(see [3]) which are the following ones

• (a) phpphp(4);
• (b) phph(4);
• (c) hh(4);
• (d) hhhhhh(4);
• (e) peppep(4);
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• (f) pepe(4);
• (g) ee(4).

We use lower case because of the finite nature of the singularities and add the
subindex (4) since they are of multiplicity 4.

For infinite intricate and nilpotent singular points, we insert a hyphen between
the sectors to split those which appear on one side of the equator of the sphere
from the ones which appear in the other side. In this way we distinguish between(
2
2

)
PHP -PHP and

(
2
2

)
PPH-PPH.

The lack of finite singular points will be encapsulated in the notation ∅. In the
cases we need to point out the lack of an infinite singular point we will use the
symbol ∅.

Finally there is also the possibility that we have an infinite number of finite or
infinite singular points. In the first case, this means that the polynomials defining
the differential system are not coprime. Their common factor may produce a real
line or conic filled up with singular points, or a conic with real coefficients having
only complex points.

We consider now systems which have the set of non isolated singularites located
on the line at infinity. It is known that the neighborhood of infinity can be of 6
different types (see [28]) up to topological equivalence. The way to determine them
comes from a study of the reduced system on the infinite local charts where the
line of singularities can be removed within the chart and still a singular point may
remain on the line at infinity. Thus, depending of the nature of this point, the
behavior of the singularities at infinity of the original system can be denoted as
[∞, ∅], [∞, N ], [∞, S], [∞, C], [∞, SN ] or [∞, ÊS]. In the families showed in this
paper we will only meet the case [∞, S].

We will denote with the symbol 	 the case when the polynomials defining the
system have a common factor. The symbol stands for the most generic of these
cases which corresponds to a real line filled up of singular points. The degeneracy
can be also be produced by a common quadratic factor which could generate any
kind of conic. We will indicate each case by the following symbols

• 	[|] for a real straight line;
• 	[∪] for a real parabola;
• 	[‖] for two real parallel lines;
• 	[‖c] for two complex parallel lines;
• 	[|2] for a double real straight line;
• 	[ )( ] for a real hyperbola;
• 	[×] for two intersecting real straight lines;
• 	[◦] for a real circle or ellipse;
• 	[ c©] for a complex conic;
• 	[·] for two complex straight lines which intersect at a real finite point.

The cases that will be considered in this paper are a subset of the previous cases.
Moreover we also want to determine whether after removing the common factor

of the polynomials, singular points remain on the curve defined by this common
factor. If the reduced system has no finite singularity which remains on the curve
defined by this common factor, we will use the symbol ∅to describe this situation. If
some singular points remain we will use the corresponding notation of their types.

The existence of a common factor of the polynomials defining the differential
system also affects the infinite singular points. We point out that the projective
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completion of a real affine line filled up with singular points has a point on the line
at infinity which will then be also a non isolated singularity.

In order to describe correctly the singularities at infinity, we must mention also
this kind of phenomena and describe what happens to such points at infinity after
the removal of the common factor. To show the existence of the common factor we
will use the same symbol as before: 	, and for the type of degeneracy we use the
symbols introduced above. We will use the symbol ∅ to denote the non-existence
of infinite singular points after the removal of the degeneracy. There are other
possibilities for a polynomial system, but this is the only one of interest in this
paper.

4. Some preliminary results

Consider real quadratic systems of the form
dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

(4.1)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y, where

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the
coefficients of systems (4.1) and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

4.1. Number and types of weak singularities of quadratic systems. A com-
plete characterization of the finite weak singularities of quadratic systems via in-
variant theory was done in [31], where the next result is proved.

Proposition 4.1. Consider a non-degenerate quadratic system (4.1).
(a) If T4 6= 0 then this system has no weak singularity.
(b) If T4 = 0 and T3 6= 0 then the system has exactly one weak singularity.

Moreover this singularity is either a weak focus (respectively a weak saddle)
of the indicated order below, or a center (respectively an integrable saddle) if
and only if T3F < 0 (respectively T3F > 0) and the following corresponding
condition holds
(b1) f (1) (respectively s(1)) ⇔ F1 6= 0;
(b2) f (2) (respectively s(2)) ⇔ F1 = 0, F2 6= 0;
(b3) f (3) (respectively s(3)) ⇔ F1 = F2 = 0, F3F4 6= 0;
(b4) c (respectively $) ⇔ F1 = F2 = F3F4 = 0.

(c) If T4 = T3 = 0 and T2 6= 0, then the system could possess two and only
two weak singularities and none of them is of order 2 or 3. Moreover this
system possesses two weak singularities, which are of the types indicated
below, if and only if F = 0 and one of the following conditions holds
(c1) s(1), s(1) ⇔ F1 6= 0, T2 < 0, B ≤ 0, H > 0;
(c2) s(1), f (1) ⇔ F1 6= 0, T2 > 0, B < 0;
(c3) f (1), f (1) ⇔ F1 6= 0, T2 < 0, B < 0, H < 0;
(c4) $, $ ⇔ F1 = 0, T2 < 0, B < 0, H > 0;
(c5) $, c ⇔ F1 = 0, T2 > 0, B < 0;
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(c6) c, c ⇔ F1 = 0, T2 < 0, B < 0, H < 0.
(d) If T4 = T3 = T2 = 0 and T1 6= 0, then the system could possess one and

only one weak singularity (which is of order 1). Moreover this system has
one weak singularity of the type indicated below if and only if F = 0 and
one of the following conditions holds
(d1) s(1) ⇔ F1 6= 0, B < 0, H > 0;
(d2) f (1) ⇔ F1 6= 0, B < 0, H < 0.

(e) If T4 = T3 = T2 = T1 = 0 and σ(a, x, y) 6= 0, then the system could possess
one and only one weak singularity. Moreover this system has one weak
singularity, which is of the type indicated below, if and only if one of the
following conditions holds
(e1) s(1) ⇔ F1 6= 0, H = B1 = 0, B2 > 0;
(e2) f (1) ⇔ F1 6= 0, H = B1 = 0, B2 < 0;
(e3)

$ ⇔



[α] F1 = 0, F = 0, B < 0, H > 0, or
[β] F1 = 0, H = B1 = 0, B2 > 0, or
[γ] F1 = 0, H = B = B1 = B2 = B3 = µ0 = 0, K(µ2

2 + µ2
3) 6= 0, or

[δ] F1 = 0, H = B = B1 = B2 = B3 = K = 0, µ2G 6= 0, or
[ε] F1 = 0, H = B = B1 = B2 = B3 = B4 = K = µ2 = 0, µ3 6= 0;

(e4)

c ⇔

{
[α] F1 = 0, F = 0, B < 0, H < 0, or
[β] F1 = 0, H = B1 = 0, B2 < 0.

(f) If σ(ã, x, y) = 0, then the system is Hamiltonian and it possesses i (with
1 ≤ i ≤ 4) weak singular points of the types indicated below if and only if
one of the following conditions holds
(f1) $, $, $, c ⇔ µ0 < 0, D < 0, R > 0, S > 0;
(f2) $, $, c, c ⇔ µ0 > 0, D < 0, R > 0, S > 0;
(f3) $, $, c ⇔ µ0 = 0, D < 0, R 6= 0;
(f4)

$, $ ⇔


[α] µ0 < 0, D > 0, or
[β] µ0 < 0, D = 0, T < 0, or
[γ] µ0 = R = 0, P 6= 0, U > 0, K 6= 0;

(f5)

$, c ⇔


[α] µ0 > 0, D > 0, or
[β] µ0 > 0, D = 0, T < 0, or
[γ] µ0 = R = 0, P 6= 0, U > 0, K = 0;

(f6)

$ ⇔


[α] µ0 < 0, D = T = P = 0, R 6= 0, or
[β] µ0 = 0, D > 0, R 6= 0, or
[γ] µ0 = 0, D = 0, PR 6= 0, or
[δ] µ0 = R = P = 0, U 6= 0;

(f7) c ⇔ µ0 > 0, D = T = P = 0, R 6= 0.
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The invariant polynomials used in the above theorem are constructed as follows

F1(ã) = A2,

F2(ã) = −2A2
1A3 + 2A5(5A8 + 3A9) + A3(A8 − 3A10 + 3A11 + A12)

−A4(10A8 − 3A9 + 5A10 + 5A11 + 5A12),

F3(ã) = −10A2
1A3 + 2A5(A8 −A9)−A4(2A8 + A9 + A10 + A11 + A12)

+ A3(5A8 + A10 −A11 + 5A12),

F4(ã) = 20A2
1A2 −A2(7A8 − 4A9 + A10 + A11 + 7A12) + A1(6A14 − 22A15)

− 4A33 + 4A34,

F(ã) = A7, B(ã) = −(3A8 + 2A9 + A10 + A11 + A12),

H(ã) = −(A4 + 2A5), G(ã, x, y) = M̃ + 32H̃,

and

B1(ã) =
{(

T7, D2

)(1)[12D1T3 + 2D3
1 + 9D1T4 + 36

(
T1, D2

)(1)]− 2D1

(
T6, D2

)(1)

×
[
D2

1 + 12T3] + D2
1

[
D1

(
T8, C1

)(2) + 6
((

T6, C1

)(1)
, D2

)(1)]}
/144,

B2(ã) =
{(

T7, D2

)(1)[8T3

(
T6, D2

)(1) −D2
1

(
T8, C1

)(2) − 4D1

((
T6, C1

)(1)
, D2

)(1)]
+

[(
T7, D2

)(1)
]2

(8T3 − 3T4 + 2D2
1)

}
/384,

B3(ã, x, y) = −D2
1(4D2

2 + T8 + 4T9) + 3D1D2(T6 + 4T7)− 24T3(D2
2 − T9),

B4(ã, x, y) = D1(T5 + 2D2C1)− 3C2(D2
1 + 2T3).

Here by (f, g)(k) is denoted the differential operator called transvectant of index k
(see [21]) of two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
,

and Ai(ã) are the elements of the minimal polynomial basis of affine invariants up
to degree 12 (containing 42 elements) constructed in [8]. We have applied here only
the following elements (keeping the notation from [8])

A1 = Ã, A2 = (C2, D)(3)/12,

A3 =
((

(C2, D2)(1), D2

)(1)
, D2

)(1)
/48, A4 = (H̃, H̃)(2),

A5 = (H̃, K̃)(2)/2, A6 = (Ẽ, H̃)(2)/2,

A7 =
(
(C2, Ẽ)(2), D2

)(1)
/8, A8 =

(
(D̃, H̃)(2), D2

)(1)
/8,

A9 =
((

(D̃,D2)(1), D2

)(1)
, D2

)(1)
/48, A10 =

(
(D̃, K̃)(2), D2

)(1)
/8,

A11 = (F̃ , K̃)(2)/4, A12 = (F̃ , H̃)(2)/4,

A14 = (B̃, C2)(3)/36, A15 = (Ẽ, F̃ )(2)/4,

A33 =
(((

(D̃,D2)(1), F̃
)(1)

, D2

)(1)
, D2

)(1)
/128,

A34 =
(((

(D̃, D̃)(2), D2

)(1)
, K̃

)(1)
, D2

)(1)
/64,
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where

Ã =
(
C1, T8 − 2T9 + D2

2

)(2)
/144,

D̃ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)

− 9D2
1C2

]
/36,

Ẽ =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 + D1D2)
]
/72,

F̃ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0 (D2, T9)

(1) − 9D2
2T4 + 288D1Ẽ

− 24(C2, D̃)(2) + 120(D2, D̃)(1) − 36C1 (D2, T7)
(1) + 8D1 (D2, T5)

(1)
]
/144,

B̃ =
{

16D1 (D2, T8)
(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)

(1) (
3D1D2

− 5T6 + 9T7

)
+ 2 (D2, T9)

(1) (
27C1T4 − 18C1D

2
1 − 32D1T2 + 32 (C0, T5)

(1) )
+ 6 (D2, T7)

(1) [8C0(T8 − 12T9)− 12C1(D1D2 + T7) + D1(26C2D1 + 32T5)

+ C2(9T4 + 96T3)] + 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2)− 32C2D

2
1]

+ 48D2 (D2, T1)
(1) (

2D2
2 − T8

)
− 32D1T8 (D2, T2)

(1) + 9D2
2T4 (T6 − 2T7)

− 16D1 (C2, T8)
(1) (

D2
1 + 4T3

)
+ 12D1 (C1, T8)

(2) (C1D2 − 2C2D1)

+ 6D1D2T4

(
T8 − 7D2

2 − 42T9

)
+ 12D1 (C1, T8)

(1) (T7 + 2D1D2)

+ 96D2
2

[
D1 (C1, T6)

(1) + D2 (C0, T6)
(1)

]
− 16D1D2T3

(
2D2

2 + 3T8

)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9

)
+ 6D2

1D
2
2 (7T6 + 2T7)− 252D1D2T4T9

}
/(2833),

K̃ = (T8 + 4T9 + 4D2
2)/72 ≡

(
p2(x, y), q2(x, y)

)(1)

/4,

H̃ = (−T8 + 8T9 + 2D2
2)/72,

M̃ = (C2, C2)(2) = 2Hess
(
C2(x, y)

)
and

T1 = (C0, C1)
(1)

, T2 = (C0, C2)
(1)

, T3 = (C0, D2)
(1)

,

T4 = (C1, C1)
(2)

, T5 = (C1, C2)
(1)

, T6 = (C1, C2)
(2)

,

T7 = (C1, D2)
(1)

, T8 = (C2, C2)
(2)

, T9 = (C2, D2)
(1)

(4.2)

are the GL-comitants constructed by using the following five polynomials, basic
ingredients in constructing invariant polynomials for systems (4.1)

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2),

Di(ã, x, y) =
∂pi

∂x
+

∂qi

∂y
, (i = 1, 2).

(4.3)

The affine invariants Tj (j = 1, 2, 3, 4) which are responsible for the number of
vanishing traces of the finite singularities (see [31]) are constructed as follows.

We consider the polynomial σ(ã, x, y) which is an affine comitant of systems (4.1)

σ(ã, x, y) =
∂P

∂x
+

∂Q

∂y
= σ0(ã) + σ1(ã, x, y) (≡ D1(ã) + D2(ã, x, y)),
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and the differential operator L = x ·L2 − y ·L1 (see [5]) acting on R[ã, x, y], where

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1
2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1
2
b01

∂

∂b11
;

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1
2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1
2
b10

∂

∂b11
.

Applying the differential operators L and (∗, ∗)(k) (i.e. transvectant of index k) in
[31] is defined the following polynomial function (named trace function)

T(w) =
4∑

i=0

1
(i!)2

(
σi

1,
1
i!
L(i)(µ0)

)(i)

w4−i =
4∑

i=0

Gi w4−i, (4.4)

where the coefficients Gi(ã) = 1
(i!)2 (σi

1, µi)(i), i = 0, 1, 2, 3, 4
(
G0(ã) ≡ µ0(ã)

)
are

GL-invariants.
Finally using the function T(w) the following four needed affine invariants T4,

T3, T2, T1 are constructed [31]

T4−i(ã) =
1
i!

diT

dwi

∣∣∣
w=σ0

, i = 0, 1, 2, 3
(
T4 ≡ T(σ0)

)
,

which are basic schematic affine invariants for the characterization of weak singu-
larities via invariant polynomials (see Proposition 4.1).

The invariant polynomials D,P,R,S,T,U and V are defined in the next section
(see (5.2)).

In what follows we also need the following invariant polynomials:

B3(ã, x, y) = (C2, D̃)(1) = Jacob
(
C2, D̃

)
,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B1(ã) = Resx

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4)
,

B4(ã, x, y) = −
(
(D̃, H̃)(2), H̃

)(1) × (D̃, H̃)(2),

B5(ã, x, y) = D2

[
((C2, D2)(1), D2)(1) − 3(C2, K̃)(2)

]
,

B6(ã, x, y) = C2
1 − 4C0C2.

(4.5)

and
η(ã) = Discrim

(
C2(x, y)

)
= (M̃, M̃)(2)/384,

Ñ(ã, x, y) = 4K̃ − 4H̃; R̃(ã, x, y) = L̃ + 32K̃,

θ(ã) = Discrim
(
Ñ(ã, x, y)

)
= −(Ñ , Ñ)(2)/2,

L̃(ã, x, y) = 16K̃ − 32H̃ − M̃ ; θ1(ã) = 16η − 2θ − 16µ0.

(4.6)

4.2. Number and multiplicities of the finite singularities of quadratic sys-
tems. The conditions for the number and multiplicities of the finite singularities
of quadratic systems were first constructed in [5].

We shall use here the notion of zero–cycle in order to describe the number
and multiplicity of singular points of a quadratic system. This notion as well
as the notion of divisor, were used for classification purposes of planar quadratic
differential systems by Pal and Schlomiuk [27], Llibre and Schlomiuk [19], Schlomiuk
and Vulpe [28] and by Artes and Llibre and Schlomiuk [2].
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Definition 4.2. We consider formal expressions D =
∑

n(w)w where n(w) is an
integer and only a finite number of n(w) are nonzero. Such an expression is called
a zero–cycle of P2(C) if all w appearing in D are points of P2(C). We call degree
of the zero–cycle D the integer deg(D) =

∑
n(w). We call support of D the set

supp(D) of w’s appearing in D such that n(w) 6= 0.

We note that P2(C) denotes the complex projective space of dimension 2. For
a system (S) belonging to the family (4.1) we denote ν(P,Q) = {w ∈ C2 : P (w) =
Q(w) = 0} and we define the zero-cycle D

S
(P,Q) =

∑
w∈ν(P,Q) Iw(P,Q)w, where

Iw(P,Q) is the intersection number or multiplicity of intersection of P and Q at
w. It is clear that for a non–degenerate quadratic system deg(D

S
) ≤ 4 as well as

supp(D
S
) ≤ 4. For a degenerate system the zero–cycle D

S
(P,Q) is undefined.

Using the affine invariant polynomials

µ0(ã), D(ã), R(ã, x, y), S(ã, x, y), T(ã, x, y), U(ã, x, y), V(ã, x, y)
(4.7)

(the construction of these polynomials will be discussed further), in [5] the next
proposition was proved.

Proposition 4.3 ([5]). The form of the divisor D
S
(P,Q) for non-degenerate qua-

dratic systems (4.1) is determined by the corresponding conditions indicated in Table
3, where we write p + q + rc + sc if two of the finite points, i.e. rc, sc, are complex
but not real.

Table 1.

No.
Zero–cycle
D

S
(P, Q)

Invariant
criteria

No.
Zero–cycle
D

S
(P, Q)

Invariant
criteria

1 p + q + r + s
µ0 6= 0, D < 0,
R > 0, S > 0

10 p + q + r µ0 = 0, D < 0, R 6= 0

2 p + q + rc + sc µ0 6= 0, D > 0 11 p + qc + rc µ0 = 0, D > 0, R 6= 0

3 p c + qc + rc + sc
µ0 6= 0, D < 0, R ≤ 0

12 2p + q µ0 = D = 0, PR 6= 0µ0 6= 0, D < 0, S ≤ 0
4 2p + q + r µ0 6= 0, D = 0, T < 0 13 3p µ0 = D = P = 0, R 6= 0

5 2p + qc + rc µ0 6= 0, D = 0, T > 0 14 p + q
µ0 = R = 0, P 6= 0,

U > 0

6 2p + 2q
µ0 6= 0, D = T = 0,

PR > 0
15 p c + qc µ0 = R = 0, P 6= 0,

U < 0

7 2p c + 2qc µ0 6= 0, D = T = 0,
PR < 0

16 2p
µ0 = R = 0, P 6= 0,

U = 0

8 3p + q
µ0 6= 0, D = T = 0,

P = 0, R 6= 0
17 p

µ0 = R = P = 0,
U 6= 0

9 4p
µ0 6= 0, D = T = 0,

P = R = 0
18 0

µ0 = R = P = 0,
U = 0, V 6= 0

5. The global diagram for the finite singularities of quadratic
systems. Some needed invariants

We note that the polynomials (4.7) were constructed in [5] (see also [3]) using
the basic ingredients (4.3) in constructing invariant polynomials for systems (4.1)
and applying the differential operator (∗, ∗)(k) (i.e. transvectant of index k).

Here we shall use the new expressions for the polynomials (4.7) (constructed in
[31]), which are equivalent to the old ones but make more transparent their geometry
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and allow us to observe the dynamic of the finite singularities. More exactly we
shall use the polynomials µ0(ã) and µi(ã, x, y) constructed in [5] as follows

µ0(ã) = Resx

(
p2(x, y), q2(x, y)

)
/y4,

µi(ã, x, y) =
1
i!
L(i)(µ0), i = 1, . . . , 4,

(5.1)

where L(i)(µ0) = L(L(i−1)(µ0)). Their geometrical meaning is revealed in the
following two lemmas.

Lemma 5.1 ([5]). The total multiplicity of all finite singularities of a quadratic sys-
tem (4.1) equals k if and only if for every i ∈ {0, 1, . . . , k−1} we have µi(ã, x, y) = 0
in R[x, y] and µk(ã, x, y) 6= 0. Moreover a system (4.1) is degenerate if and only if
µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

Lemma 5.2 ([6]). The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤
4) for a quadratic system (4.1) if and only if for every i ∈ {0, 1, . . . , k− 1} we have
µ4−i(ã, x, y) = 0 in R[x, y] and µ4−k(ã, x, y) 6= 0.

Using the invariant polynomials µi (i = 0, 1, . . . , 4) in [31] the polynomials (4.7)
are constructed as follows

D =
[
3
(
(µ3, µ3)(2), µ2

)(2) −
(
6µ0µ4 − 3µ1µ3 + µ2

2, µ4)(4)
]
/48,

P = 12µ0µ4 − 3µ1µ3 + µ2
2,

R = 3µ2
1 − 8µ0µ2,

S = R2 − 16µ2
0P,

T = 18µ2
0(3µ2

3 − 8µ2µ4) + 2µ0(2µ3
2 − 9µ1µ2µ3 + 27µ2

1µ4)−PR,

U = µ2
3 − 4µ2µ4,

V = µ4.

(5.2)

Considering these expressions we have the next remark.

Remark 5.3. If µ0 = 0 then the condition R = 0 (respectively R = P = 0;
R = P = U = 0; R = P = U = V = 0) is equivalent to µ1 = 0 (respectively
µ1 = µ2 = 0; µ1 = µ2 = µ3 = 0; µ1 = µ2 = µ3 = µ4 = 0).

On the other hand, considering Lemma 5.1 we deduce that the invariant polyno-
mials µi (i = 0, 1, . . . , 4) are responsible for the number of finite singularities which
have coalesced with infinite ones. So taking into account the remark above and
Proposition 4.3 we could present a diagram, which is equivalent to Table 1. So we
get the next result.

Theorem 5.4. The number and multiplicities of the finite singular points (de-
scribed by the divisor DS(P,Q)) for non-degenerate quadratic systems (4.1) is given
by the diagram presented in Figure 1.

We are interested in a global characterization of the singularities (finite and in-
finite) of the family of quadratic systems. More precisely we would like to extend
the diagram of Figure 1 adding the infinite singularities (their number and multi-
plicities) and then including the types of all these singularities. Moreover we wish
to distinguish the weak singularities (if it is the case) as well as their order. This is
one of the motivations why we consider again the class of quadratic systems with
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Figure 1. Diagram for Finite Singularities of Quadratic systems

centers as well as the class of Hamiltonian systems, the topological classifications
of which could be found in articles [15, 13, 14] and [16], respectively.

On the other hand we would like to reveal the main affine invariant polynomials
associated to the singularities of quadratic systems, having a transparent geomet-
rical meaning. And it is clear that all the conditions we need have to be based on
the invariant polynomials contained in the diagram of Figure 1.
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Thus in this article new geometrical more transparent affine invariant condi-
tions for distinguishing topological phase portraits of the two mentioned families
of quadratic systems are simultaneously constructed. For this purpose we need the
following GL-invariant polynomials constructed in tensorial form in [29] (we keep
the respective notations)

I1 = aα
α, I2 = aα

βaβ
α, I3 = aα

p aβ
αqa

γ
βγεpq, I4 = aα

p aβ
βqa

γ
αγεpq,

I5 = aα
p aβ

γqa
γ
αβεpq, I6 = aα

p aβ
γaγ

αqa
δ
βδε

pq, I7 = aα
pra

β
αqa

γ
βsa

δ
γδε

pqεrs,

I8 = aα
pra

β
αqa

γ
δsa

δ
βγεpqεrs, I9 = aα

pra
β
βqa

γ
γsa

δ
βγεpqεrs,

I10 = aα
p aβ

δ aγ
νaδ

αqa
ν
βγεpq, I13 = aα

p aβ
qra

γ
γsa

δ
αβaν

δνεpqεrs,

I16 = aα
p aβ

r aγ
δ aδ

αqa
ν
βsa

τ
γµaµ

ντεpqεrs, I18 = aαaqap
αεpq,

I19 = aαaβ
γaγ

αβ , I21 = aαaβaqap
αβεpq, I23 = aαaβaγ

αδa
δ
βγ ,

I24 = aαaβ
δ aγ

αaδ
βγ , I28 = aαaβaγ

δ aδ
γµaµ

αβ , I30 = aαaβ
paγ

βqa
δ
γµaµ

αδε
pq,

(5.3)

I33 = aαaβaγaδ
αβaµ

γνaν
δµ, I35 = aαaβ

paγ
αaδ

βqa
µ
γνaν

δµεpq,

K1 = aα
αβxβ , K2 = ap

αxαxqεpq, K3 = aα
βaβ

αγxγ , K5 = ap
αβxαxβxqεpq,

K7 = aα
βγaβ

αδx
γxδ K11 = ap

αaα
βγxβxγxqεpq, K12 = aα

βaβ
αγaγ

δµxδxµ,

K14 = aα
p aβ

αqa
γ
βδa

δ
γµxµεpq, K21 = apxqεpq, K22 = aαap

αxqεpq,

K23 = apaq
αβxαxβεpq, K27 = aαaβ

αγaγ
βδx

δ, K31 = aαaβ
αγaγ

βδa
δ
µνxµxν ,

(5.4)

where ε11 = ε22 = ε11 = ε22 = 0, ε12 = −ε21 = ε12 = −ε21 = 1. We note that
the expressions for the above invariants are associated to the tensor notation for
quadratic systems (4.1) (see [29])

dxj

dt
= aj + aj

αxα + aj
αβxαxβ , (j, α, β = 1, 2);

a1 = a00, a1
1 = a10, a1

2 = a01, a1
11 = a20, a1

22 = a02,

a2 = b00, a2
1 = b10, a2

2 = b01, a2
11 = b20, a2

22 = b02,

a1
12 = a1

21 = a11, a2
12 = a2

21 = b11.

6. The family of quadratic systems with centers

The proof of Theorem 1.1 is based on the classification of the family of quadratic
systems with centers given in [30]. Using the expressions (5.3) of [30] we get the
following GL-invariants (we keep the respective notations adding only the ”hat”)

α̂ = I2
2I8 − 28I2I

2
5 + 6I5I10, β̂ = 4I2

4 − 3I2I9 − 4I3I4,

γ̂ =
3
I2
4

(2I3I4 + I2I9), δ̂ = 27I8 − I9 − 18I7,

ξ̂ = I2I5(I2I5 + 2I10)− 4I2
10 − I3

2I8.

(6.1)

We note that in [30] the expressions of the invariants ξ̂ and δ̂ are used directly, but
we set these notations for compactness.

According to [30] (see Lemmas 2-5) the next result follows.
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Table 2.

Conditions for the existence of a center [statement (b) of Proposition 4.1]:
T3 6= 0, T4 = F1 = F2 = F3F4 = 0, T3F < 0, (b4)

Additional conditions for configurations Configuration
of singularities No.

µ0 6= 0

D < 0
eK < 0 c, s, s, s ; N, N, N 1

eK > 0 c, s, n, n ; S, S, N 2

D > 0
η < 0 c, f ; S 3

η > 0 c, n ; S, S, N 4

D = 0 c, n, sn(2) ; S,
`0
2

´
SN 5

µ0 = 0 c, s ; N,
`1
1

´
SN,

`1
1

´
SN 6

Conditions for the existence of a center [statement (c) of Proposition 4.1]:
T4 = T3 = 0, T2 6= 0, (c5) ∪ (c6)

µ0 < 0

D < 0

η < 0 c, $, n, n ; S 7

η > 0
eK < 0 c, $, s, s ; N, N, N 8

eK > 0 c, $, n, n ; S, S, N 9

η = 0 c, $, n, n ;
`0
3

´
S 10

D > 0

η < 0 c, c ; S 11

η > 0 c, c ; S, S, N 12

η = 0 c, c ;
`0
3

´
S 13

µ0 > 0

D < 0 c, c, s, s ; N 14

D > 0

η < 0 c, $ ; N 15

η > 0 c, $ ; S, N, N 16

η = 0 c, $ ;
`0
3

´
N 17

µ0 = 0

η < 0
eK 6= 0

µ2 < 0 c, c ;
`2
1

´
S 18

µ2 > 0 c, $ ;
`2
1

´
N 19

eK = 0 c, $ ; N 20

η > 0
eK 6= 0 c, $ ;

`2
1

´
S, N, N 21

eK = 0 c, $ ; N,
`1
1

´
SN,

`1
1

´
SN 22

Proposition 6.1. Assume that for a quadratic system with the singular point (0, 0)
the conditions I1 = I6 = 0 and I2 < 0 hold. Then this system has a center at (0, 0)
and via a linear transformation could be brought to one of the canonical forms below
if and only if the respective additional GL-invariant conditions hold

(S(c)
1 )

{
ẋ = −y + gx2 − xy, (g 6= 0),
ẏ = x + x2 + 3gxy − 2y2,

⇐⇒ I3I13 6= 0, 5I3 − 2I4 = 13I3 − 10I5 = 0;

(S(c)
2 )

{
ẋ = y + 2nxy, (wm 6= 0),
ẏ = −x + lx2 + 2mxy − ly2,

⇐⇒ I3 = 0, I13 6= 0;
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Table 2 (continued)

Conditions for the existence of a center [statement (e) of Proposition 4.1]:
T4 = T3 = T2 = 0, σ 6= 0, (e4)

Additional conditions for configurations Configuration
of singularities No.

µ0 < 0

η < 0 c, bes(3) ; S 23

η > 0 c, bes(3) ; S, S, N 24

η = 0 c, bes(3) ;
`0
3

´
S 25

µ0 > 0 c, s(3) ; N 26

µ0 = 0

µ1 6= 0

D < 0 c, s, s ; N,
c̀1
2

´
P E P −H 27

D > 0

eN ≤ 0 c ; S,
c̀1
2

´
P E P −H 28

eN > 0

L̃ < 0 c ; S,
c̀1
2

´
P E P − P H P 29

L̃ > 0 c ; N,
c̀1
2

´
H −H H H 30

L̃ = 0 c ; [∞, S] 31

µ1 = 0
µ3 6= 0

L̃ 6= 0 c ; N,
`3
2

´
H −H H H 32

L̃ = 0 c ;
`2
1

´
S,

c̀1
2

´
P E P −H 33

µ3 = 0 c,
`

	 [|]; ∅
´
;

`
	 [|]; ∅

´
34

Conditions for the existence of a center [statement (f) of Proposition 4.1]:
Hamiltonian systems ⇒ σ = 0, (f1)–(f3), (f5), (f7)

µ0 < 0 c, $, $, $ ; N, N, N 35

µ0 > 0

D < 0 c, c, $, $ ; N 36

D > 0 c, $ ; N 37

D = 0
T 6= 0 c, $, bcp(2) ; N 38

T = 0 c, bs(3) ; N 39

µ0 = 0
µ1 6= 0 c, $, $ ; N,

c̀1
2

´
PEP −H 40

µ1 = 0 c, $ ;
c̀2
3

´
N 41

(S(c)
3 )

{
ẋ = y + 2(1− e)xy,

ẏ = −x + dx2 + ey2,
⇐⇒ I13 = 0, I4 6= 0;

(S(c)
4 )

{
ẋ = y + 2cxy + by2,

ẏ = −x− ax2 − cy2, c ∈ {0, 1/2}
⇐⇒ I4 = 0;

where w = m2(2n− l)− (n− l)2(2n + l).

Proof of Theorem 1.1. We shall consider each one of the systems (S(c)
1 )− (S(c)

4 )
and will compare the GL-invariant conditions [30] with the affine invariant ones
given by Tables 2 and 3.

6.1. The family of systems (S(c)
1 ). For these systems we calculate the respective

GL-invariants

I13 = 125g(1 + g2)/8, I3 = 5(1 + g2)/2 (6.2)
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Table 3.

Con-
figu-

ration

Phase
portrait

Con-
figu-

ration

Phase
portrait

Con-
figu-

ration

Phase
portrait

1 Vul 10 15 Vul 2 30 Vul 13

2 Vul 27 16 Vul 19 31 Vul 15

3 Vul 30 17 Vul 2 32 Vul 13

4 Vul 32 18 Vul 20 33 Vul 12

5 Vul 31 19 Vul 2 34 Vul 29

6 Vul 17 20 Vul 2

35

Vul 11 if B1 6= 0

7 Vul 25 21 Vul 19 Vul 9 if B1 = 0, B3B4 < 0

Vul 9 if B3B5 < 0 Vul 18 if B3B5 < 0 Vul 8 if B1 = 0, B3B4 > 0

8 Vul 8 if B3B5 > 0 22 Vul 16 if B3B5 > 0 Vul 10 if B1 = B3 = 0

Vul 10 if B3 = 0 Vul 17 if B3 = 0
36

Vul 4 if B1 6= 0

Vul 28 if B3B5 < 0
23

Vul 22 if θ1 < 0 Vul 3 if B1 = 0

9 Vul 26 if B3B5 > 0 Vul 23 if θ1 ≥ 0 37 Vul 2

Vul 27 if B3 = 0 24 Vul 24 38 Vul 7

10 Vul 25 25 Vul 23 39 Vul 2

11 Vul 20 26 Vul 2
40

Vul 6 if B1 6= 0

12 Vul 21 27 Vul 5 Vul 5 if B1 = 0

13 Vul 20 28 Vul 12 41 Vul 2
14 Vul 3 29 Vul 14

and the affine invariant polynomials

T4 = F1 = F2 = F4 = 0, T3 = −125g(1 + g2), F3 = 625g2(1 + g2)2,

µ0 = −2(1 + g2), D = 5184g2(1 + g2), η = 4(1 + g2).
(6.3)

According to [30] in the case I13 6= 0 the phase portrait of systems (S(c)
1 ) is given

by Vul 32 and hence we have the configuration of the singularities c, n; S, S, N .
On the other hand the condition I13 6= 0 implies T3 6= 0 and as F1 = F2 =

F3F4 = 0, the conditions provided by the statement (b4) of Proposition 4.1 are
satisfied. Moreover, as µ0 6= 0, D > 0 and η > 0, we obtain the respective
conditions given by Table 2 (row No. 4).

6.2. The family of systems (S(c)
2 ). In this case calculations yield:

I13 = m
[
m2(2n− l)− (n− l)2(2n + l)

]
, I9 − I8 = 4ln(l2 + m2 + n2),

δ̂ = −8(l + 2n)2(l2 + m2 + 2ln).
(6.4)

According to [30] (see Lemma 4) the phase portrait (and this yields the respective
configuration of singularities) of a system from the family (S(c)

2 ) is determined by
the following GL-invariant conditions, respectively

I9 − I8 > 0 ⇔ Vul10 ⇒ c, s, s, s;N,N, N ;
I9 − I8 = 0 ⇔ Vul17 ⇒ c, s ; N,

(
1
1

)
SN,

(
1
1

)
SN ;

I9 − I8 < 0, δ̂ < 0 ⇔ Vul27 ⇒ c, s, n, n;S, S,N ;
I9 − I8 < 0, δ̂ > 0 ⇔ Vul30 ⇒ c, f ;S;
I9 − I8 < 0, δ̂ = 0 ⇔ Vul31 ⇒ c, n, sn(2);N,

(
0
2

)
SN.

(6.5)
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On the other hand calculations yield

T4 = F1 = F2 = F3 = 0, T3F = −8m2
[
m2(2n− l)− (n− l)2(2n + l)

]2
,

µ0 = −4l2n2, D = −192(l + 2n)2(l2 + m2 + 2ln) = −48η, K̃ = −4ln(x2 + y2).
(6.6)

We observe that the condition I13 6= 0 implies T3F < 0 and as F1 = F2 = F3F4 = 0
we conclude that the conditions provided by statement (b4) of Proposition 4.1 are
fulfilled. Moreover comparing (6.4) and (6.6) if Dµ0 6= 0 we obtain

sign(I9 − I8) = − sign(K̃), sign(δ̂) = sign(D) = − sign(η),

and I9 − I8 = 0 (respectively δ̂ = 0) if and only if µ0 = 0 (respectively D = 0). So
taking into consideration that the condition K̃ < 0 implies D < 0, we obviously
arrive to the conditions provided by Table 2 (the case of statement (b) of Proposition
4.1).

6.3. The family of systems (S(c)
3 ). For these systems calculations yield

T4 = T3 = T1 = F = F1 = 0, T2 = 4d(d + 2− 2e),

B = −2, H = 4d(1− e), σ = 2y.
(6.7)

Therefore according to Proposition 4.1 for a system (S(c)
3 ) could be satisfied either

the conditions of statement (c) (if T2 6= 0) or of statement (e) (if T2 = 0). We shall
consider each one of these possibilities.

6.3.1. The case T2 6= 0. Following [30, Lemma 3] for systems (S(c)
3 ) we calculate

I4 = −1, I3 = −(d + e), I9 = d, β̂ = 2(d + 2− 2e), γ̂ = 6e, (6.8)

and therefore the condition T2 6= 0 is equivalent to I9β̂ 6= 0. It was above mentioned
that the conditions of statement (c) (Proposition 4.1) are satisfied in this case; i.e.,
there should be two weak singularities on the phase plane of these systems. So
according to [30] (see the proof of Lemma 3) the phase portrait (and this yields the
respective configuration of singularities) of a system from the family (S(c)

3 ) with the
condition I9β̂ 6= 0 is determined by the following GL-invariant conditions

γ̂I9 > 0, β̂γ̂ < 0 ⇔ Vul3 ⇒ c, c, s, s ;N ;

{
γ̂I9 > 0, β̂γ̂ > 0, I9(4− γ̂) ≤ 0,

or γ̂ = 0, β̂ < 0
⇔ Vul2 ⇒


c, $ ;N if γ̂(γ̂ − 4)(γ̂ − 6) 6= 0;

c, $ ;
(
2
1

)
N if γ̂ = 0;

c, $ ;
(
0
3

)
N if γ̂ = 4;

c, $ ;N if γ̂ = 6;

I9 < 0, 0 ≤ γ̂ ≤ 4, β̂ > 0 ⇔ Vul20 ⇒


c, c ;S if γ̂(γ̂ − 4) 6= 0;

c, c ;
(
2
1

)
S if γ̂ = 0;

c, c ;
(
0
3

)
S if γ̂ = 4;

I9 < 0, γ̂ > 4, β̂ > 0 ⇔ Vul21 ⇒ c, c ;S, S,N ; (6.9)

I9 > 0, 0 ≤ γ̂ < 4 ⇔ Vul19 ⇒

{
c, $ ;S, N,N if γ̂ 6= 0;

c, $ ;
(
2
1

)
S, N,N if γ̂ = 0;
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β̂ < 0, 0 < γ̂ ≤ 4 ⇔ Vul25 ⇒

{
c, $, n, n ;S if γ̂ 6= 4;

c, $, n, n ;
(
0
3

)
S if γ̂ = 4;

and
(i) γ̂I9 < 0, γ̂(γ̂ − 6) > 0 ⇔ Vul8,Vul9,Vul10 ⇒ c, $, s, s ;N,N, N ;

(ii) I9 < 0, γ̂ = 6 ⇔ Vul16,Vul17,Vul18 ⇒ c, $ ; N,

(
1
1

)
SN,

(
1
1

)
SN ;

(iii) β̂ < 0, 4 < γ̂ < 6 ⇔ Vul26,Vul27,Vul28 ⇒ c, $, n, n ;S, S,N.

(6.10)

On the other hand for systems (S(c)
3 ) we calculate

µ0 = 4de(e− 1)2, D = 192e(d + 2− 2e)3, η = 4d(2− 3e)3,

K̃ = 4(e− 1)(dx2 − ey2), µ1 = 4e(e− 1)(d + e− 1)y,

µ2

∣∣
e=0

= d(d + 2)x2, µ2

∣∣
e=1

= d(dx2 + y2).

(6.11)

So considering (6.8) and (6.11) if Dµ0η 6= 0 we obtain

sign(µ0) = sign(γ̂I9), sign(D) = sign(β̂γ̂), sign(η) = sign(I9(4− γ̂)),

and due to T2 6= 0 we have that µ0 = 0 (respectively D = 0; η = 0) if and only if
γ̂(γ̂ − 6) = 0 (respectively γ̂ = 0; γ̂ = 4). Therefore it is not too hard to determine
that in cases (6.9) (when we have the unique phase portrait) the conditions from
Table 2 (the case of statement (c) of Proposition 4.1) are equivalent to the respective
conditions from (6.9).

We consider now the remaining cases (6.10). According to [30] the phase por-
traits Vul 8, Vul9, Vul10 (respectively Vul 16,Vul17,Vul18; Vul 26,Vul27,Vul28) are
distinguished via the GL-invariant γ̂I3I4. More precisely in the mentioned cases
the phase portrait corresponds to Vul 8 (respectively Vul 16; Vul 26) if γ̂I3I4 > 0;
Vul 9 (respectively Vul 18; Vul 28) if γ̂I3I4 < 0 and it corresponds to Vul 10 (respec-
tively Vul 17; Vul 27) if I3 = 0.

On the other hand for systems (S(c)
3 ) we calculate

B3 = −6(2 + d− 3e)(d + e)x3y, B3B5 = 288d(2 + d− 3e)e(d + e)x4y2.

We claim that in all three cases (6.10), if B3 6= 0 then we have

sign(B3B5) = sign(γ̂I3I4) = sign
(
e(d + e)

)
, (6.12)

and B3 = 0 if and only if I3 = 0 (i.e. d + e = 0). To prove this claim we shall
consider each one of the cases (i)− (iii) from (6.10).

Case (i). Considering (6.8) we have de < 0, e(e− 1) > 0 and herein it can easily
be detected that sign(d + 2− 3e) = − sign(e) and this leads to (6.12).

Case (ii). As e = 1 we have B3B5 = 288d(d − 1)(1 + d)x4y2 and due to d < 0
this evidently implies (6.12).

Case (iii). In this case considering (6.8) we have 2/3 < e < 1 and d+2−2e < 0.
Therefore d < 0 and 2− 3e < 0 that gives d+2− 3e < 0. As e > 0 we again obtain
(6.12).

It remains to note that due to the conditions discussed above in all three cases
we can have B3 = 0 if and only if d + e = 0 (i.e. I3 = 0).

Thus our claim is proved and obviously we arrive to the conditions of Table 3
corresponding to the configurations 8, 9 and 22 respectively.
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6.3.2. The case T2 = 0
Then d(d+2−2e) = 0 and considering (6.8) for systems (S(c)

3 ) we have I9β̂ = 0.
We recall that by Proposition 4.1 in this case for a system (S(c)

3 ) has to be satisfied
the conditions of the statement (e), i.e. besides the center we could not have
another weak singularity. So according to [30] (see the proof of Lemma 3) the
phase portrait (and hence, the respective configuration of singularities) of a system
from the family (S(c)

3 ) with the condition I9β̂ = 0 is determined by the following
GL-invariant conditions

I9 = 0, γ̂(γ̂ − 6) > 0 ⇔ Vul5 ⇒ c, s, s ;N,

(̂
1
2

)
P E P −H;

I9 = 0, 0 ≤ γ̂ ≤ 3 ⇔ Vul12 ⇒

{
c ;S,

(̂
1
2

)
P E P −H if γ̂ 6= 0;

c ;
(
2
1

)
S,

(̂
1
2

)
P E P −H if γ̂ = 0;

I9 = 0, 3 < γ̂ < 4 ⇔ Vul14 ⇒ c ;S,

(̂
1
2

)
P E P − P H P ;

I9 = 0, γ̂ = 4 ⇔ Vul15 ⇒ c ; [∞, S];

I9 = 0, 4 < γ̂ ≤ 6 ⇔ Vul13 ⇒

{
c ;N,

(̂
1
2

)
H −HHH if γ̂ 6= 6;

c ;N,
(̂
3
2

)
H −HHH if γ̂ = 6;

(6.13)

and
β̂ = 0, γ̂I9 > 0, I9(4− γ̂) < 0 ⇔ Vul2 ⇒ c, s(3) ;N ;

β̂ = 0, 0 < γ̂ < 3 ⇔ Vul22 ⇒ c, ês(3) ;S;

β̂ = 0, 3 ≤ γ̂ ≤ 4 ⇔ Vul23 ⇒

{
c, ês(3) ;S if γ̂ 6= 4;

c, ês(3) ;
(
0
3

)
S if γ̂ = 4;

β̂ = 0, 4 < γ̂ < 6 ⇔ Vul24 ⇒ c, ês(3) ;S, S,N ;

β̂ = 0, γ̂ = 0 ⇔ Vul29 ⇒ c,
(

	 [|]; ∅
)
;

(
	 [|]; ∅

)
.

(6.14)

We remark that by (6.8) the condition I9 = 0 gives d = 0 whereas the condition
β̂ = 0 gives d = 2(e− 1).

(1) Assume first I9 = 0, i.e. d = 0. Then for systems (S(c)
3 ) we obtain

µ0 = η = 0, D = −1536e(e− 1)3, Ñ = 4(1− e)(2e− 1)y2,

L̃ = 8e(3e− 2)y2, µ1 = 4e(e− 1)2y, µ3 = 2(1− e)x2y + ey3.
(6.15)

As γ̂ = 6e (see (6.8)) this implies γ̂ − 6 = 6(e− 1), γ̂ − 4 = 2(3e− 2) and γ̂ − 3 =
3(2e− 1). So if γ̂(γ̂ − 3)(γ̂ − 4)(γ̂ − 6) 6= 0 then we have

sign(D) = − sign
(
γ̂(γ̂ − 6)

)
, sign(Ñ)

∣∣
{D>0} = sign(γ̂ − 3

)
,

sign(L̃)
∣∣
{D>0, eN>0} = sign(γ̂ − 4

)
.

(6.16)

Moreover if µ1 6= 0 then Ñ = 0 (respectively L̃ = 0) if and only if γ̂ = 3 (respectively
γ̂ = 4). Therefore to determine the cases (6.13) (when I9 = 0) the conditions of
Table 2 (the case of statement (e) of Proposition 4.1) are equivalent to the respective
conditions of (6.13).
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(2) Suppose now β̂ = 0 and I9 6= 0. Then d = 2(e − 1) 6= 0 and for systems
(S(c)

3 ) we have

µ0 = 8e(e− 1)3, η = 8(e− 1)(2− 3e)3, µ1 = 12e(e− 1)2y,

µ3 = ey3, θ1 = 128(e− 1)(2e− 1)(3e− 2)(5− 6e).
(6.17)

We observe that if µ0 6= 0 then

sign(µ0) = sign
(
γ̂(γ̂ − 6)

)
, sign(η)

∣∣
{µ0<0} = sign(γ̂ − 4

)
,

sign(θ1)
∣∣
{µ0<0,η<0} = sign(γ̂ − 3

)
.

(6.18)

We claim that the conditions γ̂I9 > 0 and I9(4 − γ̂) < 0 corresponding to the
phase portrait Vul2 (see (6.14)) are equivalent to µ0 > 0. Indeed, as I9 = d =
2(e − 1) 6= 0 we obtain γ̂I9 = 12e(e − 1) and hence the condition γ̂I9 > 0 is
equivalent to µ0 > 0. It remains to note that in the case e(e − 1) > 0 we have
I9(4− γ̂) = −4(e− 1)(3e− 2) < 0. So 3e− 2 6= 0 (i.e. γ̂ 6= 4) and we arrive to the
respective conditions from Table 2.

Considering the remaining cases (6.14) corresponding to the condition β̂ = 0
and (6.18) we arrive to the respective conditions provided by Table 2 (the case of
statement (e) of Proposition 4.1).

6.4. The family of systems (S(c)
4 ). For these systems we have σ = 0; i.e., this is

a class of Hamiltonian systems with center. Moreover any elemental point which is
not a center must be an integrable saddle. Calculations yield

α̂ = 8(a− 2c)2(b2 − 4ac + 8c2), I8 = 2a(ab2 + 4c3),

I10 = −b2 − (a + c)2, I16 = b(3ac2 − a3 + ab2 + 2c3).
(6.19)

According to [30] (see the proof of Lemma 2) the phase portrait (and hence, the
respective configuration of singularities) of a quadratic system from the family (S(c)

4 )
is determined by the following GL-invariant conditions{

α̂ < 0, or
α̂ = I16 = 0

⇔ Vul2 ⇒


c, $ ;N if α̂ 6= 0;
c, s(3);N if α̂ = 0, I8 6= 0;

c, $ ;
(̂
2
3

)
N if α̂ = 0, I8 = 0;

α̂ > 0, I8 < 0 ⇔ Vul8,Vul9,Vul10,Vul11 ⇒ c, $, $, $ ;N,N, N ;
α̂ > 0, I8 > 0 ⇔ Vul3,Vul4 ⇒ c, c, $, $ ;N ;

α̂ > 0, I8 = 0 ⇔ Vul5,Vul6 ⇒ c, $, $ ;N,

(̂
1
2

)
PEP −H;

α̂ = 0, I16 6= 0 ⇔ Vul7 ⇒ c, $, ĉp(2) ;N.

(6.20)

On the other hand for systems (S(c)
4 ) calculations yield

µ0 = a(ab2 + 4c3) = I8/2, D = −48(a− 2c)2(b2 − 4ac + 8c2) = −6α̂,

µ1 = 2ab(a− c)x− 2(ab2 + 2ac2 + 2c3)y.
(6.21)

We observe that the condition I8 < 0 implies c 6= 0 (then by Proposition 6.1 we
have c = 1/2) and a < 0. In this case we evidently obtain α̂ > 0. Similarly the
condition α̂ < 0 gives c 6= 0 (i.e. c = 1/2) and a > 1 + b2/2 and this implies
I8 > 0. Herein we conclude that in the case I8α̂ 6= 0 (i.e. µ0D 6= 0) the conditions
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provided by Table 2 (the case of statement (f) of Proposition 4.1) for distinguishing
the configurations of the singularities are equivalent to the respective conditions of
(6.20).

Assume now I8α̂ = 0 (i.e. µ0D = 0).
(1) If I8 = 0 then by (6.19) we have a(ab2 +4c3) = 0 and then µ0 = 0. We claim

that in the case α̂ 6= 0 we obtain α̂ > 0 and this is equivalent to µ1 6= 0. Indeed as
the condition α̂ 6= 0 implies (a2 + c2)(b2 + c2) 6= 0, we conclude that the condition
I8 = 0 gives a ≤ 0 and c 6= 0. So c = 1/2 and we obtain α̂ > 0. On the other hand
since a − c 6= 0 we obtain that µ1 = 0 if and only if ab = a + c = 0 but in this
case the condition I8 = 0 implies α̂ = 0. So our claim is proved and this shows the
equivalence of the respective conditions of Table 2 and (6.20).

Assume I8 = 0 = α̂. Then considering (6.20) we obtain portrait Vul2 and the
configuration of singularities indicated in the row 41 of Table 2. It remains to
observe that the condition above is equivalent to µ0 = µ1 = 0.

(2) Suppose now α̂ = 0 and I8 6= 0. This implies µ0 6= 0 and D = 0, i.e.
(a− 2c)(b2 − 4ac + 8c2)=0. So we obtain

T = −48b2c4y2(2cx + by)2(bx− cy)2, I16 = 2b3c, µ0 = 4c2(b2 + 2c2),

if a = 2c and

T = − 3b2

4096c6
(b2 + 4c2)4y2(bx− 2cy)2(b2x + 8c2x + 2bcy)2,

I16 = − 1
64c3

b3(b2 + 4c2)2, µ0 =
1

16c2
(b2 + 4c2)2(b2 + 8c2),

if a = (b2 + 8c2)/(4c) (we note that c 6= 0 due to I8 6= 0).
Thus clearly if α̂ = 0 and I8 6= 0 then the condition I16 = 0 is equivalent to

T = 0 and as µ0 > 0 we obtain that the respective conditions provided by Table 2
(see rows 38 and 39) are equivalent to the corresponding conditions from (6.20).

To finish the proof of Theorem 1 it remains to examine the conditions for distin-
guishing the different phase portraits which correspond to the same configuration
of singularities. We have three groups of such phase portraits: (i) Vul8 − Vul11;
(ii) Vul3,Vul4 and (iii) Vul5,Vul6. According to [31] quadratic systems (S(c)

4 ) pos-
sess one of the mentioned phase portraits if and only if the following conditions are
fulfilled

α̂ > 0, I8 > 0 ⇒

{
Vul3 if I16 = 0;
Vul4 if I16 6= 0;

α̂ > 0, I8 = 0 ⇒

{
Vul5 if I16 = 0;
Vul6 if I16 6= 0;

α̂ > 0, I8 < 0 ⇒


Vul8 if I10 6= 0, I16 = 0, ξ̂ > 0;
Vul9 if I10 6= 0, I16 = 0, ξ̂ < 0;
Vul10 if I10 = 0;
Vul11 if I16 6= 0.

(6.22)

On the other hand for systems (S(c)
4 ) we have

B1 = −I16[b2 + (a− 3c)2], I16 = b(3ac2 − a3 + ab2 + 2c3),

B3 = −3abx4 − 6(a− 3c)(a + c)x3y + 18bcx2y2 + 6b2xy3 + 3b(a− 2c)y4,
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and hence the condition I16 = 0 is equivalent to B1 = 0. Herein we arrive to the
conditions provided by Table 3 for the portraits Vul3 −Vul6 respectively.

Next we examine the conditions for the phase portraits Vul8 − Vul11. First we
observe that by (6.19) the condition I10 = 0 yields b = a + c = 0 and this implies
I16 = B3 = B1 = 0. Therefore in the case I16 6= 0 (this is equivalent with B1 6= 0)
we get Vul 11 and in the case I10 = 0 (then B3 = 0) we obtain Vul 10 (see Table 3,
configuration number 35). So it remains to consider the phase portraits Vul 8 and
Vul 9. We claim that in the case I16 = 0 we have sign(ξ̂) = sign(B3B4). Indeed
assuming I16 = 0 we shall examine two cases, b = 0 and b 6= 0.

(1) If b = 0 (then I16 = 0) a straightforward calculation for systems (S(c)
4 ) yields

ξ̂ = −4(a− c)(a + c)3, B3B4 = −192(a− 3c)3c4(a + c)3x4y2, I8 = 8ac3,

and as I8 < 0 (i.e. ac < 0 ) we get (a − c)(a − 3c) > 0. So clearly our claim is
proved in this case.

(2) Assume now b 6= 0. Then I8 < 0 gives ac < 0 and hence we can set a
new parameter u as follows u2 = (a − 2c)/a. Herein we have c = a(1 − u2)/2 and
calculation gives

I16 = ab(2b− 3au + au3)(2b + 3au− au3)/4.

Hence due to ab 6= 0 the condition I16 = 0 gives b = ±au(u2 − 3)/2 and then we
calculate

ξ̂ = −a4(u2 − 1)(u2 − 3)3(1 + u2)2/2, I8 = a4(2− u2)(1 + u2)2/4,

B3B4 = −3a10(u2 − 3)3(1 + u2)5(ux± y)2(uy ∓ x)4/16.

As I8 < 0 we have u2 − 2 > 0 and this implies u2 − 1 > 0. Therefore sign(ξ̂) =
sign(B3B4), i.e. our claim is valid and we arrive to the respective conditions given
by Table 3 in the considered case.

As all the cases are examined Theorem 1.1 is proved. �

7. The family of Hamiltonian quadratic systems

In this section to prove Theorem 1.2 we need the following invariant polyno-
mials defined in [16] using the invariant polynomials (5.3) and (5.4) (we keep the
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respective notations adding only the “hat”)

2µ̂ = I8, Ĥ = −K14, 4Ĝ = −5I2K7 + 2I5K2 + 4K2
3 + 8K31,

2F̂ = −I2K11 − 4I19K5 + 4K2K27, V̂ = K11K22 + K2
23,

R̂ = 3Ĥ2 − 2Ĝµ̂, Ŝ = 2F̂ Ĥµ̂2 + Ĝ2µ̂2 − 4ĜĤ2µ̂ + 3Ĥ4 − 4µ̂3V̂ ,

P̂ = Ĝ2 − 6F̂ Ĥ + 12µ̂V̂ , Û = F̂ 2 − 4ĜV̂ ,

T̂ = 9F̂ 2µ̂2 − 14F̂ ĜĤµ̂ + 12F̂ Ĥ3 + 2Ĝ3µ̂− 2Ĝ2Ĥ2 − 8Ĝµ̂2V̂ + 12Ĥ2µ̂V̂ ,

Ŵ1 = K2
2 − 4K5K21, Ŵ2 = −K2K12 − 2K3K11 + 4K5K27 + 6K7K23,

Ê1 = 4I10 − 5I2I5 − 24I30, Ê2 = I2
2 + 32I23 − 16I24,

Ê3 = I3
2 + 32(12I5I18 − 3I2

19 + 16I33),

32D̂ = 4I2
5 (3I2Ê2 − Ê3)− Ê2(4I5Ê1 + I8Ê2),

T̂c = (9I3
5 + I8Ê1)2 + 9I2

5 (I2
8 Ê2 − 3I4

5 ) + I3
8 (3I2Ê2 − Ê3),

Ûc = 3I8I19(3I2I5 + 16I30)− 2I8(3I2I35 + 24I5I28 + 16I8I21)

+3I2
5 (I5I19 + 10I35)− 2I16(2I2I5 − I10 + 12I30).

(7.1)

The proof of Theorem 1.2 is based on the classifications of quadratic Hamiltonian
systems given in [1] and [16]. We use the notations of [1] whether the system has a
center as Vul# or if not as Ham#. In the first paper the global phase portraits of
this family were studied. In the second one there are determined the affine invariant
criteria for the realization of each one of the 28 possible topologically distinct phase
portraits constructed in [1]. That is, the phase portraits of the systems

dx

dt
=

∂H

∂y
,

dy

dt
= −∂H

∂x
, (7.2)

where H(x, y) is a polynomial of degree 3 in the variables x and y over R.
According to the paper [4] for the quadratic Hamiltonian systems we have

H(x, y) =
2∑

j=0

1
j + 1

Cj(x, y), (7.3)

where Cj(x, y), j = 0, 1, 2 are the polynomials (4.3). So the 3rd degree homogeneous
part of the polynomial H(x, y) is the polynomial H3(x, y) = C2(x, y)/3. As it is
shown in [1] via linear transformations the non-zero form H3(x, y) can be derived
to one of the 4 canonical forms

a) x(x2 − y2); b) (x3 + y3)/3; c) x2y; d) x3/3.

By (4.5) we observe that the invariant polynomials η and M̃ are respectively the
discriminant and the Hessian of the binary form C2(x, y). So considering also [16]
we arrive to the next proposition.

Proposition 7.1. Assume that for a quadratic system the condition ∂
∂xP (x, y) +

∂
∂y Q(x, y) ≡ 0 holds, i.e. it is Hamiltonian. Then this system could be brought via
an affine transformation and time rescaling to one of the canonical forms below if
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Table 4.

Affine invariant conditions for configurations Configuration
of singularities No.

µ0 < 0

D < 0 $, $, $, c ; N, N, N 1

D > 0 $, $ ; N, N, N 2

D = 0

T 6= 0 $, $, bcp(2) ; N, N, N 3

T = 0
R 6= 0 $, bs(3) ; N, N, N 4

R = 0 (hhhhhh)(4) ; N, N, N 5

µ0 > 0

D < 0
(R > 0)&(S > 0) $, $, c, c ; N 6

(R ≤ 0) ∨ (S ≤ 0) ∅; N 7

D > 0 $, c ; N 8

D = 0

T < 0 $, c, bcp(2) ; N 9

T > 0 bcp(2) ; N 10

T = 0

PR < 0 ∅; N 11

PR > 0 bcp(2), bcp(2) ; N 12

PR = 0
R 6= 0 c, bs(3) ; N 13

R = 0 (hh)(4) ; N 14

µ0 = 0

µ1 6= 0

D < 0 $, $, c ; N,
c̀1
2

´
PEP −H 15

D > 0 $ ; N,
c̀1
2

´
PEP −H 16

D = 0 P 6= 0 $, bcp(2) ; N,
c̀1
2

´
P E P −H 17

P = 0 bs(3) ; N,
c̀1
2

´
PEP −H 18

µ1 = 0

µ2 6= 0

U < 0
fM 6= 0 ∅; N,

`2
2

´
H −H 19

fM = 0 ∅;
c̀2
3

´
N 20

U > 0
fM 6= 0 $, $ ; N,

`2
2

´
P E P − P E P 21

fM = 0 $, c ;
c̀2
3

´
N 22

U = 0 bcp(2) ;
c̀2
3

´
N 23

µ2 = 0

µ3 6= 0 $ ;
`3
3

´
PEPEP − P 24

µ3 = 0,
µ4 6= 0

fM 6= 0 ∅; N,
`4
2

´
PHP − PHP 25

fM = 0 ∅;
`4
3

´
N 26

µ3 = µ4 = 0, fM 6= 0
`

	 [|]; s
´
; N,

`
	 [|]; N

´
27

µ3 = 0,
µ4 = 0,fM = 0

B6 < 0
`

	 [‖c]; ∅
´
;

`
	 [‖c]; N

´
28

B6 > 0
`

	 [‖]; ∅
´
;

`
	 [‖]; N

´
29

B6 = 0
`

	 [|2]; ∅
´
;

`
	 [|2]; N

´
30

and only if the respective conditions hold

(S(h)
1 )

{
ẋ = α + bx + cy − 2xy,

ẏ = β − ax− by − 3x2 + y2,
⇔ η > 0;

(S(h)
2 )

{
ẋ = α + bx + cy + y2,

ẏ = β − ax− by − x2,
⇔ η < 0;
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Table 5.

Con-
figu-

ration

Phase
portrait

Con-
figu-

ration

Phase
portrait

Con-
figu-

ration

Phase
portrait

1

Vul 11 if B1 6= 0 8 Vul 2 20 Ham11
Vul 9 if B1 = 0, B3B4 < 0 9 Vul 7

21
Ham20 if B3 6= 0

Vul 8 if B1 = 0, B3B4 > 0 10 Ham17 Ham21 if B3 = 0
Vul 10 if B1 = B3 = 0 11 Ham11 22 Vul 2

2
Ham26 if B1 = 0, B3B4 < 0 12 Ham28 23 Ham17

Ham25 if
n

B1 6= 0, or
B1 = 0, B3B4 > 0 13 Vul 2 24 Ham18

3
Ham27 if B1 6= 0 14 Ham17 25 Ham13
Ham24 if B1 = 0

15
Vul 6 if B1 6= 0 26 Ham11

4 Ham25 Vul 5 if B1 = 0 27 Ham14

5 Ham23 16 Ham19 28 Ham11

6
Vul 4 if B1 6= 0 17 Ham22 29 Ham15

Vul 3 if B1 = 0 18 Ham19 30 Ham16
7 Ham11 19 Ham12

(S(h)
3 )

{
ẋ = α + bx + cy + x2,

ẏ = β − ax− by − 2xy,
⇔ η = 0, M̃ 6= 0;

(S(h)
4 )

{
ẋ = α + bx + cy,

ẏ = β − ax− by − x2,
⇔ η = 0, M̃ = 0.

Remark 7.2. For a quadratic Hamiltonian system the relation η = −27µ0 holds.
This could be easy established via the frontal evaluations of the invariant polyno-
mials η and µ0 for systems (S(h)

1 )− (S(h)
4 ).

Proof of Theorem 1.2. In what follows we shall consider each one of the systems
(S(h)

1 )− (S(h)
4 ) and will show that the conditions given in [16] for distinguishing the

phase portraits of the respective systems, are equivalent with the affine invariant
provided in Tables 4 and 5.

7.1. The family of systems (S(h)
1 ). In this case according to [16, Theorem 3]

the phase portrait (and this yields the respective configuration of singularities) of a
system of the family (S(h)

1 ) is determined by the following affine invariant conditions

D̂ < 0, Ûc = 0, T̂c > 0 ⇔ Vul8 ⇒ $, $, $, c ;N,N, N ;

D̂ < 0, Ûc = 0, T̂c < 0 ⇔ Vul9 ⇒ $, $, $, c ;N,N, N ;

D̂ < 0, Ûc = 0, T̂c = 0 ⇔ Vul10 ⇒ $, $, $, c ;N,N, N ;

D̂ < 0, Ûc 6= 0 ⇔ Vul11 ⇒ $, $, $, c ;N,N, N ;

D̂ = 0, Ûc = 0, T̂c = 0 ⇔ Ham23 ⇒ (hhhhhh)(4) ;N,N, N ;

D̂ = 0, Ûc = 0, T̂c < 0 ⇔ Ham24 ⇒ $, $, ĉp(2) ;N,N, N ;{
D̂ > 0, Ûc 6= 0, or
D̂ ≥ 0, Ûc = 0, T̂c > 0

⇔ Ham25 ⇒

{
$, $ ;N,N, N if D̂ 6= 0;
$, ŝ(3) ;N,N, N if D̂ = 0;

D̂ > 0, Ûc = 0, T̂c < 0 ⇔ Ham26 ⇒ $, $ ;N,N, N ;

D̂ = 0, Ûc 6= 0 ⇔ Ham27 ⇒ $, $, ĉp(2) ;N,N, N.

(7.4)



EJDE-2012/09 COMPLETE GEOMETRIC INVARIANT 29

According to [1] systems (S(h)
1 ) have at least one real singular point. So we may

assume α = β = 0 due to a translation and then calculations yield

D̂ = 4(b2 − ac)2[−8a3c− (36c2 + b2)a2 + 6c(4b2 − 9c2)a + 3(b4 + 33b2c2 − 9c4)],

Ûc = 108bc(a− 2b− 3c)(a + 2b− 3c)(a− 2b + c)(a + 2b + c),

T̂c = 3456
[
(a + 2b + c)3(a− 2b− 3c)3 + 24bc(a + 2b + c)2(a− 2b− 3c)2

− 384b2c2(a + 2b + c)(a− 2b− 3c)− 4096b3c3
]
,

µ0 = −12 < 0, D = 48D̂, B1 = Ûc/2, (7.5)

B3 = 18(a2 − 4b2 − 2ac− 3c2)x3y − 18bc(3x4 + 6x2y2 − y4),

B4 = 288[(a2 − 4b2 − 2ac− 3c2)x− 8bcy][24bcx + (a2 − 4b2 − 2ac− 3c2)y].

Remark 7.3. We claim that in the case Ûc = 0 we have sign( T̂ c) = sign(B3B4)
and T̂ c = 0 if and only if B3 = 0.

Indeed assume Ûc = 0. We observe that the change of variables (x, y, t) 7→
(x,−y,−t) keeps the systems (S(h)

1 ) with α = β = 0 except the sign of the parameter
b, which will be changed. Hence without loss of generality we could consider only
the equality bc(a+2b+ c)(a− 2b− 3c) = 0. If bc 6= 0 then by (7.5) evidently we get
T̂ c = −21933b3c3. On the other hand for a = −2b− c as well as for a = 2b + 3c, we
obtain B3B4 = −21234b3c3(x − y)4(3x + y)2 and B3 = −18bc(x − y)3(3x + y). So
our claim is proved in the considered case.

Assume now bc = 0. Then calculations yield

T̂ c = 3456(a− 3c)3(a + c)3, B3B4 = 3 T̂ cx
4y2/2, B3 = 18(a− 3c)(a + c)x3y

if b = 0 and

T̂c = 3456(a− 2b)3(a + 2b)3, B3B4 = 3T̂cx
4y2/2, B3 = 18(a− 2b)(a + 2b)x3y

if c = 0. Now evidently the proof of the claim is completed.

7.1.1. The case D̂ < 0. Then D < 0 and considering (7.5) and Remark 7.3 we
conclude that the conditions for phase portraits Vul8 − Vul11 given by Tables 4
and 5 are equivalent to the respective conditions in (7.4).

7.1.2. The case D̂ > 0. According to (7.4) in this case we could have only the phase
portraits Ham25 and Ham26. So considering (7.5) and Remark 7.3 we again arrive
to the equivalence of the respective conditions from (7.4) and from Tables 4 and 5.

7.1.3. The case D̂ = 0. By (7.4) we have: (i) the phase portraits Ham24 (if Ûc =
0, T̂c < 0) and Ham27(if Ûc 6= 0) with the same configuration having three finite
singularities (one double); (ii) the phase portrait Ham25 (if Ûc = 0, T̂c > 0)
possessing only two real finite singularities (one triple); (iii) the phase portrait
Ham23 (if Ûc = T̂c = 0) possessing only one finite singularity of multiplicity four.
Considering the diagram in Figure 1 and (7.5) we conclude that the conditions for
determining the mentioned phase portraits from Tables 4 and 5 are equivalent to
the respective conditions from (7.4).
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7.2. The family of systems (S(h)
2 ). In this case according to [16, Theorem 4]

the phase portrait (and this yields the respective configuration of singularities) of
a system from the family (S(h)

2 ) is determined by the following affine invariant
conditions

{
D̂ > 0, or
D̂ = T̂ = P̂ = 0, R̂ 6= 0

⇔ Vul2 ⇒

{
$, c ;N if D̂ 6= 0;
c, ŝ(3) ;N if D̂ = 0;

D̂ < 0, R̂ > 0, Ŝ > 0, Ûc = 0 ⇔ Vul3 ⇒ $, $, c, c ;N ;

D̂ < 0, R̂ > 0, Ŝ > 0, Ûc 6= 0 ⇔ Vul4 ⇒ $, $, c, c ;N ;

D̂ = 0, T̂ < 0 ⇔ Vul7 ⇒ $, c, ĉp(2) ;N ;{
D̂ < 0, (R̂ ≤ 0) ∨ (Ŝ ≤ 0), or
D̂ = T̂ = 0, P̂ R̂ < 0

⇔ Ham11 ⇒ ∅;N ;{
D̂ = 0, T̂ > 0, or
D̂ = T̂ = P̂ = R̂ = 0

⇔ Ham17 ⇒

{
ĉp(2) ;N if T̂ 6= 0;
(hh)(4) ; N if T̂ = 0;

D̂ = T̂ = 0, P̂ R̂ > 0 ⇔ Ham28 ⇒ ĉp(2), ĉp(2) ;N.

(7.6)

Taking into account (7.1) and (5.2) a straightforward calculation gives for systems
(S(h)

2 )

µ0 = 1, D̂ = D/48, T̂ = T/6, R̂ = R/4, Ŝ = S/48, P̂ = P, Ûc = 2B1.

(7.7)
Herein considering the diagram from Figure 1, it is easy to observe that the condi-
tions for determining the phase portraits from Tables 4 and 5 corresponding to the
case µ0 > 0 are equivalent to the respective conditions from (7.6).

7.3. The family of systems (S(h)
3 ). For this family of systems we have η = µ0 = 0

and M̃ 6= 0. According to [28, Table 2] at infinity we have two real singularities of
total multiplicity at least four. So in order to determine exactly the configuration
of the singularities at infinity we shall use the classification of the behavior of the
trajectories in the neighbourhood at infinity of quadratic differential systems, given
in [28].

In this order of ideas we need the following additional invariant polynomials,
defined in [28]

κ(ã) = (M̃, K̃)(2), κ1(ã) = (M̃, C1)(2),

K̃1(ã, x, y) = p1(x, y)q2(x, y)− p2(x, y)q1(x, y),

K̃2(ã, x, y) = 4(T2, ω)(1) + 3D1(C1, ω)(1) − ω
(
16T3 + 3T4/2 + 3D2

1

)
,

K̃3(ã, x, y) = C2
2 (4T3 + 3T4) + C2(3C0K̃ − 2C1T7) + K̃1(3K̃1 − C1D2),

(7.8)
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where ω = M̃ − 8K̃. According to [16, Theorem 2] the phase portrait of a system
from the family (S(h)

3 ) is determined by the following affine invariant conditions

Vul5 ⇔ D̂ < 0, Ûc = 0;

Vul6 ⇔ D̂ < 0, Ûc 6= 0;

Ham12 ⇔ R̂ = 0, Û < 0;

Ham13 ⇔ R̂ = Û = 0, V̂ 6= 0;

Ham19 ⇔

{
D̂ > 0, or
D̂ = 0, R̂ 6= 0, Ûc = 0;

Ham20 ⇔ R̂ = 0, Û > 0, Ŵ2 6= 0;

Ham21 ⇔ R̂ = 0, Û > 0, Ŵ2 = 0;

Ham22 ⇔ D̂ = 0, Ûc 6= 0.

(7.9)

For systems (S(h)
3 ) calculations yield

D̂ = 108c4(ab + 2β)2 − 4c2(b2 + 2ac− 4α)3,

Ûc = −108c4(ab + 2β), R̂ = 12c2x2,

µ0 = 0, M̃ = −72x2, D = 48D̂, B1 = Ûc/2,

µ1 = 4cx, L̃ = 24x2 > 0, K̃ = −4x2 < 0,

(7.10)

7.3.1. The case R̂ 6= 0. In this case the condition c 6= 0 (i.e., µ1 6= 0) holds and
as L̃ > 0 and K̃ < 0 according to [28, Table 4] at infinity the behavior of the
trajectories corresponds to Figure 9; i.e., we have the following configuration of
singularities N,

(̂
1
2

)
PEP −H.

We observe that in the case D̂ = 0 and (i.e., D = 0) by (7.9) we have the phase
portrait Ham19 with one finite singularity (if Ûc = 0) and Ham22 with two finite
singularities (if Ûc 6= 0). Considering the diagram (Figure 1), (7.10) and the fact,
that the condition D̂2 + Û2

c 6= 0 implies R̂ 6= 0, we conclude that the conditions
for determining the phase portraits from Tables 4 and 5 corresponding to the case
µ0 = 0 and µ1 6= 0 are equivalent to the respective conditions of (7.9) (i.e. the
conditions for the phase portraits Vul5,Vul6, Ham19 and Ham22).

7.3.2. The case R̂ = 0
Then c = 0 and for systems (S(h)

3 ) we calculate

Û = (b2 − 4α)
[
(ab + 2β)x− (b2 − 4α)y

]2
x4, Ŵ2 = −6x4(ab + 2β),

µ0 = µ1 = 0, µ2 = (4α− b2)x2, U = Û , B3 = 3Ŵ2,

κ = κ1 = 0, K̃2 = 768(b2 − 4α)x2.

(7.11)

We observe that sign(Û) = sign(U) = − sign(µ2) = sign(K̃2).



32 J. C. ARTÉS, J. LLIBRE, N. VULPE EJDE-2012/09

Assume first Û < 0. According to (7.9) the phase portrait of a system (S(h)
3 )

corresponds to Ham12 (without real finite singularities). On the other hand as
µ0 = µ1 = κ = κ1 = 0, µ2 > 0, L̃ > 0 and K̃2 < 0, according to [28, Table 4] at
infinity the behavior of the trajectories corresponds to Figure 8, i.e. we arrive to
the configuration N,

(
2
2

)
H −H.

Admit now Û > 0. Then by (7.9) we obtain the phase portrait Ham20 if Ŵ2 6= 0 and
Ham21 if Ŵ2 = 0 in both cases having two finite integrable saddles. As regarding
the configuration of infinite singularities we observe that µ2 < 0, L̃ > 0 and K̃ <
0. So following [28, Table 4] we obtain Figure 9, i.e. we get the configuration
N,

(
2
2

)
P E P − P E P . This leads to the total configuration 21 of Table 4. It

remains to note that by (7.11) the condition Ŵ2 = 0 is equivalent to B3 = 0.
Assume finally Û = 0. Then α = b2/4 and for systems (S(h)

3 ) we have

µ0 = µ1 = µ2 = µ3 = 0, µ4 = (ab + 2β)2x4/4 = V̂ . (7.12)

According to (7.9) the phase portrait of a system (S(h)
3 ) corresponds to Ham13 if

V̂ 6= 0 and we get degenerate systems (with the phase portrait Ham14) if V̂ = 0. We
claim that in the first case at infinity we have the configuration N,

(
4
2

)
PHP−PHP .

Indeed following [28] for systems (S(h)
3 ) we have

κ = κ1 = 0, L̃ = 24x2 > 0, K̃ = −4x2 < 0, R̃ = −8x2 < 0

and according to [28, Table 4] at infinity the behavior of the trajectories corresponds
to Figure 28; i.e., we arrive to the mentioned above configuration and our claim is
proved.

It remains to observe that in the case V̂ = 0 (then µ4 = 0) and the degenerate
systems have the phase portrait Ham14. Hence the singular invariant line coincides
with the invariant line of the respective linear systems, and using our notations (see
page 7) we get the configuration

(
	 [|]; s

)
;N,

(
	 [|];N

)
.

Considering that the condition M̃ 6= 0 for the family (S(h)
3 ) holds and (7.11), we

conclude that the conditions for determining the phase portraits from Tables 4 and
5 corresponding to the case µ0 = µ1 = 0 are equivalent to the respective conditions
from (7.9) (i.e. the conditions for the phase portraits Ham12,Ham13, Ham20 and
Ham21).

7.4. The family of systems (S(h)
4 ). For this family of systems we have η =

µ0 = µ1 = 0 and M̃ = 0. According to [28, Table 2] at infinity we have one real
singularity of total multiplicity at least five. So in order to determine exactly the
configuration of the singularities at infinity we shall use again Table 4 from [28].
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According to [16, Theorem 1] the phase portrait of a system from the family
(S(h)

4 ) is determined by the following affine invariant conditions

Vul2 ⇔ P̂ 6= 0, Û > 0;

Ham11 ⇔


P̂ 6= 0, Û < 0, or
P̂ = Û = 0, V̂ 6= 0, or
P̂ = Û = V̂ = 0, Ŵ1 < 0;

Ham15 ⇔ P̂ = Û = V̂ = 0, Ŵ1 > 0;

Ham16 ⇔ P̂ = Û = V̂ = Ŵ1 = 0;

Ham17 ⇔ P̂ 6= 0, Û = 0;

Ham18 ⇔ P̂ = 0, Û 6= 0.

(7.13)

For systems (S(h)
4 ) calculations yield

P̂ = c4x4, Û =
[
(ac− b2)2 + 4c(bα + cβ)

]
(bx + cy)2x4,

η = M̃ = µ0 = µ1 = 0, µ2 = c2x2, K̃ = 0, P = P̂ , U = Û .
(7.14)

7.4.1. The case P̂ 6= 0. In this case according to (7.13) a system from the family
(S(h)

4 ) has one of the following phase portraits: Vul2 (if Û > 0), Ham11 (if Û < 0)
or Ham17 (if Û = 0). In all the cases at infinity we have a multiple node, which
according to [28, Table 4] is of multiplicity five, as the conditions µ0 = µ1 = M̃ =
K̃ = 0 and µ2 > 0 (as c 6= 0) are verified. More precisely at infinity we have Figure

30, i.e. the nilpotent singular point
(̂
2
3

)
N .

7.4.2. The case P̂ = 0. Then c = 0 and for systems (S(h)
4 ) we have

Û = b6x6, V̂ =
[
(α2 − abα− b2β)x− b2αy

]
x3,

µ2 = 0, µ3 = b3x3, U = Û , µ4 = V̂ , K̃ = 0, K̃1 = −bx3.
(7.15)

So if Û 6= 0 (i.e., b 6= 0) according to (7.13) we get the phase portrait Ham18 with
a finite integrable saddle. On the other hand as µ3K̃1 = −b4x4 < 0 according to
[28, Table 4] the configuration of infinite singularities corresponds to Figure 33; i.e.,(
3
3

)
PEPEP − P .
Assume Û = 0 (i.e., b = 0). In this case we have

µ3 = 0, µ4 = V̂ = α2x4, Ŵ1 = (a2 + 4β)x4 − 4αx3y = B6, K̃3 = 0 (7.16)

and we shall consider two subcases: µ4 6= 0 and µ4 = 0.

(1) If µ4 6= 0 systems (S(h)
4 ) are non-degenerate having the phase portrait Ham11

(see (7.13), as V̂ 6= 0). Clearly at infinity we have a singular point of multiplicity
seven. As µ4 > 0 and K̃3 = 0 according to [28, Table 4] at infinity we get Figure
30. More exactly we have the configuration

(
4
3

)
P −P as the infinite singular point

is intricate.
(2) Assume finally µ4 = 0, i.e. α = 0. Then systems (S(h)

4 ) with c = b = α = 0
become degenerate possessing the phase portraits indicated respectively in (7.13).
We observe that in the case of all the three phase portraits Ham11, Ham15 and
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Ham16 the systems (S(h)
4 ) have an invariant singular conic which is reducible. More

exactly, it splits into two parallel invariant lines which are real and distinct if B6 > 0
(portrait Ham15); they are complex if B6 < 0 (portrait Ham11), and they coincide if
B6 = 0 (portrait Ham16). This leads to the respective configurations of singularities
described in Table 4 (see rows No. 28–30).

It remains to note taking into account (7.14), (7.15) and (7.16) that for the family
of systems (S(h)

4 ) the respective conditions for determining the phase portraits from
Tables 4 and 5 in all the cases considered above are equivalent to the respective
conditions from (7.13).

As all the cases are considered Theorem 1.2 is proved.
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