Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 10, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

REAL INTERPOLATION SPACES BETWEEN THE DOMAIN OF THE LAPLACE OPERATOR WITH TRANSMISSION CONDITIONS AND L^{p} ON A POLYGONAL DOMAIN

AISSA AIBECHE, WIDED CHIKOUCHE, YASMINA DAIKH

Abstract

We provide a description of the real interpolation spaces between the domain of the Laplace operator (with transmission conditions in a polygonal domain Ω) and $L^{p}(\Omega)$ as interpolation spaces between $\mathcal{W}^{2, p}(\Omega)$ (possibly augmented with singular solutions) and $L^{p}(\Omega)$. This result relies essentially on estimates on the resolvent and the reiteration theorem.

1. Introduction

Let Ω be a polygonal domain of \mathbb{R}^{2} divided into two polygons Ω_{1} and Ω_{2} separated by an interface Σ. Let the transmission conditions be defined as

$$
\begin{equation*}
u_{1}=u_{2} \quad \text { and } \quad \sum_{i=1}^{2} \alpha_{i} \frac{\partial u_{i}}{\partial \nu_{i}}=0 \quad \text { on } \Sigma, \tag{1.1}
\end{equation*}
$$

where ν_{i} denotes the unit normal vector to Σ directed outside Ω_{i}, u_{i} means the restriction of u to Ω_{i}, and α_{1}, α_{2} are two positive real numbers such that $\alpha_{1} \neq \alpha_{2}$.

Let A_{p} be the operator defined by

$$
\begin{aligned}
D_{A_{p}}(\Omega)=\left\{u \in H_{0}^{1}(\Omega): \Delta u_{i}\right. & \left.\left.\in L^{p}\left(\Omega_{i}\right), i=1,2 ; 1.1\right) \text { is satisfied }\right\} \\
A_{p}: u & \mapsto\left\{-\Delta u_{i}\right\}_{i=1,2}
\end{aligned}
$$

Then A_{p} is the infinitesimal generator of an analytic semigroup on $L^{p}(\Omega)$ 3].
Let us define $\mathcal{W}^{s, p}(\Omega):=\left\{u \in H_{0}^{1}(\Omega) ; u_{i} \in W^{s, p}\left(\Omega_{i}\right), i=1,2\right.$ satisfying (1.1) $\}$ the space of piecewise $W^{s, p}$ functions on Ω which satisfies the transmission conditions (1.1). The space $\mathcal{W}^{s, p}(\Omega)$ will be equipped with the usual product norm of $\Pi_{i=1}^{2} \widehat{W^{s, p}}\left(\Omega_{i}\right)$.

We know that $D_{A_{p}}(\Omega)=\operatorname{span}\left(\mathcal{W}^{2, p}(\Omega) ; S\right)$, the space spanned by $\mathcal{W}^{2, p}(\Omega)$ and S, where S is the finite set of singular solutions [6, 8].

By analogy with [2] who considered the Laplace operator subject to Dirichlet boundary conditions, we give a description of the real interpolation spaces related to the operator A_{p}. This result relies essentially on estimates on the resolvent and the reiteration theorem of real interpolation [7]. It is well known that information

[^0]concerning real interpolation spaces between the basic space and the domain of the operator is crucial to get results of maximal regularity for parabolic problems.

This article is organized as follows: in Section 2, we recall the results concerning existence, uniqueness and regularity of the variational solution u of the following transmission problem with complex parameter λ

$$
\begin{gather*}
-\Delta u_{i}+\lambda u_{i}=f_{i} \quad \text { in } \Omega_{i} \\
u_{i}=0 \quad \text { on } \partial \Omega_{i} \backslash \Sigma \\
u_{1}=u_{2} \quad \text { on } \Sigma \tag{1.2}\\
\sum_{i=1}^{2} \alpha_{i} \frac{\partial u_{i}}{\partial \nu_{i}}=0 \quad \text { on } \Sigma
\end{gather*}
$$

where $f \in L^{p}(\Omega), p>1$.
The aim of Section 3 is to state the following estimates of problem $\sqrt[1.2]{ }$ on the resolvent in an infinite sector G

$$
\begin{gathered}
\|u\|_{\mathcal{W}^{s, p}(G)} \leq \frac{c}{\lambda^{1-\frac{s}{2}}}\|f\|_{0, p, G}, \quad s<\lambda_{m}+\frac{2}{p} \quad \text { for all } m \\
\|u\|_{\operatorname{span}\left(\mathcal{W}^{s, p}(G) ; \mathcal{S}\right)} \leq \frac{c}{\lambda^{1-\frac{s}{2}}}\|f\|_{0, p, G}, \quad s>\lambda_{m}+\frac{2}{p} \quad \text { for some } m
\end{gathered}
$$

(see Section 3 for the definition of \mathcal{S} and λ_{m}). For this purpose, we firstly establish the result for the case $\lambda=1$. Applying the transformation $(x, y) \mapsto(t x, t y)$, $t=\lambda^{-1 / 2}$, problem 1.2 in G becomes

$$
\begin{gathered}
-\Delta u_{i}(t x, t y)+u_{i}(t x, t y)=t^{2} f_{i}(t x, t y) \quad \text { in } G_{i} \\
u_{i}(t x, t y)=0 \quad \text { on } \partial G_{i} \backslash \Sigma \\
u_{1}(t x, t y)=u_{2}(t x, t y) \quad \text { on } \Sigma \\
\sum_{i=1}^{2} \alpha_{i} \frac{\partial u_{i}}{\partial \nu_{i}^{t}}(t x, t y)=0 \quad \text { on } \Sigma
\end{gathered}
$$

where ν_{i}^{t} is the normal vector with respect to the variables $(t x, t y)$ directed outside G_{i}. This method of dilation relies on the invariance of the infinite sector G, under dilations and the homogeneity of the singular functions, therefore we come back to the previous case.

Section 4 is devoted to state such estimate in Ω polygonal. Via a partition of unity, problem $\sqrt{1.2}$ is locally reduced to a similar problem in an infinite sector, then we used the results of the previous section.

Thanks to the results of Section 4 and the reiteration theorem, we give in Section 5 a characterization of $D_{A_{p}}(\theta ; p), 0<\theta<1$, as interpolation spaces between $\operatorname{span}\left(\mathcal{W}^{2, p}(\Omega) ; \mathcal{S}\right)$ and $L^{p}(\Omega)$ or between $\mathcal{W}^{2, p}(\Omega)$ and $L^{p}(\Omega)$.

Let us finish this introduction with some notation used in the whole paper: if D is an open subset of \mathbb{R}^{2}, we denote by $L^{p}(D),(p>1)$ the Lebesgue spaces, and by $W^{s, p}(D), s \geq 0$, the standard Sobolev spaces built on. The usual norm of $W^{s, p}(D)$ is denoted by $\|\cdot\|_{s, p, D}$. The space $H_{0}^{1}(D)$ is defined as usual by $H_{0}^{1}(D):=\left\{v \in H^{1}(D) ; v=0\right.$ on $\left.\partial D\right\}$.

2. Regularity results of transmission problem in a polygonal domain

Let Ω be a bounded polygonal domain of \mathbb{R}^{2} with a Lipschitz boundary Γ. We suppose that Ω is decomposed into two polygons Ω_{1} and Ω_{2} with an interface Σ satisfying

$$
\bar{\Omega}=\bar{\Omega}_{1} \cup \bar{\Omega}_{2}, \quad \Omega_{1} \cap \Omega_{2}=\emptyset, \quad \bar{\Omega}_{1} \cap \bar{\Omega}_{2}=\Sigma
$$

We assume that the boundaries $\partial \Omega_{i}$ of $\Omega_{i}(i=1,2)$ is formed by open straight line segments $\Gamma_{i, j}, j=1, \cdots, N_{i}$, with $N_{i} \in \mathbb{N}^{\star}$, enumerated clockwise such that

$$
\Sigma=\Gamma_{1,1}=\Gamma_{2,1}, \quad \Gamma:=\partial \Omega=\cup_{i=1,2} \cup_{j=2}^{N_{i}} \Gamma_{i, j}
$$

We denote by $P_{j}, j=1, \ldots, N_{1}+N_{2}-2$ the vertices of Ω where

$$
\begin{gathered}
P_{j}=\overline{\Gamma_{1, j}} \cap \overline{\Gamma_{1, j+1}}, \quad j=1, \ldots, N_{1}-1 \\
P_{j}=\overline{\Gamma_{2, j-N_{1}+1}} \cap \overline{\Gamma_{2, j-N_{1}+2}}, \quad j=N_{1}, \ldots, N_{1}+N_{2}-2 .
\end{gathered}
$$

At each point $P_{j},\left(j \neq 1, j \neq N_{1}\right)$ we denote the measure of the angle P_{j} (measured from inside Ω) by ω_{j}. When $j=1$ or $j=N_{1}$, the angle at P_{j} measured from inside Ω_{i} is denoted by $\omega_{i j}, i=1,2$. See Figure 1 for an illustration.

For the transmission problem $\sqrt[1.2]{ }$, the corresponding variational problem is

$$
\begin{equation*}
\int_{\Omega} \alpha(\nabla u \nabla \bar{v}+\lambda u \bar{v}) d \mathbf{x}=\int_{\Omega} \alpha f \bar{v} d \mathbf{x} \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

where $\alpha(\mathbf{x})$ is piecewise constant; i.e., $\alpha(\mathbf{x})=\alpha_{i}>0$ for $\mathbf{x} \in \Omega_{i}, i=1,2$.
For the rest of this article, $L^{p}(\Omega)$ will be equipped with the norm

$$
\|u\|_{0, p}=\left(\int_{\Omega} \alpha|u(\mathbf{x})|^{p} d \mathbf{x}\right)^{1 / p}
$$

First we recall the results concerning existence, uniqueness and regularity of the variational solution u of 2.1.

Figure 1. The domain Ω

Proposition 2.1. For each $f \in L^{p}(\Omega)$, there exists a unique solution $u \in H_{0}^{1}(\Omega)$ of 2.1), for all $\lambda \in \mathbb{C}: \Re \lambda \geq 0$.

For a proof of the above proposition, see [3, Lemma 3.1].

Let η_{j} be a cut-off function $\eta_{j} \equiv \eta_{j}(r) \in \mathcal{D}\left(\mathbb{R}^{+}\right)$which is equal to 1 in a neighborhood of the vertex P_{j}, with compact support in an open set, which is disjoint to the other vertices of Ω, then the singularities of problem 1.2 take the form

$$
S^{(j m)}=\eta_{j} r^{\lambda_{j m}} \sin \left(\lambda_{j m} \theta\right), \quad \lambda_{j m}=\frac{m \pi}{w_{j}}, \quad \text { when } j \neq 1, j \neq N_{1}
$$

and

$$
S^{(j m)}=\eta_{j} r^{\lambda_{j m}} \varphi_{j m}(\theta), \quad \text { when } j=1, j=N_{1}
$$

where $\lambda_{j m}$ is a nonnegative real number and $\lambda_{j m}^{2}, \varphi_{j m}$ are respectively the eigenvalues and eigenfunctions of the Sturm-Liouville problem:

$$
\begin{aligned}
& \text { Find } \varphi \in H_{0}^{1}(]-\omega, \omega^{\prime}[) \text { such that } \\
& \quad-\left(\alpha(\theta) \varphi^{\prime}(\theta)\right)^{\prime}=\lambda \alpha(\theta) \varphi(\theta),
\end{aligned}
$$

where $\omega=\omega_{12}, \omega^{\prime}=\omega_{11}, \alpha(\theta)=\alpha_{1}$ for $\theta>0$ and $\alpha(\theta)=\alpha_{2}$ for $\theta<0$ if $j=1$, while $\omega=\omega_{N_{1} 1}, \omega^{\prime}=\omega_{2 N_{1}}, \alpha(\theta)=\alpha_{1}$ for $\theta<0$ and $\alpha(\theta)=\alpha_{2}$ for $\theta>0$ if $j=N_{1}$.

The singular behavior of the solution of 2.1 is given by the following proposition (see [8, Theorem 2.27]).

Proposition 2.2. If $\lambda_{j m} \neq \frac{2}{p^{\prime}}$ for $1 \leq j \leq N_{1}+N_{2}-2$ and for all $m \in \mathbb{N}^{*}$, then for each $f \in L^{p}(\Omega)$, there exist unique real numbers $c_{j m}$ and a unique variational solution $u \in H_{0}^{1}(\Omega)$ of 1.2 which admits the decomposition

$$
\begin{equation*}
u=u_{R}+\sum_{\left.\lambda_{j m} \in\right] 0, \frac{2}{p^{\prime}}\left[, 1 \neq \lambda_{j m}, 1 \leq j \leq N_{1}+N_{2}-2\right.} c_{j m} S^{(j m)}, \tag{2.2}
\end{equation*}
$$

where $u_{R} \in \mathcal{W}^{2, p}(\Omega)$ is the regular part of u and the constants $c_{j m}$ are the coefficients of the singular part.

3. L^{p} estimates in an infinite sector G

Let G be a plane sector consisting of two plane sectors G_{1}, G_{2} with respective opening ω_{1} and ω_{2}, separated by an interface Σ.

$$
\begin{gathered}
G_{1}=\left\{(r \cos \theta, r \sin \theta) ;-\omega_{1}<\theta<0, r>0\right\} \\
G_{2}=\left\{(r \cos \theta, r \sin \theta) ; 0<\theta<\omega_{2}, r>0\right\} \\
\Sigma=\{(r, 0) ; r>0\}
\end{gathered}
$$

We consider the transmission problem $\sqrt{1.2}$ in the infinite sector G,

$$
\begin{gather*}
-\Delta u_{i}+\lambda u_{i}=f_{i} \quad \text { in } G_{i} \tag{3.1}\\
u_{i}=0 \quad \text { on } \partial G_{i} \backslash \Sigma, \tag{3.2}\\
u_{1}=u_{2} \quad \text { on } \Sigma \tag{3.3}\\
\sum_{i=1}^{2} \alpha_{i} \frac{\partial u_{i}}{\partial \nu_{i}}=0 \quad \text { on } \Sigma . \tag{3.4}
\end{gather*}
$$

To obtain growth (with respect to λ) on $\left\|(-\Delta+\lambda)^{-1}\right\|$ in a given norm, we state the result on a finite sector denoted by $G_{F}:=G \cap B\left(0, r^{\prime}\right), r^{\prime}>0$. We shall obtain the same result for an infinite sector by taking limits, with respect to a sequence of cut-off functions.

Proposition 3.1. If $\lambda_{m} \neq 2 / p^{\prime}$ for all $m \in \mathbb{N}^{*}$, then for each $f \in L^{p}\left(G_{F}\right)$, there exists a unique variational solution $u \in H_{0}^{1}\left(G_{F}\right)$ of (3.1)-3.4) (with G_{F} instead of $G)$ which admits the decomposition

$$
\begin{equation*}
u=u_{R}+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} c_{m} S^{(m)} \tag{3.5}
\end{equation*}
$$

where $u_{R} \in \mathcal{W}^{2, p}\left(G_{F}\right)$ is the regular part of u, c_{m} are constants and $S^{(m)}$ are defined as in Section 2, the subscript j has been omitted since G contain only one vertex; furthermore u satisfies the estimates

$$
\begin{gather*}
\|u\|_{0, p, G_{F}} \leq \frac{1}{\Re \lambda}\|f\|_{0, p, G_{F}}, \quad \Re \lambda>0 \tag{3.6}\\
\|u\|_{0, p, G_{F}} \leq \frac{p}{2|\Im \lambda|}\|f\|_{0, p, G_{F}}, \quad \Im \lambda \neq 0 \tag{3.7}
\end{gather*}
$$

Consequently there exists a constant $c(p)>0$ such that

$$
\begin{equation*}
\|u\|_{0, p, G_{F}} \leq \frac{c(p)}{|\lambda|}\|f\|_{0, p, G_{F}}, \quad \Re \lambda \geq 0, \lambda \neq 0 \tag{3.8}
\end{equation*}
$$

and for the regular part we have

$$
\begin{equation*}
\left\|u_{R}\right\|_{\mathcal{W}^{2, p}\left(G_{F}\right)} \leq C\left\|(-\Delta+\lambda) u_{R}\right\|_{0, p, G_{F}} . \tag{3.9}
\end{equation*}
$$

Proof. The decomposition of u into a regular part and a singular one is a direct consequence of Proposition 2.2 . For (3.6), (3.7) and (3.8), see [3].

As in [3, we obtain (3.9) by applying [8, Theorem 2.27] and Peetre's lemma. Indeed:

$$
\begin{align*}
\left\|u_{R}\right\|_{\mathcal{W}^{2, p}\left(G_{F}\right)} & \leq C\left\{\left\|\Delta u_{R}\right\|_{0, p, G_{F}}+\left\|u_{R}\right\|_{0, p, G_{F}}\right\} \tag{3.10}\\
& \leq C\left\{\left\|(-\Delta+\lambda) u_{R}\right\|_{0, p, G_{F}}+(1+|\lambda|)\left\|u_{R}\right\|_{0, p, G_{F}}\right\}
\end{align*}
$$

Now it suffice to apply to u_{R} the estimate (3.8) to get (3.9).
As mentioned above, to obtain growth (with respect to λ) on $\left\|(-\Delta+\lambda)^{-1}\right\|$ in a given norm, we shall need a priori estimates when $\lambda=1$ in that norm. Following up with dilations will give the required result.

Let us denote by \mathcal{S} the set of singular functions; i.e.,

$$
\mathcal{S}:=\left\{S^{(m)} ; \lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[\text { with } \lambda_{m} \neq 1\right\}
$$

Define $D_{A_{p}}(G):=\operatorname{span}\left(\mathcal{W}^{2, p}(G) ; \mathcal{S}\right)$.
3.1. L^{p} estimates for $\lambda=1$.

Proposition 3.2. Let us assume that $\lambda_{m} \neq 2 / p^{\prime}$ for all $m \in \mathbb{N}^{*}$. Let $u \in D_{A_{p}}(G)$ and let $0 \leq s \leq 2$, then there exists C such that

$$
\begin{equation*}
\|u\|_{\mathcal{W}^{s, p}(G)} \leq C\left\|\left(A_{p}+1\right) u\right\|_{0, p, G} \quad \text { if } s<\frac{2}{p}+\lambda_{m}, \text { for all } m \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{\operatorname{span}\left(\mathcal{W}^{s, p}(G) ; \mathcal{S}\right)} \leq C\left\|\left(A_{p}+1\right) u\right\|_{0, p, G} \quad \text { if } s \geq \frac{2}{p}+\lambda_{m}, \text { for some } m \tag{3.12}
\end{equation*}
$$

Proof. Let $u \in \mathcal{W}^{2, p}(G)$ be a solution of (3.1)-(3.4) for $\lambda=1$. Define the cut-off function $\eta \in C^{2}(\mathbb{R})$,

$$
\eta(x)= \begin{cases}1 & \text { for } 0 \leq x \leq 1 \\ 0 & \text { for } x \geq 2\end{cases}
$$

and $0 \leq \eta(x) \leq 1$ for $1 \leq x \leq 2$.
Consider a sequence of such cut-off functions $\left\{\eta_{n}(r)\right\} ; \eta_{n}(r)=\eta(r / n)$ where we choose (r, θ) as polar coordinates with origin at the vertex of the sector. For each n, let G^{n} be a finite sector which contains $\operatorname{supp}\left(\eta_{n} u\right), G_{i}^{n}:=G^{n} \cap G_{i}(i=1,2)$. Then $\eta_{n} u \in \mathcal{W}^{2, p}\left(G^{n}\right)$, and $\eta_{n} u$ is a solution of

$$
(-\Delta+1)\left(\eta_{n} u_{i}\right)=F_{i}
$$

where

$$
F_{i}=\eta_{n}(-\Delta+1) u_{i}-\Delta \eta_{n} u_{i}-2 \nabla \eta_{n} \nabla u_{i} \in L^{p}\left(G_{i}^{n}\right)
$$

It follows from 3.9 that

$$
\left\|\eta_{n} u\right\|_{\mathcal{W}^{2, p}\left(G^{n}\right)} \leq C\left\|\left(A_{p}+1\right)\left(\eta_{n} u\right)\right\|_{0, p, G^{n}}
$$

This implies

$$
\begin{align*}
\left\|\eta_{n} u\right\|_{\mathcal{W}^{2, p}\left(G^{n}\right)} & =\left(\sum_{|\beta| \leq 2,1 \leq i \leq 2}\left\|\partial^{\beta}\left(\eta_{n} u_{i}\right)\right\|_{0, G_{i}^{n}}^{p}\right)^{1 / p} \tag{3.13}\\
& \leq C\left\{\left\|\left(A_{p}+1\right) u\right\|_{0, p, G^{n}}+\frac{1}{n^{2}}\|u\|_{0, p, G^{n}}+\frac{1}{n}\|\nabla u\|_{0, p, G^{n}}\right\}
\end{align*}
$$

We consider for example the term $\left\|\frac{\partial^{2}}{\partial x^{2}}\left(\eta_{n} u_{i}\right)\right\|_{0, G_{i}^{n}}^{p}$ in (3.13)

$$
\left\|\frac{\partial^{2}}{\partial x^{2}}\left(\eta_{n} u_{i}\right)\right\|_{0, G_{i}^{n}}^{p}=\int_{G_{i}} \chi_{n}\left|f_{i}^{n}\right|^{p} r d r d \theta
$$

where

$$
f_{i}^{n}(r, \theta)=\eta_{n} \frac{\partial^{2} u_{i}}{\partial x^{2}}+\frac{2}{n} \eta^{\prime}\left(\frac{r}{n}\right) \cos \theta \frac{\partial u_{i}}{\partial x}+\left(\frac{1}{n} \frac{\sin ^{2} \theta}{r} \eta^{\prime}\left(\frac{r}{n}\right)+\frac{1}{n^{2}} \cos ^{2} \theta \eta^{\prime \prime}\left(\frac{r}{n}\right)\right) u_{i}
$$

and

$$
\chi_{n}(r, \theta)= \begin{cases}1 & \text { if }(r, \theta) \in G_{i}^{n} \\ 0 & \text { otherwise }\end{cases}
$$

It is clear that

$$
\lim _{n} f_{i}^{n}(r, \theta)=\frac{\partial^{2} u_{i}}{\partial x^{2}}
$$

and

$$
\left|f_{i}^{n}\right|^{p} \leq c\left(\left|\frac{\partial^{2} u_{i}}{\partial x^{2}}\right|+\left|\frac{\partial u_{i}}{\partial x}\right|+\left|u_{i}\right|\right)^{p} \in L^{1}\left(G_{i}\right)
$$

consequently, the dominated convergence theorem implies

$$
\lim _{n}\left\|\frac{\partial^{2}}{\partial x^{2}}\left(\eta_{n} u_{i}\right)\right\|_{0, G_{i}^{n}}^{p}=\left\|\frac{\partial^{2} u_{i}}{\partial x^{2}}\right\|_{0, G_{i}}^{p}
$$

Therefore, applying the same technique to the other terms in 3.13, we obtain

$$
\begin{equation*}
\|u\|_{\mathcal{W}^{2, p}(G)} \leq C\left\|\left(A_{p}+1\right) u\right\|_{0, p, G}, \tag{3.14}
\end{equation*}
$$

hence the inequality 3.11 for $s=2$.
To state 3.12 for $s=2$, we apply Proposition 6.9 from the Appendix with $E=$ $\mathcal{W}^{2, p}(G), H=L^{p}(G), F=\mathcal{S}$ and $A=-\Delta+1$ subject to homogeneous Dirichlet
boundary conditions and transmission conditions. Inequality 3.12 follows from (3.14), we obtain

$$
\begin{equation*}
\|u\|_{\operatorname{span}\left(\mathcal{W}^{2, p}(G) ; \mathcal{S}\right)} \leq C\left\|\left(A_{p}+1\right) u\right\|_{0, p, G} . \tag{3.15}
\end{equation*}
$$

Since $D_{A_{p}}(G)=\operatorname{span}\left(\mathcal{W}^{2, p}(G) ; \mathcal{S}\right)$, then $u \in D_{A_{p}}(G)$ can be written as

$$
u=u_{R}+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} c_{m} S^{(m)} .
$$

Therefore, if $s<\frac{2}{p}+\lambda_{m}$, for all $m, S^{(m)} \in \mathcal{W}^{s, p}(G)$ and we have

$$
\begin{aligned}
&\|u\|_{\mathcal{W}^{s, p}(G)} \leq\left\|u_{R}\right\|_{\mathcal{W}^{s, p}(G)}+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.}\left|c_{m}\right|\left\|S^{(m)}\right\|_{\mathcal{W}^{s, p}(G)} \\
& \leq C\left\{\left\|u_{R}\right\|_{\mathcal{W}^{2, p}(G)}+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}, \lambda_{m} \neq 1}\left|c_{m}\right|\right\}
\end{aligned}
$$

by Sobolev imbedding theorem. By the equivalence of norms on the space of finite dimension, the right-hand side is $\|u\|_{\operatorname{span}\left(\mathcal{W}^{2, p}(G) ; \mathcal{S}\right)}$. Hence inequality (3.11) follows from 3.15).

If $s \geq \frac{2}{p}+\lambda_{m}$ for some m, we have

$$
\|u\|_{\operatorname{span}\left(\mathcal{W}^{\mathrm{s}, \mathrm{p}}(\mathrm{G}) ; \mathcal{S}\right)}=\left\|u_{R}\right\|_{\mathcal{W}^{s, p}(G)}+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.}\left|c_{m}\right| .
$$

Inequality (3.12) follows from Sobolev imbedding theorem and inequality (3.15).
Now, using the results of Proposition 3.2 we shall state estimate on the resolvent of problem (3.1)-(3.4), this is the principle idea of the method of dilation which relies on applying the transformation $x \mapsto t x$. Taking advantage from the invariance of the infinite sector under dilation, problem (3.1)-(3.4) is transformed to similar problem with $\lambda=1$.
3.2. Estimates in dependence on λ. In this section, we assume that $\lambda>0$.

Proposition 3.3. Let us assume that $\lambda_{m} \neq \frac{2}{p^{\prime}}$ for all m and let $u \in D_{A_{p}}(G)$ be a solution of (3.1) - (3.4). Then if $D_{A_{p}}(G) \subset \mathcal{W}^{s, p}(G)$, there exists a constant C such that

$$
\begin{equation*}
\|u\|_{0, p, G}+\lambda^{-s / 2}\|u\|_{\mathcal{W}^{s, p}(G)} \leq \frac{C}{\lambda}\left\|\left(A_{p}+\lambda\right) u\right\|_{0, p, G}, \quad \text { for } 0 \leq s<1, \quad(\lambda>0) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{0, p, G}+\lambda^{-1 / 2}\|u\|_{1, p, G}+\lambda^{-s / 2}\|u\|_{\mathcal{W}^{s, p}(G)} \leq \frac{C}{\lambda}\left\|\left(A_{p}+\lambda\right) u\right\|_{0, p, G} \tag{3.17}
\end{equation*}
$$

for $1 \leq s \leq 2,(\lambda>0) .\left(D_{A_{p}}(G) \subset \mathcal{W}^{s, p}(G)\right.$ holds if $s<\lambda_{m}+\frac{2}{p}$ for all $\left.m\right)$.
Proof. Since the sectors G_{i} are invariant under positive dilations: $(x, y) \mapsto(t x, t y)$, $t>0$, the solution $u \in D_{A_{p}}(G)$ of problem 3.1-3.4 satisfies

$$
\begin{gathered}
-\frac{\partial^{2}}{\partial(t x)^{2}} u_{i}(t x, t y)-\frac{\partial^{2}}{\partial(t y)^{2}} u_{i}(t x, t y)+\lambda u_{i}(t x, t y)=f_{i}(t x, t y) \text { in } G_{i} \\
u_{i}(t x, t y)=0 \quad \text { on } \partial G_{i} \backslash \Sigma \\
u_{1}(t x, t y)=u_{2}(t x, t y) \quad \text { on } \Sigma
\end{gathered}
$$

$$
\sum_{i=1}^{2} \alpha_{i} \frac{\partial u_{i}}{\partial \nu_{i}}(t x, t y)=0 \quad \text { on } \Sigma
$$

Let $t=1 / \sqrt{\lambda}$, using the notation $u_{i}^{t}(x, y)=u_{i}(t x, t y), f_{i}^{t}(x, y)=f_{i}(t x, t y)$, the above problem is equivalent to

$$
\begin{gather*}
-\Delta u_{i}^{t}+u_{i}^{t}=t^{2} f_{i}^{t} \quad \text { in } G_{i} \\
u_{i}^{t}=0 \quad \text { on } \partial G_{i} \backslash \Sigma \\
u_{1}^{t}=u_{2}^{t} \quad \text { on } \Sigma \tag{3.18}\\
\sum_{i=1}^{2} \alpha_{i} \frac{\partial u_{i}^{t}}{\partial \nu_{i}^{t}}=0 \quad \text { on } \Sigma
\end{gather*}
$$

where ν_{i}^{t} is the normal vector with respect to the variables $(t x, t y)$. By Proposition 3.2. u^{t} satisfies

$$
\left\|u^{t}\right\|_{\mathcal{W}^{s, p}(G)} \leq C\left\|t^{2} f^{t}\right\|_{0, p, G}
$$

Using Proposition 6.10, we obtain

$$
t^{-2 / p}\left(\left(1-t^{s}\right)\|u\|_{0, p, G}+t^{s}\|u\|_{\mathcal{W}^{s, p}(G)}\right) \leq t^{2} t^{-2 / p}\|f\|_{0, p, G}, \quad \text { for } 0 \leq s<1
$$

and

$$
t^{-2 / p}\left((1-t)\|u\|_{0, p, G}+t\left(1-t^{-1+s}\right)\|u\|_{1, p, G}+t^{s}\|u\|_{\mathcal{W}^{s, p}(G)}\right) \leq t^{2} t^{-2 / p}\|f\|_{0, p, G}
$$

for $1 \leq s \leq 2$. This yields the required estimates for small t.
Proposition 3.4. Let $0<s<2$ and let $u \in D_{A_{p}}(G)$ be a solution of $\sqrt{3.1}$ - (3.4). Then if $D_{A_{p}}(G) \subset \operatorname{span}\left(\mathcal{W}^{s, p}(G) ; \mathcal{S}\right)$, there exists a constant C such that

$$
\begin{equation*}
\|u\|_{\operatorname{span}\left(\mathcal{W}^{s, p} ; \mathcal{S}\right)(G)} \leq \frac{C}{\lambda^{1-\frac{s}{2}}}\left\|\left(A_{p}+\lambda\right) u\right\|_{0, p, G}, \quad \lambda>0 \tag{3.19}
\end{equation*}
$$

Proof. We follow step by step the proof of [2, Theorem 3.10]. As in the proof of Proposition 3.3 , problem (3.1)-(3.4) is transformed under the method of dilations to problem 3.18). In a neighborhood of the origin, the unique solutions of problems (3.1)-(3.4) and (3.18) may be written successively as

$$
\begin{equation*}
u(x, y)=u_{R}(x, y)+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} \gamma_{m} \eta(r) r^{\lambda_{m}} \varphi_{m}(\theta) \tag{3.20}
\end{equation*}
$$

and

$$
u^{t}(x, y)=v_{R}(x, y)+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} k_{m} \eta(r) r^{\lambda_{m}} \varphi_{m}(\theta)
$$

where u_{R} and v_{R} are the regular parts, γ_{m} and k_{m} are the coefficients of the singular parts. Thanks to 3.12, we have

$$
\begin{gather*}
\left\|v_{R}\right\|_{\mathcal{W}^{s, p}(G)} \leq C\left\|t^{2} f^{t}\right\|_{0, p}=C t^{2 / p^{\prime}}\|f\|_{0, p, G} \tag{3.21}\\
\left|k_{m}\right| \leq c t^{2 / p^{\prime}}\|f\|_{0, p, G} \tag{3.22}
\end{gather*}
$$

By the definition of u^{t}, we can write

$$
\begin{equation*}
u(x, y)=u^{t}\left(\frac{x}{t}, \frac{y}{t}\right)=v_{R}\left(\frac{x}{t}, \frac{y}{t}\right)+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} k_{m} \eta\left(\frac{r}{t}\right) \frac{1}{t^{\lambda_{m}}} r^{\lambda_{m}} \varphi_{m}(\theta) . \tag{3.23}
\end{equation*}
$$

Therefore, comparing 3.20 with 3.23 we obtain

$$
u_{R}(x, y)=v_{R}\left(\frac{x}{t}, \frac{y}{t}\right)+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} r^{\lambda_{m}} \varphi_{m}(\theta)\left(k_{m} \eta\left(\frac{r}{t}\right) t^{-\lambda_{m}}-\gamma_{m} \eta(r)\right)
$$

Since u_{R} and v_{R} have $\mathcal{W}^{2, p}(G)$ regularity, the term in brackets must vanishes in a neighborhood of the origin. Then $\gamma_{m}=k_{m} t^{-\lambda_{m}}$, and we have

$$
u_{R}(x, y)=v_{R}\left(\frac{x}{t}, \frac{y}{t}\right)+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} r^{\lambda_{m}} \varphi_{m}(\theta) \gamma_{m}\left(\eta\left(\frac{r}{t}\right)-\eta(r)\right)
$$

Consequently 3.22 leads to

$$
\begin{equation*}
\left|\gamma_{m}\right| \leq C t^{\frac{2}{p^{\prime}}-\lambda_{m}}\|f\|_{0, p, G} \tag{3.24}
\end{equation*}
$$

We shall now find a bound in $\left\|u_{R}\right\|_{\mathcal{W}^{s, p}(G)}$

$$
\begin{align*}
\left\|u_{R}\right\|_{\mathcal{W}^{s, p}(G)} \leq & \left\|v_{R}(\dot{\bar{t}}, \dot{\bar{t}})\right\|_{\mathcal{W}^{s, p}(G)} \\
& +\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.}\left\|\gamma_{m} r^{\lambda_{m}} \varphi_{m}(\theta)\left[\eta\left(\frac{r}{t}\right)-\eta(r)\right]\right\|_{\mathcal{W}^{s, p}(G)} \tag{3.25}
\end{align*}
$$

Using (6.3) in Proposition 6.10 from the Appendix and (3.21), the first term in the right hand side in 3.25 is bounded by

$$
t^{s-\frac{2}{p}}\left\|v_{R}(\dot{\bar{t}}, \dot{\bar{t}})\right\|_{\mathcal{W}^{s, p}(G)} \leq\left\|v_{R}\right\|_{\mathcal{W}^{s, p}(G)} \leq C t^{2-\frac{2}{p}}\|f\|_{0, p, G}
$$

The explicit form of the second term in 3.25 and the properties of the cut-off function η allows us to majorise it (see [2]):

$$
\left\|\gamma_{m} r^{\lambda_{m}} t^{m}(\theta)\left(\eta\left(\frac{r}{t}\right)-\eta(r)\right)\right\|_{\mathcal{W}^{s, p}(G)} \leq C t^{2-s}\|f\|_{0, p, G}
$$

Summing up, we have the estimate

$$
\left\|u_{R}\right\|_{\mathcal{W}^{s, p}(G)} \leq c t^{2-s}\|f\|_{0, p, G}
$$

Owing to 3.20 and using 3.24 , we obtain

$$
\|u\|_{\mathrm{span}\left(\mathcal{W}^{s, p}(G) ; \mathcal{S}\right)} \leq C\left(\lambda^{-1+\frac{s}{2}}+\sum_{\left.\lambda_{m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{m} \neq 1\right.} \lambda^{\frac{\lambda_{m}}{2}+\frac{1}{p}-1}\right)\|f\|_{0, p, G}
$$

As $s \geq \lambda_{m}+\frac{2}{p}$ implies $\frac{s}{2}-1 \geq \frac{\lambda_{m}}{2}+\frac{1}{p}-1$, we obtain the desired estimate for large λ as required.

Remark 3.5. Estimates (3.16), (3.17), (3.19) can be obtained with respect to $|\lambda|$ instead of λ for $\Re \lambda \geq 0$ and $\lambda \neq 0$. For this, we just replace in subsection 3.1 $\left(A_{p}+1\right) u$ by $\left(A_{p}+\lambda\right) u,|\lambda|=1$, and in the proof of Proposition 3.3, $t=1 / \sqrt{\lambda}$ by $t=1 / \sqrt{|\lambda|}$.
4. Resolvent estimate in dependence on λ in polygonal Ω

We consider in Ω (a polygon defined as in Section 2) the transmission problem 1.2). The results exposed in Section 2 ensures the existence of the resolvent $\left(A_{p}+\lambda\right)^{-1}$, where A_{p} is defined in the introduction, we recall that $D_{A_{p}}(\Omega)=$ $\operatorname{span}\left(\mathcal{W}^{2, p}(\Omega) ; \mathcal{S}\right)$, where \mathcal{S} stands the set of singular functions

$$
\mathcal{S}:=\left\{S^{(j m)} ; \lambda_{j m} \in\right] 0, \frac{2}{p^{\prime}}\left[\text { with } \lambda_{j m} \neq 1\right\}
$$

We shall now deduce the growth with respect to λ of $\left\|\left(A_{p}+\lambda\right)^{-1} f\right\|_{\mathcal{W}^{s, p}(\Omega)}(\lambda>0)$ and $\left\|\left(A_{p}+\lambda\right)^{-1} f\right\|_{\operatorname{span}\left(\mathcal{W}^{s, p}(\Omega) ; \mathcal{S}\right)}$.

Theorem 4.1. (i) If $s<\lambda_{j m}+\frac{2}{p}$ for all j and m, then the unique solution $u \in D_{A_{p}}(\Omega)$ of 1.2 belongs to $\mathcal{W}^{s, p}(\Omega)$ and satisfies

$$
\|u\|_{\mathcal{W}^{s, p}(\Omega)} \leq \frac{c}{\lambda^{1-\frac{s}{2}}}\|f\|_{0, p, \Omega} .
$$

(ii) If $s>\lambda_{j m}+\frac{2}{p}$ for some (j, m), then the unique solution $u \in D_{A_{p}}(\Omega)$ of (1.2) belongs to $\operatorname{span}\left(\mathcal{W}^{s, p}(\Omega) ; \mathcal{S}\right)$ and satisfies

$$
\|u\|_{\operatorname{span}\left(\mathcal{W}^{s, p}(\Omega) ; \mathcal{S}\right)} \leq \frac{c}{\lambda^{1-\frac{s}{2}}}\|f\|_{0, p, \Omega}
$$

Proof. Let us cover Ω by a partition of unity $\varphi_{i}, i=1,2, \ldots, N_{1}+N_{2}-2$. That is, $\Omega \subset \cup_{i=1}^{n} \theta_{i}$ and $\varphi_{i} \in D\left(\theta_{i}\right) ; \sum_{i=1}^{N_{1}+N_{2}-2} \varphi_{i}=1$. We denote by $\widetilde{\varphi_{i} u}$ the extension of $\varphi_{i} u$ by zero outside of $\operatorname{supp}\left(\varphi_{i} u\right)$. There are two typical cases to consider:

- if $i=1$ or $i=N_{1}, \widetilde{\varphi_{i} u}$ is solution of the transmission problem (3.1)-(3.4) in an infinite sector G. Therefore it satisfies the estimates in Proposition 3.3 and Proposition 3.4 .
- if $i \neq 1$ and $i \neq N_{1}, \widetilde{\varphi_{i} u}$ is solution of a Dirichlet problem for the Laplace operator in an infinite sector, consequently it also satisfies the estimates in Proposition 3.3 and Proposition 3.4 with $W^{s, p}$ instead of $\mathcal{W}^{s, p}$ (see [2, Proposition 3.8 and Theorem 3.10]).
We continue exactly as in the proof of [2, Theorems 4.1 and 4.3].

5. Characterization of $D_{A_{p}}(\theta ; p)$

Theorem 5.1. Suppose that $\lambda_{j m} \neq \frac{2}{p^{\prime}}$, for all j and m, and set

$$
\mu:=\min _{m \in \mathbb{N}^{*},} \operatorname{minj}_{1 \leq N_{1}+N_{2}-2}\left\{\lambda_{j m} ; \lambda_{j m} \in\right] 0, \frac{2}{p^{\prime}}\left[, \lambda_{j m} \neq 1\right\},
$$

then
(i) $\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\beta, p} \subset\left(\mathcal{W}^{2, p}(\Omega), L^{p}(\Omega)\right)_{\beta, p}$, for $1-\frac{\mu}{2}-\frac{1}{p}<\beta<1$,
(ii) $\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\beta, p} \subset \operatorname{span}\left(\left(\mathcal{W}^{2, p}(\Omega), L^{p}(\Omega)\right)_{\beta, p} ; \mathcal{S}\right)$, for $0<\beta<1-\frac{\mu}{2}-\frac{1}{p}$,
(iii) $\operatorname{span}\left(\left(\mathcal{W}^{2, p}(\Omega), L^{p}(\Omega)\right)_{\theta, p} ; \mathcal{S}\right) \subset\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\theta, p}$, for $0<\theta<1$.

Consequently

$$
D_{A_{p}}(\theta ; p)=\left\{\begin{array}{l}
\left(\mathcal{W}^{2, p}(\Omega), L^{p}(\Omega)\right)_{1-\theta, p}, \quad \text { if } 0<\theta<\frac{\mu}{2}+\frac{1}{p} \\
\operatorname{span}\left(\left(\mathcal{W}^{2, p}(\Omega), L^{p}(\Omega)\right)_{1-\theta, p} ; \mathcal{S}\right), \quad \text { if } \frac{\mu}{2}+\frac{1}{p}<\theta<1
\end{array}\right.
$$

Proof. (i) Let $s<\mu+\frac{2}{p}$, then $s<\lambda_{j m}+\frac{2}{p}$, for all j and m, thus from Theorem 4.1. $D_{A_{p}}(\Omega) \subset \mathcal{W}^{s, p}(\Omega)$ and

$$
\left\|\left(A_{p}+\lambda\right)^{-1}\right\|_{L^{p}(\Omega) \rightarrow \mathcal{W}^{s, p}(\Omega)} \leq \frac{c}{\lambda^{1-\frac{s}{2}}}
$$

Now, applying Corollary 6.6 with $E=L^{p}(\Omega), F=\mathcal{W}^{s, p}(\Omega)$ and $\alpha=1-\frac{s}{2}$ we obtain

$$
\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{(1-\theta)\left(1-\frac{s}{2}\right)+\theta, p} \subset\left(\mathcal{W}^{s, p}(\Omega), L^{p}(\Omega)\right)_{\theta, p}, \quad 0<\theta<1
$$

therefore, by simple substitution

$$
\begin{aligned}
\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\beta, p} & \subset\left(\mathcal{W}^{s, p}(\Omega), L^{p}(\Omega)\right)_{\frac{2}{s}\left(\beta-1+\frac{s}{2}\right), p} \\
& \subset\left(\Pi_{i=1}^{2} W^{s, p}\left(\Omega_{i}\right), \Pi_{i=1}^{2} L^{p}\left(\Omega_{i}\right)\right)_{\frac{2}{s}\left(\beta-1+\frac{s}{2}\right), p}
\end{aligned}
$$

consequently, thanks to Proposition 6.8, we obtain

$$
\begin{aligned}
\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\beta, p} & \subset \Pi_{i=1}^{2}\left(W^{s, p}\left(\Omega_{i}\right), L^{p}\left(\Omega_{i}\right)\right)_{\frac{2}{s}\left(\beta-1+\frac{s}{2}\right), p} \\
& =\Pi_{i=1}^{2}\left(\left(W^{2, p}\left(\Omega_{i}\right), L^{p}\left(\Omega_{i}\right)\right)_{1-\frac{s}{2}, p}, L^{p}\left(\Omega_{i}\right)\right)_{\frac{2}{s}\left(\beta-1+\frac{s}{2}\right), p} \\
& =\Pi_{i=1}^{2}\left(W^{2, p}\left(\Omega_{i}\right), L^{p}\left(\Omega_{i}\right)\right)_{\beta, p}
\end{aligned}
$$

the last step is by reiteration (see Corollary 6.4). A second application of Proposition 6.8 leads to

$$
\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\beta, p} \subset\left(\Pi_{i=1}^{2} W^{2, p}\left(\Omega_{i}\right), L^{p}(\Omega)\right)_{\beta, p}
$$

Finally, $0<s<\mu+\frac{2}{p}$ implies that $1-\frac{\mu}{2}-\frac{1}{p}<\beta<1$, hence (i) is proved.
(ii) Let $s>\mu+\frac{2}{p}$, we have from Theorem 4.1 .

$$
\begin{aligned}
D_{A_{p}}(\Omega) \subset \operatorname{span}\left(\mathcal{W}^{s, p}(\Omega) ; \mathcal{S}\right) \\
\left\|\left(A_{p}+\lambda\right)^{-1}\right\|_{L^{p}(\Omega) \rightarrow \operatorname{span}\left(\mathcal{W}^{s, p}(\Omega) ; \mathcal{S}\right)} \leq \frac{c}{\lambda^{1-\frac{s}{2}}}
\end{aligned}
$$

Here, we apply Corollary 6.7 like in the first case but with $F=\operatorname{span}\left(\mathcal{W}^{s, p}(\Omega) ; \mathcal{S}\right)$, we obtain

$$
\begin{aligned}
\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\theta\left(1-\frac{s}{2}\right), p} & \subset\left(\operatorname{span}\left(\mathcal{W}^{2, p} ; \mathcal{S}\right), \operatorname{span}\left(\mathcal{W}^{s, p} ; \mathcal{S}\right)\right)_{\theta, p} \\
& =\operatorname{span}\left(\left(\mathcal{W}^{2, p}(\Omega), \mathcal{W}^{s, p}(\Omega)\right)_{\theta, p} ; \mathcal{S}\right) \\
& \subset \operatorname{span}\left(\left(\Pi_{i=1}^{2} W^{2, p}\left(\Omega_{i}\right), L^{p}(\Omega)\right)_{\theta\left(1-\frac{s}{2}\right), p} ; \mathcal{S}\right)
\end{aligned}
$$

(iii) Clearly $\mathcal{S} \subset\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\theta, p}$ for all $0<\theta<1$. Further, $\mathcal{W}^{2, p}(\Omega) \subset$ $D_{A_{p}}(\Omega)$. Hence

$$
\left(\mathcal{W}^{2, p}(\Omega), L^{p}(\Omega)\right)_{\theta, p} \subset\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\theta, p}
$$

Therefore,

$$
\operatorname{span}\left(\left(\mathcal{W}^{2, p}(\Omega), L^{p}(\Omega)\right)_{\theta, p} ; \mathcal{S}\right) \subset\left(D_{A_{p}}(\Omega), L^{p}(\Omega)\right)_{\theta, p}
$$

6. Appendix

6.1. The real interpolation spaces. We recall here some basic material on the theory of real interpolation spaces and refer to [7].
Definition 6.1. Let A_{0} and A_{1} be two Banach spaces such that $A_{0} \subset A_{1}$ with continuous injection. The space $\left(A_{0}, A_{1}\right)_{\theta, p}$ is the subspace of A_{1} consisting of $x \in A_{1}$ such that there exists two functions u_{0} and u_{1} satisfying

$$
\begin{gather*}
x=u_{0}(t)+u_{1}(t), \quad t>0 \\
t^{-\theta} u_{0} \in L_{*}^{p}\left(A_{0}\right), \quad t^{1-\theta} u_{1} \in L_{*}^{p}\left(A_{1}\right) \tag{6.1}
\end{gather*}
$$

where $L_{*}^{p}\left(A_{0}\right)$ and $L_{*}^{p}\left(A_{1}\right)$ are function spaces defined on $(0,+\infty)$ taking values in A_{0} and A_{1} respectively with the $p t h$ power integrable in the measure $\frac{d t}{t}, 1 \leq p \leq \infty$ and $0<\theta<1$. The norm of the space $\left(A_{0}, A_{1}\right)_{\theta, p}$ is

$$
\|x\|_{\left(A_{0}, A_{1}\right)_{\theta, p}}=\inf \left\{\left(\int_{0}^{\infty}\left\|t^{-\theta} u_{0}(t)\right\|_{A_{0}}^{p} \frac{d t}{t}\right)^{1 / p}+\left(\int_{0}^{\infty}\left\|t^{1-\theta} u_{1}(t)\right\|_{A_{1}}^{p} \frac{d t}{t}\right)^{1 / p}\right\}
$$

the infimum is taken over all functions satisfying 6.1.
In the particular case, when A_{0} is the domain D_{A} of a closed linear operator A in $E \equiv A_{1}$, equipped with the graph norm, we have another characterization which is very useful for identifying the spaces in concrete examples. Let $\rho(A) \supset \mathbb{R}_{+}$and there exist C_{A} such that

$$
\left\|(A+\lambda)^{-1}\right\|_{E \rightarrow E} \leq \frac{C_{A}}{\lambda}, \quad \lambda>0
$$

then $D_{A}(\theta ; p)$ is the subspace of E consisting of x such that

$$
t^{\theta} A(A+t)^{-1} x \in L_{*}^{p}(E)
$$

The equivalence result is $D_{A}(\theta ; p) \equiv\left(D_{A}, E\right)_{1-\theta, p}$.
Definition 6.2. A subspace X of $A_{0}+A_{1}$ belongs to class $\underline{K}_{\theta}\left(A_{0}, A_{1}\right)$ if there exists a constant C such that

$$
\|a\|_{X} \leq C\|a\|_{A_{0}}^{1-\theta}\|a\|_{A_{1}}^{\theta}
$$

for every $a \in A_{0} \cap A_{1}$ assuming $0 \leq \theta \leq 1$. Equivalently, $\left(A_{0}, A_{1}\right)_{\theta, 1} \subset X$. Thus $\left(A_{0}, A_{1}\right)_{\theta, p}$ is of class $\underline{K}_{\theta}\left(A_{0}, A_{1}\right)$.

We have the following reiteration theorem.
Theorem 6.3. Let $X_{i} \in \underline{K}_{\theta_{i}}\left(A_{0}, A_{1}\right), i=0,1$, then

$$
\left(A_{0}, A_{1}\right)_{(1-\theta) \theta_{0}+\theta \theta_{1}} \subset\left(X_{0}, X_{1}\right)_{\theta, p}, 0<\theta<1
$$

Corollary 6.4. For $0<\theta_{0}, \theta_{1}<1,1 \leq p, q \leq \infty$, we have

$$
\begin{aligned}
& \left((X, Y)_{\theta_{0}, q}, Y\right)_{\theta, p}=(X, Y)_{(1-\theta) \theta_{0}+\theta, p} \\
& \quad\left(X,(X, Y)_{\theta_{1}, q}\right)_{\theta, p}=(X, Y)_{\theta_{1} \theta, p}
\end{aligned}
$$

The following result is due to Grisvard.
Theorem 6.5. Let A be a closed operator with domain D_{A} in a Banach space E. Assume F is a Banach space such that $D_{A} \subset F \subset E$, with continuous injections (for the graph norm on D_{A}). Further, assume $(A+t)^{-1}$ exists for every $t \geq 0$ and there exists $\alpha \in(0,1)$ such that

$$
\left\|(A+t)^{-1}\right\|_{E \rightarrow F}=O\left(t^{-\alpha}\right)
$$

then $F \in \underline{K}_{\alpha}\left(D_{A}, E\right)$.
Corollary 6.6. Under the assumption of Theorem 6.5.

$$
\left(D_{A}, E\right)_{(1-\theta) \alpha+\theta, p} \subset(F, E)_{\theta, p}
$$

The above corollary follows from Theorem 6.3 with $A_{0}=D_{A}, A_{1}=E, X_{0}=F$, $X_{1}=E, \theta_{0}=\alpha, \theta_{1}=1$ and recall that trivially, $E \in \underline{K}_{1}\left(D_{A}, E\right)$.

Corollary 6.7. Under the assumptions of Theorem 6.5

$$
\left(D_{A}, E\right)_{\alpha \theta, p} \subset\left(D_{A}, F\right)_{\theta, p}
$$

The above corollary follows from Theorem 6.3 with $A_{0}=D_{A}, A_{1}=E, X_{0}=D_{A}$, $X_{1}=F, \theta_{0}=0, \theta_{1}=\alpha$ and recall that trivially, $D_{A} \in \underline{K}_{0}\left(D_{A}, E\right)$.

Proposition 6.8 ([4]). Let A, B, C, D be Banach spaces such that C is continuously embedded into $A ; D$ is continuously embedded into B, then

$$
(A \times B, C \times D)_{\theta, p}=(A, C)_{\theta, p} \times(B, D)_{\theta, p}
$$

Proof. By using a.e. the equivalence theorem (see [9, p. 37]) and taking into account

$$
(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right), a, b \geq 0, p \geq 1
$$

6.2. Some basic tools.

Proposition 6.9. Let E, H be Banach spaces, $D=E \oplus F$ with $\operatorname{dim} F<\infty$. Assume that a continuous injective mapping A from D to H satisfies

$$
\begin{equation*}
\|u\|_{E} \leq c\|A u\|_{H} \tag{6.2}
\end{equation*}
$$

for all $u \in E$ and some constant c. Then

$$
\|u\|_{D} \leq c^{\prime}\|A u\|_{H}
$$

for all $u \in D$ and some constant c^{\prime}.
Proposition 6.10. Let G be an infinite sector with vertex at the origin. Let v be a function in $W^{s, p}(G)$ with $0 \leq s \leq 2$. Since G is invariant under the transformation $(x, y) \mapsto(t x, t y), t>0,(x, y) \in G$, the function $v^{t}(x, y)=v(t x, t y)$ is well defined and $v^{t} \in W^{s, p}(G)$ with

$$
\left\|v^{t}\right\|_{s, p, G}= \begin{cases}t^{-2 / p}\left(\left(1-t^{s}\right)\|v\|_{0, p, G}+t^{s}\|v\|_{s, p, G}\right) & \text { if } 0 \leq s \leq 1 \\ t^{-2 / p}\left((1-t)\|v\|_{0, p, G}+\left(t-t^{s}\right)\|v\|_{1, p, G}+t^{s}\|v\|_{s, p, G}\right) & \text { if } 1 \leq s \leq 2\end{cases}
$$

Consequently,

$$
\begin{equation*}
\left\|v^{t}\right\|_{s, p, G} \geq t^{s-\frac{2}{p}}\|v\|_{s, p, G} \tag{6.3}
\end{equation*}
$$

holds for small t.

Proof. Let $\mathbf{x}=(x, y), \mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$.

$$
\begin{aligned}
& \left(t^{-2 / p}\left(\|v\|_{0, p, G}+t^{s}\left(\iint_{G \times G} \frac{\left|v(\mathbf{x})-v\left(\mathbf{x}^{\prime}\right)\right|^{p}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2+s p}} d \mathbf{x} d \mathbf{x}^{\prime}\right)^{1 / p}\right)\right. \\
& \text { if } 0<s<1 \text {, } \\
& \left\|v^{t}\right\|_{s, p, G}=\left\{\begin{array}{l}
t^{-2 / p}\left(\|v\|_{0, p, G}+t|v|_{1, p, G}\right) \quad \text { if } s=1, \\
t^{-\frac{2}{p}+s}\left(t^{-s}\|v\|_{0, p, G}+t^{1-s}|v|_{1, p, G}\right. \\
+\left(\iint_{G \times G} \frac{\left\lvert\, \frac{\partial v}{\partial x}(\mathbf{x})-\frac{\partial v}{\partial x}\left(\mathbf{x}^{\prime}\right)^{p}\right.}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2+\sigma p}} d \mathbf{x} d \mathbf{x}^{\prime}\right)^{1 / p} \\
\left.+\left(\iint_{G \times G} \frac{\left|\frac{\partial v}{\partial y}(\mathbf{x})-\frac{\partial v}{\partial y}\left(\mathbf{x}^{\prime}\right)\right|^{p}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2+\sigma p}} d \mathbf{x} d \mathbf{x}^{\prime}\right)^{1 / p}\right), \\
\quad \text { if } 1<s<2, \text { with } s=1+\sigma, 0<\sigma<1, \\
t^{-2 / p}\left(\|v\|_{0, p, G}+t|v|_{1, p, G}+t^{2}|v|_{2, p, G} \quad \text { if } s=2,\right.
\end{array}\right. \\
& =\left\{\begin{array}{l}
t^{-2 / p}\left(\|v\|_{0, p, G}+t^{s}\left(\|v\|_{s, p, G}-\|v\|_{0, p, G}\right)\right) \quad \text { if } 0<s \leq 1, \\
t^{-2 / p}\left(\|v\|_{0, p, G}+t\left(\|v\|_{1, p, G}-\|v\|_{0, p, G}\right)+t^{s}\left(\|v\|_{s, p, G}-\|v\|_{1, p, G}\right)\right) \\
\text { if } 1<s \leq 2, \text { with } s=1+\sigma, 0<\sigma \leq 1 .
\end{array}\right.
\end{aligned}
$$

References

[1] J. O. Adeyeye; Interpolation réelle et opérateur de Laplace dans un polygone, le cas L_{p}, C. R. Acad. Sci. Paris, t. 299, Série I, 979-982, 1984.
[2] J. O. Adeyeye; Characterization of real interpolation spaces between the domain of the Laplace operator and $L^{p}(\Omega) ; \Omega$ polygonal and applications, J. Math. pures et appl., 67, 263-290, 1998.
[3] A. Aibeche, W. Chikouche, S. Nicaise; L ${ }^{p}$ Regularity of Transmission Problems in Dihedral Domains, Bolletino U. M. I. (8) 10-B, 633-660, 2007.
[4] A. Favini; personal communication.
[5] P. Grisvard; Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24, Pitman, Boston,1985.
[6] K. Lemrabet; Régularité de la solution d'un problème de transmission, J. Math. Pures et Appl., 56, 1-38, 1977.
[7] J. L. Lions, J. Peetre; Sur une classe d'espaces d'interpolation, I.H.E.S. Paris, No. 19, 5-68, 1963.
[8] S. Nicaise; Polygonal interface problems, Peter Lang, Berlin, 1993.
[9] H. Triebel; Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam-New-York-Oxford, 1978.

Aissa Aibeche
Université de Setif, Département de Mathéematiques, Faculté des Sciences, Setif 19000, Algeria

E-mail address: aibeche@univ-setif.dz
Wided Chikouche
Université de Jijel, Laboratoire de Mathématiques Pures et Appliquées, B.P. 98, Ouled Aissa, 18000 Jijel, Algeria

E-mail address: w_chikouche@yahoo.com
Yasmina Daikh
Université de Jijel, Laboratoire de Mathématiques Pures et Appliquées, B.P. 98, Ouled Aissa, 18000 Jijel, Algeria

E-mail address: yasmina_daikh@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35R05, 35A20, 46B70.
 Key words and phrases. Transmission problem; non-smooth domains; interpolation.
 (C) 2012 Texas State University - San Marcos.

 Submitted April 10, 2011. Published January 13, 2012.

