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MATHEMATICAL MODELS OF A DIFFUSION-CONVECTION IN
POROUS MEDIA

ANVARBEK M. MEIRMANOV, RESHAT ZIMIN

Abstract. Mathematical models of a diffusion-convection in porous media
are derived from the homogenization theory. We start with the mathematical
model on the microscopic level, which consist of the Stokes system for a weakly
compressible viscous liquid occupying a pore space, coupled with a diffusion-
convection equation for the admixture. We suppose that the viscosity of the
liquid depends on a concentration of the admixture and for this nonlinear
system we prove the global in time existence of a weak solution. Next we rig-
orously fulfil the homogenization procedure as the dimensionless size of pores
tends to zero, while the porous body is geometrically periodic. As a result, we
derive new mathematical models of a diffusion-convection in absolutely rigid
porous media.

1. Introduction

The present paper is devoted to a correct description of diffusion - convection pro-
cesses in porous media. As a rule, this phenomena describes by diffusion-convection
equation

∂c

∂t
+ v · ∇c = αD∆c (1.1)

for the concentration c of an admixture with a given velocity field v [5, 20].
It is clear that the velocity field must be defined as a solution to some dynamic

equations. For many diffusion-convection processes this dynamics depends on the
concentration c of the admixture, and here we look for such a coupled system.

There are different types of mathematical models, but we are interested only in
some of the fundamental models of continuum mechanics (such as, for example,
Stokes equations for a slow motion of a viscous liquid, or Lamé’s equations for
displacements of an elastic solid body), or models asymptotically close to above
mentioned ones. For that reason we follow the fundamental method, suggested by
Burridge and Keller [13].

To explain ideas let us consider for the moment only the dynamics in porous
media. The most famous model here is the Darcy system of a filtration. It is
well-known that this system is an asymptotic limit of the Stokes system for an
incompressible viscous liquid in the domain Ωε, when dimensionless pore size ε
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tends to zero (see [13, 26]). But this Stokes system on the microscopic level is the
particular case (ατ = 0, αε

p = ∞, αλ = ∞) of a more general system

ατρ
ε ∂

2w

∂t2
− ρεF = ∇ ·

(
χεαµD(x,

∂w

∂t
) + (1− χε)αλD(x,w)

+
(
ανχ

ε∇ · (∂w

∂t
)− p

)
I
)
,

(1.2)

αε
p p+∇ · w = 0, (1.3)

for the displacement w and the pressure p of the continuum medium Ω [13, 26, 21,
24]. The microscopic system (1.2), (1.3) describes the joint motion of the viscous
liquid in a pore space Ωε ⊂ Ω and an elastic solid skeleton Ω\Ωε

and is understood
in the sense of distributions. Roughly speaking, this system contains the Stokes
system for the viscous liquid in the pore space, the Lamé’s system for the solid
skeleton and the boundary condition (the continuity of the normal stresses) on the
common boundary “solid skeleton - pore space”.

In (1.2) D(x,v) is the symmetric part of ∇v, χε is the characteristic function of
the pore space Ωε, ε = l/L is the dimensionless pore size, l is an average size of
pore, L is a characteristic size of the domain in consideration,

ατ =
L

gτ2
, αµ =

2µ
τLgρ0

, αλ =
2λ
Lgρ0

, αν =
2ν

τLgρ0
,

αε
p = αp,fχ

ε + αp,s(1− χε), ρε = ρfχ
ε + ρs(1− χε),

αp,f =
ρf

Lg c̄2f
, αp,s =

ρs

Lg c̄2s
,

where τ is a characteristic time of the process, ρf and ρs are the respective mean
dimensionless densities of the liquid in pores and the solid skeleton correlated with
the mean density of water ρ0, g is the value of acceleration of gravity, µ is the shear
viscosity of liquid, ν is the bulk viscosity of liquid, λ is the elastic Lamé’s constant,
and c̄f and c̄s are speed of sound in the liquid and in the solid respectively.

Theoretically the microscopic system (1.2), (1.3) with corresponding initial and
boundary conditions is one of the most adequate mathematical model, describing
the joint motion of the viscous liquid in the pore space and the elastic solid skele-
ton. But this model has no practical significance, since it is necessary to solve the
problem in the physical domain of a few hundred meters, while the coefficients os-
cillate on the scale of a few tens of microns. The practical significance of the model
appears only after homogenization. So, we have to let all dimensionless criteria ατ ,
αµ and αλ to be variable functions, depending on the small parameter ε, and find
all limiting regimes as ε→ 0.

First of all note, that in the present paper we consider only filtration processes,
where the characteristic time τ of processes is about several months. Thus, we may
suppose that

ατ → 0 as ε→ 0. (1.4)

Next we note, that for almost all physical processes αµ ∼ 0 and αλ is sufficiently
large. It is known, that the asymptotic limit of (1.2), (1.3) under the conditions

αµ ∼ O(ε2), αλ →∞ as ε↘ 0,

is the Darcy system of a filtration [13, 26, 21]. We say that the Darcy system of a
filtration is the first level of approximation of the microscopic system (1.2), (1.3).
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It should be noted that the condition αµ ∼ O(ε2) does not mean that for this
case we consider only sufficiently small shear viscosity. This viscosity is fixed for
the given physical processes. Therefore, to let αµ be variable, we just use a repre-
sentation

αµ =
2µ

τLgρ0
· L

2

l2
· ε2 = µ1ε

2, µ1 =
2µ

τLgρ0
· L

2

l2
,

with a fixed constant µ1.
The second level of approximation of (1.2), (1.3) is the Terzaghi - Biot system

of a poroelasticity [13, 26, 21, 8, 27] and corresponds to the conditions

αµ ∼ O(ε2), αλ ∼ O(1),

Finally, even for sufficiently small αµ and sufficiently large αλ we always may sup-
pose that

0 < λ0, µ0 <∞,

where
λ0 = lim

ε↘0
αλ, µ0 = lim

ε↘0
αµ.

After homogenization procedure we arrive at the system of equations of a viscoelas-
tic filtration ( [13], [21], [24]), which is the third level of approximation of (1.2),
(1.3).

All different asymptotic models of the system (1.2), (1.3) describe the same
physical process, but with different degrees of approximation. The choice of the
model depends on aims of the researcher.

The same method we may apply to the diffusion-convection problem in porous
media. On the microscopic level the process is described by the system (1.1) - (1.3),
where v = ∂w/∂t, and αµ in (1.2) depends on the concentration c.

The first level of approximation of this system is a mathematical model of a
diffusion-convection in absolutely rigid porous media, consisting of the Darcy sys-
tem of a filtration with variable viscosity coupled with a homogenized diffusion-
convection equation.

The second level of approximation of the system (1.1)–(1.3) is a mathematical
model of a diffusion-convection in poroelastic media, consisting of the Terzaghi-Biot
system of a poroelasticity with a variable viscosity coupled with a corresponding
homogenized diffusion-convection equation.

Finally, the third level of approximation of the system (1.1)–(1.3) is a mathemat-
ical model of a diffusion-convection in viscoelastic media, consisting of the system
of a viscoelastic filtration with a variable viscosity coupled with a corresponding
homogenized diffusion-convection equation. Each level of the approximation has
the proper homogenized diffusion-convection equation and it depends on the as-
ymptotic behavior of the velocity and the concentration.

To prove the well-posedness of above mentioned mathematical models on the
macroscopic level we must

(1) prove the existence of a weak solution {wε, pε, cε} to the problem (1.1)–(1.3)
on the microscopic level for every fixed ε > 0, and

(2) fulfill the rigorous homogenization procedure as ε↘ 0.
In the present paper we do it only for the mathematical model of a diffusion-

convection in absolutely rigid porous media. It is clear, that the same mathematical
model we obtain, if as a basic model on the microscopic level we take the Stokes
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system with a variable viscosity, coupled with a diffusion-convection equation (1.1)
only in the liquid domain Ωε

f , where χε(x) = 1.
Note, that for an incompressible liquid there is a restriction on the geometry of

a solid skeleton: we may prove the correctness of the homogenization procedure
only for a disconnected solid skeleton (Tartar, Appendix in [26]). To avoid this
restriction we consider the Stokes system for a weakly compressible liquid

ατ
∂v

∂t
= ∇ · (

(
αµ(c)D(x,v) + (αν∇ · v − p)I

)
+ ρfF , (1.5)

∂p

∂t
+ c2f∇ · v = 0. (1.6)

Here αν is the dimensionless bulk viscosity and cf is a dimensionless speed of sound
in the liquid.

But this approximation results in the diffusion-convection equation an additional
term containing ∇ · v. For an absolutely rigid skeleton the homogenization of the
Stokes system has a sense if and only if the dimensionless shear viscosity αµ is
proportional to ε2:

αµ = ε2µ1(c), 0 < µ∗ 6 µ1(c) 6 µ−1
∗ , µ∗ = const. (1.7)

Therefore, to control the term ∇ · v in (1.1) we have to suppose that αν does not
depend on ε:

αν = ν0 = const. > 0. (1.8)

As we have mentioned above, suppositions (1.7) and (1.8) do not mean that the
shear viscosity µ is much more smaller then the bulk viscosity ν. They are fixed
for the given physical processes:

µ1(c) =
2µ(c)
τLgρ0

· L
2

l2
, ν0 =

2ν
τLgρ0

.

To simplify the proofs we additionally suppose that the dimensionless coefficient of
a diffusivity αD also does not depend on ε:

αD = D0 = const. > 0. (1.9)

In Theorem 2.3 we prove that for every ε > 0 the system (1.1), (1.5), (1.6)
with corresponding initial and boundary conditions has at least one weak solution
{vε, pε, cε}.

The next Theorem 2.4 states that these solutions converge to the solution {v, p, c}
of the homogenized problem

v =
1

µ1(c)
B(f)

(
− 1
m
∇q + ρfF

)
,

q = p+
ν0
c2f

∂p

∂t
,

∂p

∂t
+ c2f∇ · v = 0,

m
∂c

∂t
+ v · ∇c = D0∇ ·

(
B(c)∇c

)
.

(1.10)

This system with corresponding initial and boundary condition is a desired mathe-
matical model of a diffusion-convection for a compressible liquid in absolutely rigid
porous media.
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In Theorem 2.5 we show that the limit in (1.10) as cf →∞ results a mathemat-
ical model of a diffusion-convection for an incompressible liquid in absolutely rigid
porous media:

v(∞) =
1

µ1(c(∞))
B(f)

(
− 1
m
∇p(∞) + ρfF

)
,

∇ · v(∞) = 0,

m
∂c(∞)

∂t
+ v(∞) · ∇c(∞) = D0∇ ·

(
B(c)∇c(∞)

)
.

(1.11)

Finally, Theorem 2.6 states that after the limit in (1.10) as ν0 → 0 we arrive
at the classical Darcy system of filtration with variable viscosity for the slightly
compressible liquid coupled with a diffusion-convection equation:

v(0) =
1

µ1(c(0))
B(f)

(
− 1
m
∇p(0) + ρfF

)
,

∂p(0)

∂t
+ c2f∇ · v(0) = 0,

m
∂c(0)

∂t
+ v(0) · ∇c(0) = D0∇ ·

(
B(c)∇c(0)

)
.

(1.12)

In the present paper the notation for functional spaces and norms are the same
as in [18, 19].

2. The problem statement and main results

To apply the well - known homogenization results [25], we must consider special
domains Ωε and impose the following constraints.

Assumption 2.1. Let χ(y) be 1-periodic in the variable y function, such that
χ(y) = 1, y ∈ Yf ⊂ Y , χ(y) = 0, y ∈ Ys = Y \Y f , Y is a unit cube in R3.

(1) The set Yf is an open one and γ = ∂Yf ∩ ∂Ys is a Lipschitz continuous
surface.

(2) Let Y ε
f be a periodic repetition in R3 of the elementary cell ε Yf . Then Y ε

f

is a connected set with a Lipschitz continuous boundary ∂ Y ε
f .

(3) Ω ⊂ R3 is a bounded domain with a Lipschitz continuous boundary S = ∂Ω
and Ωε = Ω ∩ Y ε

f , Sε = ∂Ωε.

If h(x) is a characteristic function of the domain Ω, then χε(x) = h(x)χ(x/ε)
will be a characteristic function of the domain Ωε.

Now we are ready to complete problem (1.1), (1.5), (1.6) with boundary and
initial conditions and formulate the definition of the weak solution. Namely, we
suppose that

v(x, t) = 0, x ∈ Sε, t > 0, (2.1)

∇c(x, t) · n(x) = 0, x ∈ Sε, t > 0, (2.2)

c(x, 0) = c0(x), x ∈ Ωε, (2.3)

v(x, 0) = 0, p(x, 0) = 0, x ∈ Ωε. (2.4)

In (2.2) n is the unit outward normal vector to the boundary Sε.
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Definition 2.2. We say that a triple of functions {vε, pε, cε} is a weak solution to
problem (1.1), (1.5), (1.6), (2.1)–(2.4) if

vε ∈ L2

(
(0, T ); W̊ 1

2 (Ωε)
)
, cε ∈ L2

(
(0, T );W 1

2 (Ωε)
)
,

∂pε

∂t
∈ L2(Ωε

T ),

and ∫
Ωε

T

(
cε
∂ξ

∂t
+ (cεvε −D0∇cε) · ∇ξ + ξ cε∇ · vε

)
dx dt

= −
∫

Ω

χεc0(x) ξ(x, 0) dx,
(2.5)

∫
Ωε

T

(
ε2µ1(cε) D(x,vε)− (pε − ν0∇ · vε)I

)
: D(x,ϕ)dx dt

=
∫

Ωε
T

ρf

(
ατvε · ∂ϕ

∂t
+ F ·ϕ

)
dx dt,

(2.6)

∫
Ωε

T

(∂ψ
∂t
pε + c2f vε · ∇ψ

)
dx dt = 0 (2.7)

for any smooth functions ξ, ψ and ϕ, such that ξ(x, T ) = ψ(x, T ) = 0 and ϕ(x, t) =
0 for x ∈ Sε.

Note, that the integral identity (2.5) contains the differential equation (1.1)
in the pore space, the boundary condition (2.2) on the boundary S(ε), and the
initial condition (2.3). The boundary condition (2.1) is already included into the
corresponding functional space for v.

Theorem 2.3. Let c0(x) and F (x, t) be measurable functions,

0 6 c0(x) 6 1,
∫

ΩT

|F (x, t)|2dx dt 6 F 2 <∞, µ1 ∈ C2[0,∞),

and conditions (1.4), (1.7)–(1.9) hold.
Then problem (1.1), (1.5), (1.6), (2.1)–(2.4) has at least one weak solution

{vε, pε, cε}, such that ∫
Ωε

T

|∇cε|2dx dt 6 C, (2.8)

max
0<t<T

ατ

∫
Ωε

|vε(x, t)|2dx

+
∫

Ωε
T

(
ε2|∇vε|2 + |∂p

ε

∂t
|2 + (∇ · vε)2

)
dx dt 6 CF 2,

(2.9)

0 6 cε(x, t) 6 1,x ∈ Ωε, t > 0, (2.10)

where C is independent of ε.

Homogenization means the limiting procedure as ε↘ 0. But for our method it
is possible only for functions, defined in whole domain ΩT . So, we first extend the
functions vε, pε, and cε onto ΩT and then apply the homogenization theory.

The functions vε, ∇·vε, and pε are extending in a trivial way by setting ṽε = vε,
p̃ε = pε in Ωε

T , and ṽε = 0, ∇ · ṽε = 0, and p̃ε = 0 outside Ωε
T .
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For the functions cε the extension result [1] states that there exists an extension
c̃ε ∈ L2

(
(0, T );W 1

2 (Ω)
)

such that cε(x, t) = c̃ε(x, t) for (x, t) ∈ Ωε
T and∫

Ω

|c̃ ε(x, t)|2dx 6 C0

∫
Ωε

|cε(x, t)|2dx,∫
Ω

|∇c̃ ε(x, t)|2dx 6 C0

∫
Ωε

|∇cε(x, t)|2dx.

Theorem 2.4. Under the conditions of Theorem 2.3 let {vε, pε, cε} be the solution
to the problem (1.1), (1.5), (1.6), (2.1)–(2.4). Then

(I) there exists a subsequence of small parameters {ε > 0} as ε↘ 0, such that
(1) the sequence {ṽε} converges weakly in L2(ΩT ) to the function v,
(2) the sequence {∇ · ṽε} converges weakly in L2(ΩT ) to the function ∇·v,
(3) the sequence {p̃ε} converges weakly in L2(ΩT ) to the function p,
(4) the sequence {c̃ε} converges weakly in L2

(
(0, T );W 1

2 (Ω)
)

and strongly
in L2(ΩT ) to the function c.

(II) The triple of limiting functions {v, p, c} is a weak solution to the diffusion-
convection problem for a compressible liquid in absolutely rigid porous me-
dia, which consists of the dynamic equations

v =
1

µ1(c)
B(f)

(
− 1
m
∇q + ρfF

)
, x ∈ Ω, t > 0, (2.11)

q = p+
ν0
c2f

∂p

∂t
, x ∈ Ω, t > 0, (2.12)

∂p

∂t
+ c2f∇ · v = 0, x ∈ Ω, t > 0 (2.13)

for the velocity v and the pressure p of the slightly compressible liquid, and
the diffusion-convection equation

m
∂c

∂t
+ v · ∇c = D0∇ ·

(
B(c)∇c

)
, x ∈ Ω, t > 0, (2.14)

for the concentration c of the admixture.
The problem is endowed with the homogeneous boundary conditions

v(x, t) · n(x) = 0, x ∈ S, t > 0, (2.15)

∇c(x, t) · n(x) = 0, x ∈ S, t > 0, (2.16)

and the initial conditions

p(x, 0) = 0, c(x, 0) = c0(x) x ∈ Ω. (2.17)

In (2.11)–(2.17)

m = 〈χ〉Y =
∫

Y

χ(y)dy

is a porosity, the symmetric and strictly positively definite constant matrix B(f)

is defined below by formula (4.6), the symmetric and strictly positively definite
constant matrix B(c) is defined below by formula (4.8), and n is the unit outward
normal vector to the boundary S.

Theorem 2.5. Let {v(k), p(k), c(k)} be the solution to (2.11)–(2.17) with c2f = k.
Then there exists a subsequence kn →∞ such that

(1) the sequence {v(kn)} converges weakly in L2(ΩT ) to the function v(∞),
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(2) the sequence {p(kn)} converges weakly in L2(ΩT ) to the function p(∞),
(3) the sequence {c(kn)} converges weakly in L2

(
(0, T );W 1

2 (Ω)
)

and strongly in
L2(ΩT ) to the function c(∞);

The triple of limiting functions {v(∞), p(∞), c(∞)} is a weak solution to the
diffusion-convection problem for an incompressible liquid in absolutely rigid porous
media, which consists of the Darcy system of a filtration with a variable viscosity

v(∞) =
1

µ1(c(∞))
B(f)

(
− 1
m
∇p(∞) + ρfF

)
, x ∈ Ω, t > 0, (2.18)

∇ · v(∞) = 0, x ∈ Ω, t > 0 (2.19)

for the velocity v(∞) and the pressure p(∞) of the incompressible liquid, the diffusion-
convection equation (2.14) with the velocity field {v(∞)} for the concentration c(∞),
boundary conditions (2.15) and (2.16), and the initial condition (2.17) for the con-
centration.

Theorem 2.6. Let {v(δ), p(δ), c(δ)} be the solution to problem (2.11)–(2.17) with
ν0 = δ. Then there exists a subsequence δn → 0 such that

(1) the sequence {v(δn)} converges weakly in L2(ΩT ) to the function v(0),
(2) the sequence {p(δn)} converges weakly in L2(ΩT ) to the function p(0),
(3) the sequence {c(δn)} converges weakly in L2

(
(0, T );W 1

2 (Ω)
)

and strongly in
L2(ΩT ) to the function c(0);

The triple of limiting functions {v(0), p(0), c(0)} is a weak solution to the diffusion-
convection problem for a slightly compressible liquid in absolutely rigid porous media,
which consists of the Darcy system of a filtration with a variable viscosity

v(0) =
1

µ1(c(0))
B(f)

(
− 1
m
∇p(0) + ρfF

)
, x ∈ Ω, t > 0, (2.20)

∂p(0)

∂t
+ c2f∇ · v(0) = 0, x ∈ Ω, t > 0 (2.21)

for the velocity v(0) and the pressure p(0) of the slightly compressible liquid, the
diffusion-convection equation (2.14) with the velocity field {v(0)} for the concentra-
tion c(0), boundary conditions (2.15) and (2.16), and the initial condition (2.17)
for the concentration.

3. Proof of Theorem 2.3

Let us divide the proof into two stages. As a first step we consider the approx-
imate problem, where the velocity v (for the moment we omit the index ε) in the
convection–diffusion equation is replaced by its approximation

v(h)(x, t) = Mh(v) =
1
h4

∫ ∞

−∞
J(
t− τ

h
)
( ∫

R3
J
( |z − x|

h

)
v̄(z, τ)dz

)
dτ. (3.1)

In (3.1)

v̄(x, t) =


v(x, t) if x ∈ Ωε, t > 0,
0 if x ∈ R3\Ωε, ]t > 0,
0 if x ∈ Ωε and t > T , or t 6 0,
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and J(s) is an infinitely smooth function, such that

J(s) = 0, if |s| > 1, and
∫ ∞

−∞
J(s)ds

∫
R3
J(|x|)dx = 1.

By the well - known properties of mollifiers Mh [2]
(1) v(h) ∈ C∞

(
R3 × (−∞,∞))

)
;

(2) if v ∈ L2(Ωε
T ), then v(h) → v strongly in L2(Ωε

T ) as h→ 0;
(3) if v ∈ L2

(
(0, T ); W̊ 1

2 (Ωε)
)
, then ∇ · v(h) → ∇ · v strongly in L2(Ωε

T ) as
h→ 0.

More precisely, we look for the solution {vε,h, pε,h, cε,h} of the differential equations

ρfατ
∂vε,h

∂t
= ∇ ·

(
ε2µ1(c)D(x,vε,h) + (ν0∇ · vε,h − pε,h)I

)
+ ρfF , (3.2)

∂pε,h

∂t
+ c2f∇ · vε,h = 0, (3.3)

∂cε,h

∂t
+ vε,h

(h) · ∇c
ε,h = D0∆cε,h (3.4)

in the domain Ωε
T , satisfying the following boundary and initial conditions

vε,h(x, t) = 0,x ∈ Sε, t > 0, (3.5)

∇cε,h(x, t) · n(x) = 0,x ∈ Sε, t > 0, (3.6)

cε,h(x, 0) = ch0 (x),x ∈ Ωε, (3.7)

vε,h(x, 0) = 0, pε,h(x, 0) = 0,x ∈ Ωε. (3.8)

In (3.4) and (3.7) vε,h
(h) = Mh(vε,h), and

ch0 ∈ C̊∞(Ωε), 0 6 ch0 (x) 6 1, ch0 (x) → c0(x) as h→ 0 a.e. inΩε.

To solve (3.2)–(3.8) we fix the set M = {c̃ ∈ C(Ω
ε

T ) : 0 6 c̃(x, t) 6 1} and consider
the first auxiliary problem

ρfατ
∂u

∂t
= ∇ ·

(
ε2µ1(c̃)D(x,u) + (ν0∇ · u− q)I

)
+ ρfF , (3.9)

∂q

∂t
+ c2f∇ · u = 0, (3.10)

u(x, t) = 0,x ∈ Sε, t > 0; u(x, 0) = 0, q(x, 0) = 0,x ∈ Ωε. (3.11)

For all c̃ ∈ M this problem defines a nonlinear operator

u = A1(c̃),A1 : M → L2

(
(0, T ); W̊ 1

2 (Ωε)
)
.

Next we consider the second auxiliary problem

∂c

∂t
+ u(h) · ∇c = D0∆c, (3.12)

∇c(x, t) · n(x) = 0,x ∈ Sε, t > 0, (3.13)

c(x, 0) = ch0 (x),x ∈ Ωε, (3.14)

where
u(h) = Mh(u),u = A1(c̃).
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The problem (3.12)–(3.14) defines a nonlinear operator A2, which due to the max-
imum principle transforms L2

(
(0, T ); W̊ 1

2 (Ωε)
)

into the set M:

c = A2(u), A2 : L2

(
(0, T ); W̊ 1

2 (Ωε)
)
→ M.

Thus, the nonlinear operator A = A2 · A1 transforms the set M into itself. It is
clear that all fixed points cε,h of the operator A define solutions {vε,h, pε,h, cε,h} to
the problem (3.2)–(3.8). To prove the existence of at least one fixed point of A we
have to show that A is a completely continuous operator.

The weak solutions to the problems (3.2)–(3.8) and (3.9)–(3.11) are defined in a
same way, as a weak solution to problem (1.1), (1.5), (1.6), (2.1)–(2.4).

Lemma 3.1. Under the conditions of Theorem 2.3 for any c̃ ∈ M, problem (3.9)–
(3.11) has the unique weak solution {u, q}, such that

max
0<t<T

ατ

∫
Ωε

|u(x, t)|2dx+
∫

Ωε
T

(
ε2|∇u|2 + |∂q

∂t
|2 + (∇ ·u)2

)
dx dt 6 C F 2, (3.15)

and for any c̃1, c̃2 ∈ M

max
0<t<T

ατ

∫
Ωε

|(u1 − u2)|2(x, t)dx+
∫

Ωε
T

ε2|∇(u1 − u2)|2dx dt

6 C F 2
(
|c̃1 − c̃2|(0)Ωε

T

)2
,

(3.16)

where C is independent of ε and h. In (3.16) ui = A1(c̃i), i = 1, 2.

Lemma 3.2. Under the conditions of Theorem 2.3 let u(h) = Mh(u), u = A1(c̃)
for c̃ ∈ M. Then problem (3.12)–(3.14) has a unique solution c ∈ C2,1(Ω

ε

T ), such
that

〈c〉(2,1)
Ωε

T
6 N(h), 0 6 c(x, t) 6 1, (3.17)∫

Ωε
T

|∇ c|2dx dt 6 C, (3.18)

where C is independent of ε and h.
If ci = A2(ui), ui = A1(c̃i), i = 1, 2, for c̃1, c̃2 ∈ M, then

max
0<t<T

∫
Ωε

|c1(x, t)− c2(x, t)|2dx+
∫

Ωε
T

|∇(c1 − c2)|2dx dt

6 N(h)
∫

Ωε
T

|(u1 − u2)|2dxdt.
(3.19)

Now, to prove the solvability of (3.2)–(3.8) we just apply Schauder fixed point
theorem [17]. In fact, estimates (3.16), (3.19) and interpolation inequality [18]

|c|(0)Ωε
T

6 β
(
‖c‖2,Ωε

T

)1−α(
〈c〉(2)Ωε

T

)α
, 0 < α < 1,

prove the continuity of A. The first estimate (3.17) shows that A is a compact
operator. Therefore A is completely continuous operator on the set M. The second
estimate (3.17) shows that A transforms the set M into itself. Finally, M is a closed
convex set, which enough for existence at least one fixed point of A in M.

It is clear, that all fixed points of A preserve estimates (3.15), (3.17), and (3.18).
Thus the following lemma holds.
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Lemma 3.3. Under the conditions of Theorem 2.3 there exists at least one weak
solution {vε,h, pε,h, cε,h} to the problem (3.2)–(3.8), such that

max
0<t<T

ατ

∫
Ωε

|vε,h(x, t)|2dx

+
∫

Ωε
T

(
ε2|∇vε,h|2 + |∂p

ε,h

∂t
|2 + (∇ · vε,h)2

)
dxdt 6 CF 2,

(3.20)

0 6 cε,h(x, t) 6 1,
∫

Ωε
T

|∇ cε,h|2dx dt 6 C, (3.21)

where C is independent of ε and h.

As a last step in the proof of Theorem 2.3 we pass to the limit as h → 0 in a
corresponding integral identity.

Lemma 3.4. Under the conditions of Theorem 2.3 there exists at least one weak
solution {vε, pε, cε} to problem (1.1), (1.5), (1.6), (2.1)–(2.4), such that

max
0<t<T

ατ

∫
Ωε

|vε(x, t)|2dx

+
∫

Ωε
T

(
|vε|2 + ε2|∇vε|2 + |∂p

ε

∂t
|2 + (∇ · vε)2

)
dx dt 6 C F 2,

(3.22)

0 6 cε(x, t) 6 1,
∫

Ωε
T

|∇ cε|2dx dt 6 C, (3.23)

where C is independent of ε.

Proof of Lemma 3.1. The proof of the first part of this lemma is standard. For
example, it might be based upon the Galerkin method. For this case we rewrite
the problem (3.9)–(3.11) in the domain Ωε

T as

ρfατ
∂u

∂t
− ρfF

= ∇ ·
(
ε2µ1(c̃)D(x,u) +

(
ν0∇ · u + c2f

∫ t

0

∇ · u(x, τ)dτ
)
I
)
,

(3.24)

u(x, t) = 0, x ∈ Sε, t > 0, u(x, 0) = 0, x ∈ Ωε. (3.25)

Next we choose some basis {ϕk}∞k=1 in W̊ 1
2 (Ωε) and look for the approximate solu-

tion in the form

u(n) =
n∑

k=1

a
(n)
k (t)ϕk(x),

where the functions a(n)
k (t) are defined by the system∫

Ωε

(
ρf (ατ

∂u(n)

∂t
− F )

)
·ϕmdx

=
∫

Ωε

(
ε2µ1(c̃)D(x,u(n)) +

(
ν0∇ · u(n) + c2f

∫ t

0

∇ · u(n)(x, τ)dτ
)
I
)

: D(x,ϕm)dx,

(3.26)

for m = 1, 2, . . . n. For the approximate solutions u(n) and its limit u, estimates
(3.15) hold. In fact, to prove it we just multiply the m− th equation of the system
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by a
(n)
k (t), sum results of multiplication for all m = 1, 2, . . . , n, and use Hölder,

Korn, Friedrichs-Poincaré and Gronwall inequalities.
Note, that due to a special geometry of the domain Ωε the Friedrichs-Poincaré

inequality has a form ∫
Ωε

|u|2dx 6 C ε2
∫

Ωε

|∇u|2dx

[26]. We also use Korn inequality only for the domain Ω. If v̄ is a zero extension
of v from Ωε onto Ω, then∫

Ωε

|∇v|2dx =
∫

Ω

|∇v̄|2dx 6 C

∫
Ω

|D(x, v̄)|2dx = C

∫
Ωε

|D(x,v)|2dx.

The proof of the second part of the lemma is also standard. We consider the initial–
boundary value problem for the difference û = u1 − u2, multiply the differential
equation for û by û, integrate the result by parts over domain Ωε, and use Hölder
inequality.

Proof of Lemma 3.2. Estimate (3.17) is a consequence of the properties of molli-
fiers and well - known results ( [18]): the solution c(x, t) of (3.12)–(3.14) is infinitely
smooth and satisfy the maximum principle.

To prove (3.18) we consider the initial - boundary value problem for the difference
ĉ = c1 − c2, multiply the differential equation for ĉ by ĉ, and integrate the result
by parts over domain Ωε:

1
2
d

dt

∫
Ωε

|ĉ|2dx+D0

∫
Ωε

|∇ĉ|2dx = I1 + I2,

I1 ≡ −
∫

Ωε

(
(u1)(h) · ∇ĉ

)
ĉdx 6

D0

2

∫
Ωε

|∇ĉ|2dx+
1

2D0
max
Ωε

|(u1)(h)|
∫

Ωε

|ĉ|2dx

I2 ≡ −
∫

Ωε

(
û · ∇c2

)
ĉ dx 6

∫
Ωε

|û|2dx+
1
4

max
Ωε

|∇c2|
∫

Ωε

|ĉ|2dx.

Therefore,
1
2
d

dt

∫
Ωε

|ĉ|2dx+
D0

2

∫
Ωε

|∇ĉ|2dx 6
∫

Ωε

|û|2dx+N(h)
∫

Ωε

|ĉ|2dx,

and estimate (3.18) follows from Gronwall inequality.

Proof of Lemma 3.4. To prove the lemma we just have to find convergent sub-
sequences and pass to the limit as h↘ 0 in integral identities∫

Ωε
T

(
cε,h ∂ξ

∂t
+ (cε,hvε,h

(h) −D0∇cε,h) · ∇ξ + ξ cε,h∇ · vε,h
(h)

)
dx dt

+
∫

Ω

χεch0 (x) ξ(x, 0) dx = 0,
(3.27)

∫
Ωε

T

((
ε2µ1(cε,h)D(x,vε,h)− (pε,h − ν0∇ · vε,h)I

)
: D(x,ϕ)

)
dxdt

=
∫

Ωε
T

ρf

(
ατvε,h · ∂ϕ

∂t
+ F ·ϕ

)
dxdt,

(3.28)

∫
Ωε

T

(∂ψ
∂t
pε,h + c2f vε,h · ∇ψ

)
dx dt = 0 (3.29)
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for any smooth functions ξ, ψ and ϕ, such that ξ(x, T ) = ψ(x, T ) = 0 and ϕ(x, t) =
0 for x ∈ Sε.

The weak compactness of {pε,h} and {∇ · vε,h} in L2(Ωε
T ) and the weak com-

pactness of {cε,h} and {vε,h} in L2

(
(0, T );W 1

2 (Ωε)
)

and L2

(
(0, T ); W̊ 1

2 (Ωε)
)

cor-
respondingly follow from estimates (3.20) and (3.21). The strong compactness
of {cε,h} and {vε,h} in L2(Ωε

T ) follow from the same estimates and J. P. Aubin
compactness lemma [6, 19]. Finally, the compactness of {vε,h

(h)} follows from the
compactness of {vε,h} and properties of mollifiers.

4. Proof of Theorem 2.4

The main problem here is the strong compactness of {c̃ε,h} in L2(ΩT ), and this
fact follows from [4], [23] and properties of corresponding extensions.

The boundedness and the weak compactness in L2(ΩT ) of {ṽε} follow from
estimates (3.22), (3.23) and the Friedrichs–Poincaré inequality in periodic structure
[26]. Let

qε = pε − ν0∇ · vε = pε +
ν0
c2f

∂pε

∂t
, (4.1)

and q̃ε be an extension of qε from Ωε
T onto ΩT by setting qε = 0 outside of Ωε

T .
The weak compactness of {p̃ε}, {q̃ε}, and {∇·ṽε} in L2(ΩT ) follow from estimates

(3.22), (3.23) and properties of corresponding extensions.
Using (4.1) we rewrite the integral identity (2.6) as∫

Ωε
T

(
ε2µ1(cε)D(x,vε)− qεI

)
: D(x,ϕ)dxdt

=
∫

Ωε
T

ρf

(
ατvε · ∂ϕ

∂t
+ F ·ϕ

)
dxdt.

(4.2)

The homogenization of the dynamic equations repeats the similar result in [22]. In
fact, the weak limit in the continuity equation (2.7) and in the relation (4.1) result
equations (2.13), (2.12) and the boundary condition (2.15).

If P (x,y, t) and Q(x,y, t) are two - scale limits of {p̃ε} and {q̃ε} respectively,
then the two - scale limit in (4.1) and in (4.2) with test functions ϕ = εh(x, t)ϕ0(x/ε)
with 1-periodic in y functions ϕ0(y) gives us

Q = P +
ν0
c2f

∂P

∂t
, P (x,y, t) =

1
m
p(x, t)χ(y).

Finally, let V (x,y, t) be the two - scale limit of {ṽε}. Then the two - scale limit in
(4.2) with test functions ϕ = h(x, t)ϕ1(x/ε) with 1 - periodic in y finite in Yf and
divergent free functions ϕ1(y) gives us

µ1∆yV −∇yQ− 1
m
∇q + %fF = 0, y ∈ Yf . (4.3)

The two - scale limit in (2.7) with test functions ψ = ε h(x, t)ψ0(x/ε) results the
microscopic continuity equation

∇ · V = 0, y ∈ Yf . (4.4)

The missing boundary condition

V = 0, y ∈ γ (4.5)
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follows from the representation

ṽε = ṽε χε,

the boundedness of the sequence {ε∇ṽε} and Nguetseng’s theorem [25].
We look for the solution of problem (4.3)–(4.5) in the form

V =
1
µ1

( 3∑
i=1

V (i) ⊗ ei

)
·
(
− 1
m
∇q + %fF

)
,

where e1, e2, e3 is a standard Cartesian basis. Then

B(f) =
3∑

i=1

( ∫
Yf

V (i)(y)dy
)
⊗ ei =

3∑
i=1

〈V (i)〉Yf
⊗ ei. (4.6)

In (4.6) a⊗ b stands for the matrix A, such that A · c = a(b · c) for any vector c,
and V (i) are solutions to periodic boundary-value problems

∆yV (i) −∇Π(i) = −ei, y ∈ Yf ,

∇ · V (i) = 0, y ∈ Yf ,

V (i) = 0, y ∈ γ.

(4.7)

The homogenization of the diffusion-convection equation for cε is also standard (
[7], [16], [23]) and

B(c) = mI +
( 3∑

i=1

〈∇yC
(i)(y)〉Yf

⊗ ei

)
, (4.8)

with
∇ ·

(
χ(y)(ei +∇yC

(i))
)

= 0,y ∈ Y. (4.9)

5. Proof of Theorem 2.5

Let

w(x, t) =
∫ t

0

v(x, τ)dτ. (5.1)

Then (2.11)–(2.13) take the form

mµ1(c)
(
B(f)

)−1 · v = ∇
(
c2f∇ ·w + ν0∇(∇ · v)

)
+mρfF . (5.2)

Multiplication by v and integration by parts over Ω result an energy equality∫
Ω

(
mµ1(c)v ·

(
B(f)

)−1 · v + ν0(∇ · v)2 −mρfF · v
)
dx

+
c2f
2

d

dt

∫
Ω

(∇ ·w)2dx = 0,
(5.3)

and the a priori estimate∫
ΩT

(
|v|2 + ν0(∇ · v)2

)
dx dt+ c2f max

0<t<T

∫
Ω

(∇ ·w)2dx 6 C F 2, (5.4)

where C is independent of c2f and ν0.
Coming back to (2.11) and using (5.4) one has∫

ΩT

|∇q|2dx dt 6 C F 2. (5.5)



EJDE-2012/105 A DIFFUSION-CONVECTION MODEL 15

Equations (2.12), (2.13) and boundary condition (2.15) provide the equality∫
Ω

q(x, t)dx = 0.

Therefore, ∫
ΩT

|q|2dx dt 6 C F 2 (5.6)

(see [18]). The combination of (5.4) and (5.6) gives us∫
ΩT

|p|2dx dt 6 C F 2. (5.7)

Finally, for the concentration c hold true estimates (2.8) and (2.10) with a constant
C that does not depend on c2f and ν0.

Now we are ready to pass to the limit as k = c2f → ∞. On the base of esti-
mates (2.8), (2.10), (5.4)–(5.7) we may choose subsequences {v(kn)}, {q(kn)}, and
{c(kn)} such that the sequence {v(kn)} converges weakly in L2(ΩT ) to the function
v(∞), the sequence {q(kn)} converges weakly in L2(ΩT ) to the function p(∞), the
sequence {c(kn)} converges weakly in L2

(
(0, T );W 1

2 (Ω)
)

and strongly in L2(ΩT )
to the function c(∞), the sequence {∇ · v(kn)} converges weakly in L2(ΩT ) to the
function ∇ · v(∞), and the sequence {∇ · w(kn)} converges strongly in L2(ΩT ) to
zero.

It is clear that relation ∇·w(∞) = 0 and relation (5.1) for w(∞) and v(∞) imply
the continuity equation ∇ · v(∞) = 0, and that the concentration c(∞) satisfies the
diffusion-convection equation (2.14) with the velocity field {v(∞)}.

To prove the Darcy law (2.18) it is sufficient to fulfill the limiting procedure as
kn →∞ in the integral identity∫

ΩT

(
µ1(c(kn))ϕ ·

(
B(f)

)−1 · v(kn) − 1
m
q(kn)(∇ ·ϕ)− ρfF ·ϕ

)
dx dt = 0.

The proof of Theorem 2.6 follows by repeating the proof of Theorem 2.5 with
obvious changes. Note, that due to (5.4) ν0∇ · v(δ) → 0 as δ → 0 strongly in
L2(ΩT ).
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