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EXISTENCE OF BOUND STATE SOLUTIONS FOR
DEGENERATE SINGULAR PERTURBATION PROBLEMS WITH

SIGN-CHANGING POTENTIALS

MARIA J. ALVES, RONALDO B. ASSUNÇÃO,

PAULO C. CARRIÃO, OLÍMPIO H. MIYAGAKI

Abstract. In this article, we study the degenerate singular perturbation
problems

−ε2 div(|x|−2a∇u) + |x|−2(a+1)V (x)u = |x|−b2∗(a,b)g(x, u),

− div(|x|−2a∇u) + λ|x|−2(a+1)V (x)u = |x|−b2∗(a,b)g(x, u),

for ε small and λ large positive, where x ∈ RN with N > 3. We search for
solutions that decay to zero as |x| → +∞, when g is superlinear in the poten-
tial function changes signs. We prove the existence of bound state solutions
for degenerate, singular, semilinear elliptic problems. Additionally, when the
nonlinearity g(x, u) is an odd function of u, we obtain infinitely many geomet-
rically distinct solutions.

1. Introduction and main results

This work concerns the study the degenerate singular perturbation problems

−ε2 div(|x|−2a∇u) + |x|−2(a+1)V (x)u = |x|−b2∗(a,b)g(x, u), (1.1)

for small ε ∈ R+, and

−div(|x|−2a∇u) + λ|x|−2(a+1)V (x)u = |x|−b2∗(a,b)g(x, u), (1.2)

for large λ ∈ R+. We consider the case where x ∈ RN for N > 3 and we search
for decaying solutions, i.e., solutions such that u(x) → 0 as |x| → +∞. The other
parameters are such that

0 6 a < (N − 2)/2, and a 6 b < a + 1. (1.3)

Additionally, we define

2∗(a, b) :=
2N

[N − 2(a + 1− b)]
, 2∗ = 2∗(a, a) :=

2N

N − 2
.
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We are mainly interested in a superlinear, critical nonlinearity g and in a sign-
changing potential V .

To present a brief historical review, we write the two equations as

−ε2 div(|x|−2a∇u) + |x|−2(a+1−c)V (x)u = |x|−b2∗(a,b)g(x, u), (1.4)

−div(|x|−2a∇u) + λ|x|−2(a+1−c)V (x)u = |x|−b2∗(a,b)g(x, u). (1.5)

Clearly, problems (1.1) and (1.2) correspond to the above equations with c = 0.
These type of problems come from the study of standing waves in anisotropic

Schrödinger equation. The transition from quantum mechanics to classical mechan-
ics can be formally realised by letting ε → 0; therefore, the existence of solutions
for ε small is of physical interest. Aside from being one of the main objects of
quantum physics, the Schrödinger equation also appears in problems of nonlinear
optics, in plasma physics, and in condensed matter physics, where one simulates
the interaction effect among many particles through a nonlinear term. Moreover,
several physical phenomena related to equilibrium of anisotropic continuous media
that possibly are “perfect” insulators can be modeled by this type of elliptic prob-
lem, where it is allowed for the coefficient of the operator to be unbounded. For
more details, the reader is referred to the papers [3, 12, 15, 19, 20, 31, 41, 48], to
the book [2] and to the excellent article [42].

In the case a = 0, b = 0, c = 1, one expects problem (1.4) to possess nontrivial
solutions u ∈ H1(RN ) if lim inf |x|→+∞ V (x) > 0 and imposing a superlinear type
condition on g, and this is independent whether or not the potential V changes
sign. For example, it is known by variational arguments that the problem with
homogeneous Dirichlet boundary condition on a smooth, bounded domain Ω ⊂ RN

with 2 < p < 2∗ always has solutions u ∈ H1(Ω) and this is independent of the sign
of V . See, for example, the papers [4, 23, 24, 30, 32, 33, 34, 43, 44, 46], where the
main ideas to prove existence results rely in an essential way on the nondegeneracy
of the critical points of the potential V . Regarding problem (1.2) with parameters
a = 0, b = 0, and c = 1, see the papers [7, 8, 9, 13, 14, 16, 17, 37, 40].

Still in the case a = 0, b = 0, and c = 1, but with minx∈RN V (x) = 0 there are
considerably less results. See, for example, the papers [16, 25].

In the case of the Schrödinger problem with a sign-changing potential V , the
corresponding energy functional is indefinite, i.e., is neither bounded from above nor
bounded from below; consequently, it does not have the geometry of the mountain-
pass theorem or some of its variants. This has stimulated the development of new
approaches to the problem. See, for example, the papers [26, 27, 28, 29].

In the case V (x) := 1, g(x, u) := |u|2∗(a,b)−2u, c = 0, and where at least one of
the parameters a or b is different from zero, problems (1.4) and (1.5) are closely
related. In fact, when ε2 = λ−1, then u is a solution to problem (1.5) if and only
if v(x) = λ−1/(2∗(a,b)−2)u(x) is a solution to problem (1.4). Hence, as far as the
existence and the number of solutions are concerned, problems (1.4) and (1.5) are
equivalent. However, for more general perturbations g this is no longer true.

The degenerate cases mentioned in the previous paragraph have the following
variational structure. Let the space D1,2

a (RN ) be defined as the completion of the
space C∞

0 (RN ) with respect to the norm given by

‖u‖ :=
[ ∫

RN

|x|−2a|∇u|2 dx
]1/2

.
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We define S(a, b) as the best constant of the Sobolev embedding; that is,

S(a, b) := inf
u∈D1,2

a (RN ), u 6:=0

∫
RN |x|−2a|∇u|2 dx + λ

∫
RN |x|−2(a+1)|u|2 dx[ ∫

RN |x|−b2∗(a,b)|u|2∗(a,b) dx
]2/2∗(a,b)

.

It is well known that if the value of S(a, b) is attained by a function u ∈ D1,2
a (RN ),

then a convenient multiple of u is a weak solution to problem (1.2). For results of
existence and non-existence of solutions, see the papers [5, 10, 11, 21, 22, 38, 39, 48].

Inspired by Ding and Szulkin in [27], we prove results of existence of bound state
solutions to the case of degenerate, singular, semilinear elliptic problems. We look
for solutions to problems (1.1) and (1.2) in the space D1,2

a (RN ). Additionaly, in
the case where the nonlinearity g(x, u) is an odd function of u, we obtain infinitely
many geometrically distinct solutions.

To state our hypotheses we set

G(x, u) :=
∫ u

0

g(x, s) ds and G̃(x, u) :=
g(x, u)u

2
−G(x, u);

we also assume the following conditions on the potential V and on the perturbation
g.

(V1) V ∈ C(RN , R) and V is bounded from below.
(V2) There exists b > 0 such that the set {x ∈ RN : V (x) < b} is non-empty and

has finite measure.
(G1) g ∈ C(RN , R), G(x, u) > 0 for all (x, u) and g(x, u) = o(u) uniformly in x

as u → 0.
(G2) G(x, u)/u2 → +∞ uniformly in x as |u| → +∞.
(G3) G̃(x, u) > 0 whenever u 6= 0.
(G4) |g(x, u)|τ 6 a1G̃(x, u)|u|τ for some a1 > 0, τ > max{1, N/2}, and for all

(x, u) with |u| large enough.
The main results of our work can be stated as follows.

Theorem 1.1. Suppose that assumptions (V1), (V2), (G1)–(G4) are satisfied and
that V −1(0) has a nonempty and bounded interior Ω. Suppose that conditions (1.3)
on the parameters a and b are also satisfied.

(1) If G(x, u) > a0|u|δ for some a0 > 0, for some 2 < δ < 2∗ and for all |u|
small enough, then there exists ε0 > 0 such that problem (1.1) has at least
one nontrivial solution whenever ε ∈ (0, ε0). Moreover, if g is odd in u,
then for each k > 1 there exists εk > 0 such that problem (1.1) has at least
k pairs of nontrivial solutions whenever ε ∈ (0, εk).

(2) There exists Λ0 > 0 such that problem (1.2) has at least one nontrivial
solution whenever λ > Λ0. Moreover, if g is odd in u, then for each k > 1
there exists Λk > 0 such that problem (1.2) has at least k pairs of nontrivial
solutions whenever λ > Λk.

Theorem 1.2. Suppose that assumptions (V1), (V2), (G1)–(G4) and the conditions
(1.3) on the parameters a and b are satisfied.

(1) If V (x) < 0 for some x and G(x, u) > a0|u|δ for some a0 > 0, for some
2 < δ < 2∗ and for all |u| small enough, then there exists a sequence
(εk)k∈N ⊂ R with εk → 0 such that problem (1.1) has a nontrivial solution
for each ε = εk.
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(2) If V (x) < 0 for some x, then there exists a sequence (λk)k∈N ⊂ R with
λk → +∞ such that problem (1.2) has a nontrivial solution for each λ = λk.

The present work has two main goals. The first one is to show the decaying
of the weak solutions u ∈ D1,2

a (Ω) to problems (1.1) and (1.2) defined for open,
bounded domains Ω ⊂ RN . It is worth mentioning that the ideas used by Ding and
Szulkin in [27] to get this result do not apply here. The second one is to prove a
concentration-compactness lemma similar to the one by Ackermann in [1]. To the
best of our knowledge, there is no similar result in the literature.

This article is organized as follows. In section 2 we present an auxiliary varia-
tional problem; then we use a result by Vassilev in [47, Theorem 2.9] to prove the
decaying of the weak solutions (Proposition 2.1). We also state two well known
results that guarantee the existence of critical points for the energy functional,
namely, the Linking Theorem by Rabinowitz (Proposition 2.2) and a least bound to
the number of pairs of critical points of some functionals by Bartolo, Benci and For-
tunato (Proposition 2.3). In section 3 we state and prove several technical lemmas,
the two major results being a lemma on the boundedness of the Cerami sequences
for the energy functional (Lemma 3.3) and the crucial lemma that can be used to
prove the convergence of subsequences of Palais-Smale sequences (Lemma 3.4). In
section 4 we concatenate the previous results to prove the theorems.

2. A variational problem and some preliminary results

We begin by making some remarks about the hypotheses on the perturbation
g. If assumptions (G1) and (G4) hold, then |g(x, u)|τ 6 1

2 a1|g(x, u)||u|τ+1 for |u|
large enough; hence, g satisfies the growth restriction

|g(x, u)| 6 a2(|u|+ |u|p−1) (2.1)

where 2 < p = 2τ/(τ − 1) < 2∗. On the other hand, if g satisfies inequality (2.1)
with 2 < p < 2∗ and the Ambrosetti-Rabinowitz superlinearity condition

0 < µG(x, u) 6 g(x, u)u (2.2)

for some µ > 2 and for all (x, u) with u 6= 0, then it is easy to see that assumptions
(G2) and (G3) hold, and so does (G4). We will also see that assumptions (G2) to
(G4) imply that G̃(x, u) → +∞ as |u| → +∞.

In addition to problems (1.1) and (1.2), we will consider the problem

− div(|x|−2a∇u) + |x|−2(a+1)V (x)u = |x|−b2∗(a,b)g(x, u), (2.3)

with V = V + − V −, where V ± > 0, verifying assumptions (V1), (V2), and g
verifying (G1) to (G4). Let

E :=
{

u ∈ D1,2
a (RN ) :

∫
RN

|x|−2(a+1)V +(x)|u|2 dx < +∞
}

(2.4)

be equipped, for λ > 0, with the inner product and norm, respectively, given by

〈u, v〉λ :=
∫

RN

|x|−2a∇u · ∇v dx +
∫

RN

λ|x|−2(a+1)V +(x)uv dx,

‖u‖λ := 〈u, u〉1/2
λ .

We denote ‖ · ‖1 = ‖ · ‖, and Eλ = (E, ‖ · ‖λ); in particular, we set E1 = E.
Clearly, ‖u‖ 6 ‖u‖λ if λ > 1.
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Let Φ: E → R be the energy functional given by

Φ(u) :=
1
2

∫
RN

|x|−2a|∇u|2 dx +
1
2

∫
RN

|x|−2(a+1)V (x)u2 dx

−
∫

RN

|x|−b2∗(a,b)G(x, u) dx.

(2.5)

It is well known that under the previously introduced hypotheses the functional Φ
is continuously differentiable, that is, Φ ∈ C1(E, R); see, for example, the paper
[5]. Moreover, Φ′(u) = 0 if, and only, if u ∈ E is a weak solution of (2.3).

In the following proposition we consider the decay of the weak solutions to prob-
lems of the type (1.2) defined on open, bounded domains; a similar conclusion holds
for weak solutions to problems of the type (1.1).

Proposition 2.1. Let Ω ⊂ RN be an open, bounded domain with N > 3 and such
that ∂Ω ∈ C1 and suppose that inequalities (1.3) hold. Suppose also that u is a
non-negative solution of the problem

−div(|x|−2a∇u) + λ|x|−2(a+1)V (x)u = |x|−b2∗(a,b)g(x, u) x ∈ Ω

u(x) = 0 x ∈ ∂Ω.
(2.6)

Then there exists a positive constant C = C(p, RN , ‖u‖D1,2
a (Ω)) such that for every

q < N − 2 there holds the inequality

u(x) 6
C

|x|q−a
‖u‖D1,2

a (Ω). (2.7)

Proof. Following an idea by Hsia, Lin and Wadade in [36], we use the change of
variables w(x) := |x|−au(x). Then∫

Ω

|x|−2a|∇u|2 dx =
∫

Ω

|∇w|2 dx− γ

∫
Ω

|x|−2w2(x) dx, (2.8)

where γ := a(N−2−a). This implies that u ∈ D1,2
a (Ω) if, and only if, w ∈ D1,2

0 (Ω);
moreover, u is a solution to problem (2.6) if, and only if, w is a solution to problem

−∆w − γ|x|2w = |x|−(b−a)2∗(a,b)g(x, |x|aw) x ∈ Ω

w(x) = 0 x ∈ ∂Ω.

To show equality (2.8) we begin by noting that∫
Ω

|x|−2a|∇u|2 dx =
∫

Ω

a2|x|−2w2(x) dx +
∫

Ω

2a|x|−2w(x)[x · ∇w(x)] dx

+
∫

Ω

|∇w|2 dx.

(2.9)

To handle the second integral on the right-hand side of the previous equation we
evaluate

2a|x|−2w(x)[x · ∇w(x)] =
1
2

div(2a|x|−2w2(x)x) + a(2−N)|x|−2w2(x).

Integrating over Ω and using the divergence theorem, we obtain∫
Ω

2a|x|−2w(x)[x · ∇w(x)] dx =
∫

Ω

a(2−N)|x|−2w−2(x) dx. (2.10)

Substituting equation (2.10) in equation (2.9) we obtain equality (2.8).
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Now we evaluate directly the divergence of |x|−2a∇u(x) to obtain

div(|x|−2a∇u(x)) = γ|x|−(a+2)w(x) + |x|−a∆w(x). (2.11)

Supposing that the function u is a solution to problem (2.6) and using inequality
(2.1) we obtain

− div(|x|−2a∇u(x))

= −λ|x|−(a+2)V (x)w(x) + |x|−b2∗(a,b)g(x, |x|aw)

6 −λ|x|−(a+2)V (x)w(x) + a2|x|−b2∗(a,b)|x|a(p−1)|w(x)|p−1.

(2.12)

Isolating the term −|x|−a∆w(x) in equality (2.11) and using (2.12) we obtain

− |x|−a∆w(x)

6 −λ|x|−(a+2)(V +(x)− V −(x))w(x) + a2|x|−b2∗(a,b)+a(p−1)|w(x)|p−1

+ γ|x|−(a+2)w(x)

6 λ|x|−(a+2)V −(x)w(x) + a2|x|−b2∗(a,b)+a(p−1)|w(x)|p−1 + γ|x|−(a+2)w(x)

= (λV −(x) + γ)|x|−(a+2)w(x) + a2|x|−b2∗(a,b)+a(p−1)|w(x)|p−1.

It follows that

−∆w(x) 6 (λV −(x)− γ)|x|−2w(x) + a2|x|−b2∗(a,b)+ap|w(x)|p−1

:= R|x|−2w(x) + V0

where R := λV −(x) + γ and V0 := a2|x|−b2∗(a,b)+ap|w(x)|p−1. Since we assume
that Ω is bounded, then R ∈ Lr0(Ω) ∩ Lt0(Ω) for some t0 > r0 := 2∗/[2∗(a, b)− 2]
and V0 ∈ L1(Ω)∩Lr0(Ω). Applying a result by Vassilev in [47, Theorem 2.9] there
exists a positive constant C = C(p, RN , ‖w‖D1,2

0 (Ω)) such that

w(x) 6
C

|x|q
‖w‖D1,2

0 (Ω)

for every q < N − 2; that is,

|x|−au(x) 6
C

|x|q
‖|x|−au‖D1,2

0 (Ω). (2.13)

Now we observe that

div(a|x|−2(a+1)u2(x)x)

= [Na− 2a(a + 1)]|x|−2(a+1)u2(x) + 2a|x|−2(a+1)u(x)[x · ∇u(x)].

Integrating over Ω and using the divergence theorem we obtain∫
Ω

−2a|x|−2(a+1)u(x)[x · ∇u(x)] dx

= [Na− 2a(a + 1)]
∫

Ω

|x|−2(a+1)u2(x) dx.

(2.14)
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Finally, we evaluate the D1,2
0 (Ω) norm of the function |x|−au; to do this we use

(2.14) to obtain∫
Ω

|∇(|x|−au(x))|2 dx

= a2

∫
Ω

|x|−2(a+1)u2(x) dx− 2a

∫
Ω

|x|−2(a+1)u(x)[x · ∇u(x)] dx

+
∫

Ω

|x|−2a|∇u(x)|2 dx

= a(N − 2− a)
∫

Ω

|x|−2(a+1)u2(x) dx +
∫

Ω

|x|−2a|∇u(x)|2 dx.

(2.15)

Using estimate (2.13) and equality (2.15) it follows that

u(x) 6
C

|x|q−a
‖|x|−au‖D1,2

0 (Ω)

=
C

|x|q−a

(
a(N − 2− a)

∫
Ω

|x|−2(a+1)u2(x) dx +
∫

Ω

|x|−2a|∇u(x)|2 dx
)1/2

6
C

|x|q−a
‖u‖D1,2

a (Ω)

for every q < N − 2, which is the estimate (2.7). This concludes the proof. �

For an arbitrary set X ⊂ RN , and for d > 0 and r > 1, we use the notation

‖v‖Lr
d(X) :=

[ ∫
X

|x|−dr|v|r dx
]1/r

.

Let F := {u ∈ E : supp u ⊂ V −1([0,+∞))}; then F is a vector subspace and we
denote its orthogonal complement in E by F⊥. If V > 0, then E = F ; otherwise,
F⊥ 6= {0}. Let A(u) := −div(|x|−a∇u) + |x|−2(a+1)V u; then A is formally self-
adjoint in L2

a(RN ) and the associated bilinear form aV : E × E → R given by

aV (u, v) :=
∫

RN

|x|−2a∇u · ∇v dx +
∫

RN

|x|−2(a+1)V (x)uv dx

is such that aV ∈ C(E × E, R). Consider also the eigenvalue problem

−div(|x|−2a∇u) + |x|−2(a+1)V +(x)u = µ|x|−2(a+1)V −(x)u

for u ∈ F⊥.
Since from hypothesis (V2) we have that supp V − is of finite measure, then the

quadratic form

u 7→
∫

RN

|x|−2(a+1)V −(x)u2 dx

is weakly continuous; hence, there exists a sequence of positive eigenvalues (µj)j∈N
which may be characterized by

µj = inf
dim M>j, M⊂F⊥

sup
{
‖u‖2 : u ∈ M,

∫
RN

|x|−2(a+1)V −(x)u2 dx = 1
}

.

To show this, we define the bilinear forms

aV +(u, v) :=
∫

RN

|x|−2a∇u · ∇v dx +
∫

RN

|x|−2(a+1)V +(x) uv dx
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bV −(u, v) :=
∫

RN

|x|−2(a+1)V −(x) uv dx

and apply the results in Willem [49, Theorems 4.45 and 4.46].
Moreover, the sequence of eigenvalues is such that µj → +∞ as j → +∞ and

the corresponding eigenfunctions ej can be chosen so that 〈ei, ej〉 = δij and form a
basis for F⊥.

Let Ê := span{ej : µj 6 1} and E+ := span{ej : µj > 1}. Then E = Ê⊕E+⊕F

is an orthogonal decomposition, with dim Ê < +∞. We set the operator

Aλ(u) := −div(|x|−2a∇u) + λ|x|−2(a+1)V u;

then Aλ is formally self-adjoint in L2
a(RN ) and the associated bilinear form

aλ(u, v) :=
∫

RN

|x|−2a∇u · ∇v dx +
∫

RN

λ|x|−2(a+1)V (x)uv dx

is such that aλ ∈ C(Eλ×Eλ, R). Let F⊥
λ be defined as the orthogonal complement

of F in Eλ and Eλ = F ⊕ F⊥
λ . Now consider the eigenvalue problem

−div(|x|−2a∇u) + λ|x|−2(a+1)V +(x)u = λµ|x|−2(a+1)V −(x)u

where λ > 0 is fixed and u ∈ F⊥
λ .

Then we have a sequence (µj(λ))j∈N defined by

µj(λ) := inf
dim M>j

M⊂F⊥λ

sup
{

λ−1‖u‖2
λ : u ∈ M,

∫
RN

|x|−2(a+1)V −(x)u2 dx = 1
}

= inf
dim M>j

M∩F={0}

sup
{

λ−1‖u‖2
λ : u ∈ M,

∫
RN

|x|−2(a+1)V −(x)u2 dx = 1
}

,

(2.16)

where the equality (2.16) follows from the fact that
∫
RN |x|−2(a+1)V −(x)u2 dx = 0

when u ∈ F .
Denote the corresponding eigenfunctions by ej(λ) and let

Êλ := span{ej(λ) : µj(λ) 6 1}, E+
λ := span{ej(λ) : µj(λ) > 1}.

Then Eλ = Êλ⊕E+
λ ⊕F is an orthogonal decomposition of Eλ and dim Êλ < +∞.

Moreover, the quadratic form aλ is negative semidefinite on Êλ, positive definite
on E+

λ ⊕ F and aλ(u, v) = 0 if u, v are in different subspaces of the previous
decomposition. See Lemma 3.1 for some more properties of µj(λ).

We say that a sequence (un)n∈N ⊂ E is a Cerami sequence for the functional Φ
if (Φ(un))n∈N is bounded and (1 + ‖un‖)Φ′(un) → 0 as n → +∞; also, Φ is said
to satisfy the Cerami condition if any such sequence has a convergent subsequence.
In particular, a Cerami sequence with Φ(un) → c is denoted by (C)c-sequence, and
we say that Φ satisfies the (C)c-condition if each (C)c-sequence has a convergent
subsequence.

To prove Theorem 1.1 and Theorem 1.2 we will make use of the following propo-
sitions.

Proposition 2.2 (Linking Theorem). Suppose that Φ ∈ C1(E, R), E = E1 ⊕ E2

where dim E2 < +∞, and that there exist R > ρ > 0, κ > 0 and e0 ∈ E1\{0}
such that inf Φ(E1 ∩ Sρ) > κ and supΦ(∂Q) 6 0, where Q = {v + te0 : v ∈ E2, t >
0, ‖u‖ 6 R}. If Φ satisfies the (C)c-condition for all κ 6 c 6 supΦ(Q), then Φ has
a critical value in the interval [κ, supΦ(Q)].
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Proof. See Rabinowitz in [45, Theorem 9.12] or Willem [50, Theorem 2.12] for
the details. In their proofs, it is usually assumed that the functional Φ verifies
the Palais-Smale condition; however, the Cerami condition is sufficient for the de-
formation lemma, and therefore it is also sufficient for the Linking Theorem to
hold. �

In contrast, if the functional is invariant under the action of a compact group
of transformations, then we can get sharper results. Considering the action of the
symmetry group, we state the following result.

Proposition 2.3. Suppose that Φ ∈ C1(E, R) is even, Φ(0) = 0 and that there
exist closed subspaces E1, E2 such that codim E1 < +∞, inf Φ(E1 ∩ Sρ) > κ for
some κ > 0, ρ > 0 and supΦ(E2) < +∞. If Φ verifies the (C)c-condition for all
κ 6 c 6 supΦ(E2), then Φ has at least dim E2 − codim E1 pairs of critical points
with corresponding critical values in the interval [κ, supΦ(E2)].

For a proof of the above proposition, see Bartolo, Benci and Fortunato [6, The-
orem 2.4].

3. Technical lemmas

Lemma 3.1. Suppose V −(x) 6:= 0. Then for each fixed j ∈ N we have the following
claims.

(1) µj(λ) → 0 as λ → +∞; also, dim Êλ → +∞ as λ → +∞.
(2) µj(λ) is a non-increasing continuous function of λ.

Proof. To prove item (1), let φk ∈ C∞
0 (RN ) be functions such that suppφi ⊂

suppV − for each 1 6 k 6 j; suppose also that for every k 6= l we have supp φk ∩
suppφl = ∅. Define M := span{φ1, φ2, . . . , φj}. Then

µj(λ) 6 sup
u∈M, u6=0

∫
RN |x|−2a|∇u|2 dx +

∫
RN λ|x|−2(a+1)V +(x)|u|2 dx∫

RN λ|x|−2(a+1)V −(x)|u|2 dx

= sup
u∈M, u6=0

∫
RN |x|−2a|∇u|2 dx∫

RN λ|x|−2(a+1)V −(x)|u|2 dx
.

Hence, µj(λ) → 0 as λ → +∞. It also follows that dim Êλ → +∞ as λ → +∞.
To prove item (2), let u ∈ M be such that

∫
RN |x|−2(a+1)V −(x)|u|2 dx = 1. Since

M ∩ F = {0}, for λ1, λ2 ∈ R+, we have

λ−1
1 ‖u‖2

λ1
− λ−1

2 ‖u‖2
λ2

= (λ−1
1 − λ−1

2 )‖∇u‖2
L2

a
. (3.1)

It readily follows that µj(λ) is a non-increasing function of λ.
To show the continuity of this function, let λ1, λ2 ∈ (λ0, λ̃), where λ0 > 0. We

only have to consider those subspaces M for which the supremum in equation (2.16)
is less than or equal to the number K := µj(λ0) + 1. For such subspaces M we
have µj(λ̃) 6 µj(λ0) < K.

Let u ∈ M be normalized by
∫

RN |x|−2(a+1)V −(x)|u|2 dx = 1. From the defini-
tion, we have

µj(λ̃) 6 λ̃−1‖u‖2
λ 6 K

and this implies that λ̃K > ‖u‖2
λ. Since

‖∇u‖L2
a(RN ) 6

∫
RN

|x|−2a|∇u|2 +
∫

RN

|x|−2(a+1)V +(x)|u|2 dx = ‖u‖2
λ,
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then ‖∇u‖2
L2

a(RN ) 6 ‖u‖2
λ 6 λ̃K and this implies that µj(λ2) → µj(λ1) as λ2 → λ1

and the function µj(λ) is continuous. This concludes the proof of the lemma. �

Lemma 3.2. (1) Suppose that g verifies inequalities (2.1) and (2.2) for some
a2 > 0, 2 < p < 2∗ and µ > 2; then assumption (G4) holds for (N−a)/2 <
τ < p/(p− 2) with τ > 1.

(2) Suppose that g verifies the assumptions (G2) to (G4); then G̃(x, u) → +∞
uniformly in x as |u| → +∞.

The proof of the above lemma is similar to the corresponding proof in Ding and
Szulkin [27, Lemma 2.2].

Lemma 3.3. Suppose that the assumptions (V1), (V2), (G1)–(G4) hold. Then any
Cerami sequence for the functional Φ is bounded.

Proof. Consider a Cerami sequence (um)m∈N ⊂ E. Since the functional Φ ∈
C1(E, R), we have

‖(1 + ‖um‖)Φ′(um)‖ := sup
‖v‖=1

|(1 + ‖um‖)Φ′(um)v| 6 (1 + ‖um‖)‖Φ′(um)‖ → 0

as m → +∞. So

‖Φ′(um)um‖ 6 ‖Φ′(um)‖‖um‖ 6 ‖Φ′(um)‖(1 + ‖um‖) → 0

as m → +∞. It follows that for m ∈ N large enough and for some positive constant
C > 0, we have

C > Φ(um)− 1
2
Φ′(um)um =

∫
RN

|x|−b2∗(a,b)G̃(x, u) dx. (3.2)

Define h(r) := infx∈RN {G̃(x, u) : |u| > r}. By (G3) and by Lemma 3.2, there
exist R0 > 0 such that G̃(x, u) > 1 for |x| > R0. In the annulus r < |u| < R0

we have G̃(x, u) > 0; therefore, h(r) > 0. Moreover, also by Lemma 3.2 we have
h(r) → +∞ as r → +∞.

For 0 < α < β, we define

Ωm(α, β) := {x ∈ RN : α 6 |um(x)| < β},
Ωm(β, +∞) := {x ∈ RN : β 6 |um(x)| < +∞}.

Notice that by assumption (G1) we have that 0 6∈ Ωm(β, +∞). We also define

Cβ
α := inf

x∈RN

{ G̃(x, u)
|u|2

: α 6 |u| < β
}
.

Then G̃(x, u) > Cβ
α |um|2 for all x ∈ Ωm(α, β). From inequality (3.2) it follows that

C >
∫

Ωm(0,α)

|x|−b2∗(a,b)G̃(x, u) dx +
∫

Ωm(α,β)

|x|−b2∗(a,b)G̃(x, u) dx

+
∫

Ωm(β,+∞)

|x|−b2∗(a,b)G̃(x, u) dx

>
∫

Ωm(0,α)

|x|−b2∗(a,b)G̃(x, u) dx + cβ
α

∫
Ωm(α,β)

|x|−b2∗(a,b)|u|2 dx

+ h(β)
∫

Ωm(β,+∞)

|x|−b2∗(a,b) dx.

(3.3)
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To show that a Cerami sequence is bounded we argue by contradiction and assume
that ‖um‖ → +∞ as m → +∞. Now we define the sequence (vm)m∈N ⊂ E
by vm := um/‖um‖ which implies that ‖vm‖ = 1. By the Caffarelli, Kohn, and
Nirenberg inequality in [18], for 2 6 s < 2∗(a, b) there exists a constant Cs > 0
such that

‖vm‖Ls
b(RN ) 6 Cs

[ ∫
RN

|x|−2a|∇vm|2 dx +
∫

RN

|x|−2(a+1)V +(x)|vm|2 dx
]1/2

= Cs.

Using inequality (3.3), we obtain∫
Ωm(β,+∞)

|x|−b2∗(a,b) dx 6
C

h(β)
→ 0 (3.4)

uniformly in m ∈ N as β → +∞. For fixed 0 < α < β, and using inequality (3.3)
once more, we have∫

Ωm(α,β)

|x|−b2∗(a,b)|vm|2 dx 6
1

‖um‖2

∫
Ωm(α,β)

|x|−b2∗(a,b)|um|2 dx → 0 (3.5)

as m → +∞ because we assume that ‖um‖ → +∞.
From the Hölder inequality and from inequality (3.4), it follows that for 2 6 s <

p < 2∗(a, b) we have the inequality∫
Ωm(β,+∞)

|x|−b2∗(a,b) g(x, um)
um

|vm||v+
m|dx

6
[ ∫

Ωm(β,+∞)

|x|−b2∗(a,b)
∣∣∣g(x, um)

um

∣∣∣τ dx
]1/τ

×
[ ∫

Ωm(β,+∞)

|x|−b2∗(a,b)|vm|2τ/(τ−1) dx
](τ−1)/2τ

×
[ ∫

Ωm(β,+∞)

|x|−b2∗(a,b)|v+
m|2τ/(τ−1) dx

](τ−1)/2τ

for all m ∈ N. In a similar way, by assumption (G4), and using inequality (3.2)
together with a suitable constant C1 we also have∫

Ωm(β,+∞)

|x|−b2∗(a,b) g(x, um)
um

|vm||v+
m|dx

6 C1

[ ∫
Ωm(β,+∞)

|x|−b2∗(a,b)|vm|2
∗(a,b) dx

]s/2∗(a,b)

×
[ ∫

Ωm(β,+∞)

|x|−b2∗(a,b) dx
](2∗(a,b)−s)/2∗(a,b)

.

Now we write u = û+u+ and v = v̂ +v+ so that û, v̂ ∈ Ê and u+, v+ ∈ E+⊕F ;
then

‖v+
m‖Ls

b(RN ) 6 Cs‖v+
m‖ 6 Cs‖vm‖ = Cs.

From the definition of vm, it follows that v+
m = u+

m

‖um‖ . Dividing the expression of
Φ′(um)u+

m by ‖um‖2, we obtain

Φ′(um)u+
m

‖um‖2
=

∫
RN

|x|−2a|∇v+
m|2 dx +

∫
RN

|x|−2(a+1)V (x)(v+
m)2 dx
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−
∫

RN

|x|−b2∗(a,b) g(x, um)
v+

m
vmv+

m dx

But we have Φ′(um)u+
m → 0 as m → +∞; therefore,

Φ′(um)u+
m

‖um‖2
= a(v+

m, v+
m)−

∫
RN

|x|−b2∗(a,b) g(x, um)
um

vmv+
m dx → 0 (3.6)

as m → +∞.
Let ε > 0. By assumption (G1), there exists aε > 0 such that for all |u| 6 aε it

holds
|g(x, u)| 6 ε

3C2
2

|u|.

Consequently, ∫
Ωm(0,aε)

|x|−b2∗(a,b) g(x, um)
um

|vm||v+
m|dx

6
∫

Ωm(0,aε)

|x|−b2∗(a,b) ε

3C2
2

|vm||v+
m|dx

6
ε

3C2
2

‖vm‖L2
b2∗(a,b)/2(Ω)‖v+

m‖L2
b2∗(a,b)/2(Ω) 6 ε/3

(3.7)

for all m ∈ N. Using the limit in (3.4), there exist bε > 0 large enough such that∫
Ωm(bε,+∞)

|x|−b2∗(a,b) g(x, um)
um

vmv+
m dx < ε/3 (3.8)

uniformly in m.
Following up, we now use the inequality (3.5) to obtain constants C3 > 0 and

m0 ∈ N such that∫
Ωm(aε,bε)

|x|−b2∗(a,b) g(x, um)
um

vmv+
m dx 6 C3

∫
Ωm(aε,bε)

|x|−b2∗(a,b)vmv+
m dx

6 C3‖vm‖L2(Ωm(aε,bε))

< ε/3

(3.9)

for all m > m0.
Finally, using inequalities (3.7), (3.8), and (3.9), for all m > m0 we have∫

RN

|x|−b2∗(a,b) g(x, um)
um

vmv+
m dx < ε.

It follows from inequality (3.6) that v+
m → 0 as m → +∞, because the quadratic

form a is positive definite on E+ ⊕ F and ε > 0 is arbitrary. So, passing to a
subsequence if necessary, still denoted in the same way, we obtain vm → v 6= 0 in
E as m → +∞, because dim Ê < +∞. By inequality (3.2), and using assumption
(G3), Lemma 3.2, and Fatou’s Lemma, we obtain

C >
∫

RN

G̃(x, um) dx >
∫
{x∈RN : v(x) 6=0}

G̃(x, um) dx → +∞,

which is a contradiction. This concludes the proof of the lemma. �

The following lemma, which is a variant of the Brézis-Lieb lemma, is crucial
to prove a result on the convergence of subsequences of a Palais-Smale sequence
(Lemma 3.7).
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Lemma 3.4. Let Ω ⊂ RN be an open set and let f ∈ C(Ω × R, R) be a function
such that |f(x, u)| 6 a|u|s for some a ∈ R+ and for 1 6 s < +∞. Suppose that
s 6 p < +∞ with p > 1, and let (um)m∈N ⊂ Lp(Ω) be a bounded sequence such
that um → u a.e. in Ω and um → u in Lp

b(Ω ∩ BR) for all R ∈ R+ as m → +∞.
Then, passing to a subsequence, there exists a sequence (vm)m∈N ⊂ Lp

b(Ω) such that
|x|−bvm → |x|−bu in Lp(Ω) as m → +∞ and

|x|−bf(x, um)− |x|−bf(x, um − vm)− |x|−bf(x, u) → 0 in Lp/s(Ω).

Proof. We adapt the arguments by Ackermann [1, Lemma 3.2] and by Ding and
Szulkin [27, Proposition A.1]. Since the sequence (um)m∈N ⊂ Lp(Ω) is bounded,
and since um → u a.e. in Ω, using a result by Willem [49, Theorem 10.36] we have
um ⇀ u weakly in Lp

b(Ω) as m → +∞.
We claim that there exists a subsequence (umj )j∈N ⊂ Lp

b(RN ) and that there
exists a sequence (Rmj )j∈N ⊂ R+ with Rmj → +∞ as j → +∞ such that for each
ε > 0, for each R > R(ε) and for each j > j(ε), it holds∫

Ω∩BRmj
\BR

|x|−bp|umj
|p dx 6 ε. (3.10)

In fact, by the convergence um → u in Lp
b(Ω ∩ BR), and by the boundedness

of Ω ∩ Bj , we can use a result by Hewitt and Stromberg [35, Theorem 13.44] to
guarantee that for each fixed j > 1 and almost all m ∈ N, we have∫

Ω∩Bj

[
|x|−bp|um|−p − |x|−bp|u|−p

]
dx 6

1
j

. (3.11)

Choosing mj > j for which the inequality (3.11) holds, we may assume without loss
of generality that mj < mj+1 for all j ∈ N. Now we choose R ∈ R+ large enough
so that ∫

Ω\BR

|x|−bp|u|p dx 6
ε

2
, (3.12)

which is possible because u ∈ Lp
b(Ω). Assigning the value Rmj = j we have∫

Ω∩BRmj
\BR

|x|−bp|umj
|p dx =

∫
Ω∩BRmj

[
|x|−bp|umj |p − |x|−bp|u|p

]
dx

+
∫

Ω∩BRmj
\BR

|x|−bp|u|p dx

+
∫

Ω∩BR

[
|x|−bp|u|p − |x|−bp|umj |p

]
dx

for every Rmj
> R. From the inequalities (3.11) and (3.12), it follows that the last

term on the right-hand side of the previous equation tends to 0 as j → +∞; more
precisely, ∫

Ω∩BRmj

[
|x|−bp|u|p − |x|−bp|umj |p

]
dx 6

1
Rmj

+
ε

2
+

1
j

as j → +∞. Now we apply Cantor’s diagonal argument to obtain inequality (3.10).
Let η ∈ C∞

0 (R, [0, 1]) be a cut-off function such that η(t) = 1 if t 6 1 and η(t) = 0
if t > 2; set vmj (x) := η(2|x|/Rmj )u(x). Then we have∫

Ω

|x|−bp|vmj
|p dx →

∫
Ω

|x|−bp|u|p dx (3.13)
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as j → +∞.
Let us recall that by hypothesis we have a sequence (um)m∈N such that um → u

a. e. in Ω and um → u in Lp(Ω ∩ BR). Then, arguing as the authors in [5,
Lemma 2.2], we can conclude that

|x|−bpum → |x|−bpu in Lp
loc(Ω ∩BR). (3.14)

Using the limits (3.13) and (3.14) and the continuity of the Nemytskii operator, we
obtain

|x|−bf(x, umj )− |x|−bf(x, umj − vmj )− |x|−bf(x, u) → 0 (3.15)

in L
p/s
b (Ω ∩BR) as j → +∞. Moreover,∥∥|x|−bf(x, umj )− |x|−bf(x, umj − vmj )− |x|−bf(x, u)

∥∥
Lp/s(Ω\BR)

6
∥∥|x|−bf(x, umj )− |x|−bf(x, umj − vmj )− |x|−bf(x, vmj )

∥∥
Lp/s(Ω\BR)

+
∥∥|x|−bf(x, vmj )− |x|−bf(x, u)

∥∥
Lp/s(Ω\BR)

.

Using the limit (3.13), once again by the continuity of the Nemytskii operator we
have ∥∥|x|−bf(x, vmj

)− |x|−bf(x, u)
∥∥

Lp/s(Ω\BR)
→ 0

as j → +∞. And since |x|−bvmj 6 |x|−b|u| and supp{vmj} ⊂ BRmj
, we have∣∣|x|−bf(x, umj )− |x|−bf(x, umj − vmj )− |x|−bf(x, vmj )
∣∣p/s

6 C
[
|x|−b|umj |s + |x|−b|umj − vmj |s + |x|−b|vmj |s

]p/s

6 C
[
|x|−b|umj |p + |x|−b|u|p

]
,

where we used twice the well known inequality |a+b|p 6 C
[
|a|p+|b|p

]
for a, b ∈ R+.

By the definitions of η and vmj
, in Ω\BRmj

we have vmj
(x) = 0; hence, the left-

hand side of the previous inequality is zero. Finally, by inequality (3.10) and by
the limits (3.12) and (3.15), we obtain the conclusion of the lemma. �

Before stating the next result, let us recall that given Ω ⊂ RN , the set Lp
b(Ω) +

Lq
b(Ω) is the space of functions u defined in Ω such that u = u1 + u2 where

u1 ∈ Lp
b(Ω) and u2 ∈ Lq

b(Ω). This set is equipped with the norm ‖u‖p∨q :=
inf{‖u1‖Lp

b (Ω) + ‖u2‖Lq
b(Ω)}, where the infimum is taken with respect to all decom-

positions u = u1 + u2 as above.

Proposition 3.5. Let Ω ⊂ RN be an open set and let f ∈ C(Ω×R, R) be a function
such that |f(x, u)| 6 a

[
|u|r + |u|s

]
for some a ∈ R+ and for 1 6 r < s < +∞.

Suppose s 6 p < +∞, r 6 q < +∞ with q > 1, and let (um)m∈N ⊂ Lp
b(Ω) ∩ Lq

b(Ω)
be a bounded sequence such that um → u a.e. in Ω and in Lp

b(Ω∩BR)∩Lq
b(Ω∩BR)

for all R ∈ R+. Then, passing to a subsequence, there exists a sequence (vm)m∈N ⊂
Lp

b(Ω∩BR)∩Lq
b(Ω∩BR) such that |x|−bvm → |x|−bu in Lp

b(Ω)∩Lq
b(Ω) as m → +∞

and
f(x, um)− f(x, um − vm)− f(x, u) → 0 in L

p/s
b (Ω) ∩ L

q/r
b (Ω).

The proof of the above proposition is similar to the corresponding one by Ding
and Szulkin in [27, Theorem A.2]. We omit it.
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Let E be the space defined in (2.4). Suppose that L : E → E is a bounded linear
self-adjoint operator and let Φ: E → R be given by

Φ(u) :=
1
2
〈Lu, u〉 −

∫
RN

|x|−b2∗(a,b)G(x, u) dx. (3.16)

Using this notation, we have the following result.

Lemma 3.6. Let (um)m∈N ⊂ E be a sequence such that um ⇀ u weakly in E.
Then after passing to a subsequence, there exists a sequence (vm)m∈N ⊂ E such
that

Φ(um) = Φ(um − vm) + Φ(u) + o(1),

Φ′(um) = Φ′(um − vm) + Φ′(u) + o(1)

as m → +∞. In particular, if (um)m∈N ⊂ E is a Palais-Smale (PS)c-sequence,
then after passing to a subsequence we have Φ(um − vm) → c− Φ(u) and Φ′(um −
vm) → Φ′(u) as m → +∞.

Proof. Without loss of generality we can suppose that |x|−bum → |x|−bu a. e. in
RN , |x|−b ⇀ |x|−bu weakly in Lt(RN ) and |x|−bum → |x|−bu in Lt

loc(RN ), for
2 6 t < 2∗. Applying Proposition 3.5 to the function |x|−b2∗(a,b)G(x, u) with
r = q = 2 and s = p, we obtain∫

RN

|x|−b2∗(a,b)G(x, um) dx =
∫

RN

|x|−b2∗(a,b)G(x, um − vm) dx

+
∫

RN

|x|−b2∗(a,b)G(x, u) dx + o(1).

Similarly, applying Proposition 3.5 to the function |x|−b2∗(a,b)g(x, u) with r = 1,
s = p− 1, and q = 2, we obtain

|x|−b2∗(a,b)g(x, um)− |x|−b2∗(a,b)g(x, um − vm)− |x|−b2∗(a,b)g(x, u) → 0

as m → +∞. Therefore, it holds

sup
‖φ‖61

∫
RN

|x|−b2∗(a,b)g(x, um)φdx

= sup
‖φ‖61

∫
RN

|x|−b2∗(a,b)
[
g(x, um − vm)− g(x, u)

]
φdx + o(1)

Lemma 3.4 guarantees the existence of a sequence (vm)m∈N ⊂ E such that vm → u
in E and, therefore, Lum = L(um − vm)− Lu + o(1) as m → +∞. The conclusion
of the proof of the lemma follows. �

The following lemma follows immediately from Lemma 3.4. We omit its proof.

Lemma 3.7. Suppose that the assumptions (V1), (V2) are satisfied and that in-
equality (2.1) holds; let (um)m∈N ⊂ E be a Palais-Smale sequence for the functional
Φ defined by equality (3.16) such that um ⇀ u weakly in E and Φ(um) → c as
m → +∞. Passing to a subsequence, there exists a sequence (vm)m∈N ⊂ E such
that vm → u as m → +∞ and

Φ(um − vm) → c− Φ(u), Φ′(um − vm) → 0. (3.17)
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Let Φλ : E → R be the functional defined by

Φλ(u) :=
1
2

∫
RN

|x|−2a|∇u|2 dx +
1
2

∫
RN

λ|x|−2(a+1)V (x)u2 dx

−
∫

RN

|x|−b2∗(a,b)G(x, u) dx;
(3.18)

and for λ = ε−2, let Ψλ : E → R be the functional defined by

Ψλ(u) :=
1
2

∫
RN

|x|−2a|∇u|2 dx +
1
2

∫
RN

λ|x|−2(a+1)V (x)u2 dx

−
∫

RN

λ|x|−b2∗(a,b)G(x, u) dx.

(3.19)

We can easily infer that the conclusion of the Lemma 3.7 still holds for the func-
tionals Φλ and Ψλ defined by (3.18) and (3.19), respectively.

Lemma 3.8. Suppose that the assumptions (V1), (V2), (G1)–(G4) hold. Then for
any M > 0 there exists Λ = Λ(M) such that the following claims hold.

(1) Φλ verifies the (C)c-condition for all c 6 M and for all λ > Λ.
(2) Ψλ verifies the (C)c-condition for all c 6 Mλ−α and for all λ > Λ, where

α > 2/(2∗ − 2) if N > 3 and α > 0 if N = 1 or N = 2.

Proof. We begin by considering the functional Φλ. Let (um)m∈N ⊂ Eλ be a Ce-
rami (C)c-sequence with c 6 M . Lemma 3.3 implies that (um)m∈N is a bounded
sequence. Passing to a subsequence if necessary, still denoted in the same way,
we can assume that um ⇀ u weakly in Eλ as m → +∞ and that it verifies the
conclusion of Lemma 3.6.

Now we define wm := um − vm. Since V (x) < b on a set of finite measure and
since wm ⇀ 0 weakly in Eλ as m → +∞, we have wm > 0 and wm → 0 in L2(K)
for compact subsets K ⊂ RN . Therefore,

‖|x|−(a+1)wm‖2
2 6

1
λb

∫
V (x)<b

V (x)|x|−2(a+1)w2
m dx + o(1)

6
1
λb
‖wm‖2 + o(1) 6

1
λb
‖wm‖2

λ + o(1).
(3.20)

Moreover, if 2 < s < p < 2∗, the previous inequality together with Hölder, and
Caffarelli, Kohn and Nirenberg inequalities, imply that∫

RN

|x|−s(a+1)|wm|s dx 6
[ ∫

RN

|x|−2(a+1)|wm|2 dx
](p−s)/(p−2)

×
[ ∫

RN

|x|−p(a+1)|wm|p dx
](s−2)/(p−2)

6 d1(λb)−(p−s)/(p−2)‖wm‖2(p−s)/(p−2)
λ ‖wm‖p(s−2)/(p−2)

λ

6 d1(λb)−(p−s)/(p−2)‖wm‖s
λ + o(1).

(3.21)
Given ε > 0, there exists δ > 0 such that |g(x, u)| 6 ε|u| for all x ∈ RN and for all
|u| 6 δ; moreover, assumption (G4) is verified for all x ∈ RN and for |u| > δ with
the same value of τ but possibly for a larger value of a1. It follows from inequality
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(3.20) that ∫
|wm|6δ

|x|−b2∗(a,b)g(x,wm)wm dx

6 ε

∫
|wm|6δ

|x|−b2∗(a,b)|wm|2 dx 6
ε

λb
‖wm‖2

λ + o(1).
(3.22)

By the limits (3.17), we obtain

Φλ(wm)− 1
2
Φ′λ(wm)wm =

∫
RN

|x|−b2∗(a,b)G̃(x,wm) dx → c− Φλ(u) (3.23)

as m → +∞. Using assumption (G4), inequality (3.21) with s = 2τ/(τ − 1) and
inequalities (3.8) and (3.23), we have∫

|wm|>δ

|x|−b2∗(a,b)g(x,wm)wm dx

6
[ ∫

|wm|>δ

|x|−b2∗(a,b)
∣∣∣g(x,wm)

wm

∣∣∣τ dx
]1/τ[ ∫

|wm|>δ

|x|−b2∗(a,b)|wm|2τ ′ dx
]1/τ ′

6
[ ∫

|wm|>δ

|x|−b2∗(a,b)a1G̃(x,wm) dx
]1/τ[ ∫

|wm|>δ

|x|−b2∗(a,b)|wm|s dx
]2/s

6 a
1/τ
1

[
c− Φλ(u)

]1/τ‖wm‖2
Ls

b2∗(a,b)/s
(RN ) + o(1)

6 a
1/τ
1 M1/τ

[
d1(λb)−(p−s)/(p−2)‖wm‖s

λ

]2/s + o(1)

= d2M
1/τ (λb)θ‖wm‖2

λ + o(1)
(3.24)

where θ = 2(p − s)/(s(p − 2)) and d2 = a
1/τ
1 d

s/2
1 . Set Z := {x ∈ RN : V (x) < 0};

then Φλ(wm)wm → 0 and wm → 0 in L2(Z) as m → +∞. By inequalities (3.22)
and (3.24), we have

o(1) = ‖wm‖2
λ−

∫
RN

|x|−b2∗(a,b)g(x,wm)wm dx 6
[
1− ε

λb
− d2M

1/τ

(λb)θ

]
‖wm‖2

λ +o(1).

Finally, we take Λ = Λ(M) large enough so that 1− ε/(λb)−d2M
1/τ/(λb)θ > 0 for

λ > Λ, and we obtain wm → 0 in Eλ as m → +∞. But since wm := um − vm and
vm → u as m → +∞, it follows that um → u as m → +∞.

Now we consider the functional Ψλ. In this case the limits (3.17) and the in-
equality (3.22) are still valid. However, we have to substitute G̃ by λG̃ in inequality
(3.23) and g by λg in inequality (3.24); hence, using assumption (G4) once more
and Hölder inequality, we obtain∫

|wm|>δ

|x|−b2∗(a,b)g(x,wm)wm dx

6
[ ∫

|wm|>δ

|x|−b2∗(a,b)
∣∣∣g(x,wm)

wm

∣∣∣τ dx
]1/τ[ ∫

|wm|>δ

|x|−b2∗(a,b)|wm|2τ ′ dx
]1/τ ′

6
[ ∫

|wm|>δ

λ−1|x|−b2∗(a,b)a1G̃(x,wm) dx
]1/τ[ ∫

|wm|>δ

|x|−b2∗(a,b)|wm|s dx
]2/s

6 a
1/τ
1 λ−1/τ

[
c̃−Ψλ(u)

]1/τ‖wm‖2
Ls

b2∗(a,b)(RN ) + o(1)

6 a
1/τ
1 λ−1/τ

[
c̃−Ψλ(u)

]1/τ [
d1(λb)−(p−s)/(p−2)‖wm‖s

λ

]2/s + o(1)
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= d2λ
−1/τ (Mλ−α)1/τ (λb)−θ‖wm‖2

λ + o(1).

Using the same arguments as before, we have

o(1) = ‖wm‖2
λ −

∫
RN

λ|x|−b2∗(a,b)g(x,wm)wm dx + o(1)

6
[
1− ε

λb
− d3λ

β
]
‖wm‖2

λ + o(1),
(3.25)

where d3 := d2M
1/τ/bθ. For N > 3, we take α > 2/(2∗ − 2) and β := [2 − α(p −

2)]/(τ(p − 2)); in this way, we can choose s < p < 2∗ so that β < 0. For N = 1
or N = 2, we take p > s large enough and we still have α > 2/(p − 2) and β < 0.
Finally, the limit (3.25) is valid for all λ large enough, provided we choose ε < b;
therefore, we have wm → 0 in Eλ and um → u in Eλ as m → +∞. This concludes
the proof of the lemma. �

Lemma 3.9. There exist κ, ρ > 0 such that inf Φ((E+ ⊕ F ) ∩ Sρ) > κ.

Proof. Let 2 < p < 2∗(a, b) and consider the function h(x) = Ax2 + Bxp, whose
behavior near the origin is determined by the quadratic term. Since the first and
second terms of the functional (2.5) define a quadratic form which is positive definite
on E+ ⊕ F , and has a behavior like that of the function h just defined, then for
every ε > 0 there exists Cε > 0 such that 0 6 G(x, u) 6 ε|u|2 − Cε|u|p. Finally,
applying a standard argument we obtain the conclusion of the lemma. �

4. Proofs of the theorems

Proof of Theorem 1.1. First we consider the functional Φλ. Suppose that φj ∈
C∞

0 (Ω) have disjoint supports and let W := span{φ1, φ2, . . . , φk}. Then W ⊂ F
and, by Lemma 3.9, it holds Φλ((E+

λ ⊕ F ) ∩ Sρ) > κ where κ and ρ may depend
on λ.

Since G > 0, according to Propositions 2.2 and 2.3, and Lemma 3.8, we only have
to show that supΦλ(Êλ⊕W ) is bounded from above by a constant independent of
λ and that there exists R > 0, possibly depending on λ, such that Φλ 6 0 whenever
u ∈ Êλ ⊕W and ‖u‖λ > R.

By assumption (G2), given η > 0 there exists rη > 0 such that G(x, u) > 1
2η|u|2

if |u| > rη. Let u = v + w ∈ Êλ ⊕ W ; then, noting that suppw ⊂ intV −1(0) and
using the properties of the quadratic form aλ, we have

Φλ(u) 6
1
2
aλ(w,w)−

∫
Ω

|x|−b2∗(a,b)G(x, u) dx

=
1
2
‖∇w‖2

L2
a(Ω) −

1
2
η‖u‖2

L2
b2∗(a,b)/2(Ω)

+
∫

Ω

[1
2
η|x|−b2∗(a,b)u2 − |x|−b2∗(a,b)G(x, u)

]
dx

6
1
2
‖∇w‖2

L2
a(Ω) −

1
2
η‖u‖2

L2
b2∗(a,b)/2(Ω) + Cη,

(4.1)

where the constant Cη depends on η but does not depend on λ.
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Since w ∈ C∞
0 (Ω) and aλ(v, w) = 0, we have

‖∇w‖2
L2

a(Ω)

=
∫

Ω

|x|−2a∇w · ∇u dx =
∫

Ω

−div
[
|x|−a∇w

]
u dx

=
∫

Ω

−|x|b2
∗(a,b)/2 div

[
|x|−a∇w

]
|x|−b2∗(a,b)/2u dx

6
( ∫

Ω

|x|b2
∗(a,b)/2|div

[
|x|−a∇w

]
|2 dx

)1/2( ∫
Ω

|x|−b2∗(a,b)u2 dx
)1/2

6 C
( ∫

Ω

|div
[
|x|−a∇w

]
|2 dx

)1/2

‖u‖L2
b2∗(a,b)/2(Ω)

6 b0‖∇w‖L2
a(RN )‖u‖L2

b2∗(a,b)/2(Ω)

6
b2
0

2η
‖∇w‖2

L2
a(RN ) +

η

2
‖u‖2

L2
b2∗(a,b)/2(Ω),

(4.2)

where b0 is a constant depending on the finite-dimensional subspace W . Choosing
η > b2

0, we obtain ‖∇w‖2
L2 6 η‖u‖2

L2(Ω) and it follows from inequalities (4.2) that

Φλ 6 Cη. Using assumption (G2) again, and since Êλ ⊕W has finite dimension, it
follows that Φλ(u) 6 0 for ‖u‖λ large enough.

If λ is large enough, then the functional Φλ satisfies the Cerami (C)c-condition
for every c 6 Cη. Moreover, we have Φλ 6 0 outside a certain ball. Therefore, by
Proposition 2.2, the functional Φλ has a nontrivial critical point u.

Now we consider the functional Ψλ. We define W as in the previous case and
we have Ψλ((E+

λ ⊕ F ) ∩ Sρ) > κ, where κ and ρ may depend on λ and are given
by Lemma 3.9.

Inequality (4.1) is still valid for Ψλ if we replace G by λG; therefore, denoting
by Cη,λ a constant such that∫

Ω

(1
2

η|x|−2(a+1)|u|2 − λ|x|−b2∗(a,b)G(x, u)
)

dx 6 Cη,λ,

we have Ψλ 6 Cη,λ. To obtain the conclusion, we have to show that Cη,λ 6 Mλ−α,
where α > 2/(p − 2) was identified in Lemma 3.8. Since G > 0, setting Uλ,α :=
{x ∈ RN : |u(x)| 6 λ−α/2}, we have∫

Ω∩Uλ,α

[1
2
η|x|−2(a+1)|u|2 − λ|x|−b2∗(a,b)G(x, u)

]
dx 6 C1λ

−α

for some fixed constant C1, where η > b2
0 is fixed.

By assumptions (G1) and (G3), there exists a constant C2 > 0 such that
G(x, u) > C2|u|δ whenever |u(x)| 6 1. In this way, if λ−α/2 6 |u| 6 1, then

1
2
η|x|−2(a+1)|u|2 − λ|x|−b2∗(a,b)G(x, u)

6
1
2
η|x|−2(a+1)|u|2 − λC2|x|−b2∗(a,b)|u|δ

6
[1
2

η|x|−2(a+1) − C2|x|−b2∗(a,b)λ1−α(δ−2)/2
]
|u|2.

Since δ < 2∗, we may choose α > 2/(2∗ − 2) so that 1 − α(δ − 2)/2 > 0. Hence,
for large λ the right-hand side of the previous inequality is non-positive. It is clear
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that if |u| > 1 and λ is large, then 1
2η|x|−2(a+1)|u|2 − λ|x|−b2∗(a,b)G(x, u) 6 0. It

follows that Ψλ(u) 6 C1λ
−α. Therefore, by Proposition 2.3, the functional Ψλ has

k pairs of critical points. This concludes the proof of the theorem. �

Proof of Theorem 1.2. First we consider the functional Φλ. Given λ > 0, there
exists λ > λ such that 1 < µk(λ) < 1 + 1/λ for some k ∈ N. We set W :=
span{ek(λ)} and write u = v + w ∈ Êλ ⊕W . By the orthogonality of Êλ and W ,
we have ∫

RN

|x|−2(a+1)V −(x)|u|2 dx

=
∫

RN

|x|−2(a+1)V −(x)|v|2 dx +
∫

RN

|x|−2(a+1)V −(x)|w|2 dx.

Therefore,

Φλ(u) 6
1
2
aλ(w,w)−

∫
supp V −

|x|−b2∗(a,b)G(x, u) dx

=
1
2
λ(µk − 1)

∫
RN

|x|−2(a+1)V −(x)|w|2 dx− 1
2

η‖u‖2
L2

a+1(supp V −)

+
∫

supp V −

[1
2

η|x|−2(a+1)|u|2 − |x|−b2∗(a,b)G(x, u)
]
dx

6
1
2

∫
RN

|x|−2(a+1)V −(x)|w|2 dx

− 1
2

η

‖V −‖L∞(RN )

∫
RN

|x|−2(a+1)V −(x)|u|2 dx + Cη

6
1
2

∫
RN

|x|−2(a+1)V −(x)|w|2 dx

− 1
2

η

‖V −‖L∞(RN )

∫
RN

|x|−2(a+1)V −(x)|w|2 dx + Cη,

where the constant Cη > 0 is independent of λ and can be chosen following the
same steps as in the proof of Theorem 1.1. Choosing η > ‖V −‖L∞(RN ), we obtain
Φλ 6 Cη. If λ is large enough, then the functional Φλ verifies the Cerami (C)c-
condition for all values c 6 Cη. Following the proof of Theorem 1.1, we can prove
that outside a certain ball we have Φλ 6 0. Therefore, by Proposition 2.2 the
functional Φλ has a nontrivial critical point u.

The study of the case for the functional Ψλ follows closely the ideas for the
corresponding case in the proof of Theorem 1.1; we just have to prove that Cη,λ >
C1λ

−α whenever λ > λ for λ large enough. Therefore, by Proposition 2.3, the
functional Ψλ has k pairs of critical points. This concludes the proof of the theorem.
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