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EXISTENCE OF SOLUTIONS FOR HARDY-SOBOLEV-MAZ’YA
SYSTEMS

JIAN WANG, XIN WEI

Abstract. The main goal of this article is to investigate the existence of
solutions for the Hardy-Sobolev-Maz’ya system

−∆u− λ
u

|y|2
=
|v|pt−1

|y|t
v, in Ω,

−∆v − λ
v

|y|2
=
|u|ps−1

|y|s
u, in Ω,

u = v = 0, on ∂Ω

where 0 ∈ Ω which is a bounded, open and smooth subset of Rk × RN−k,
2 ≤ k < N . The non-existence of classical positive solutions is obtained by a
variational identity and the existence result by a linking theorem.

1. Introduction

In this article, we are concerned with the existence of nontrivial solutions for
Hardy-Sobolev-Maz’ya system

−∆u− λ
u

|y|2
=
|v|pt−1

|y|t
v, in Ω,

−∆v − λ
v

|y|2
=
|u|ps−1

|y|s
u, in Ω,

u = v = 0, on ∂Ω,

(1.1)

where 0 ∈ Ω which is an open, bounded and smooth domain of RN = Rk × RN−k

with 2 ≤ k < N . A point x ∈ RN is denoted as x = (y, z) ∈ Rk × RN−k. We also
give some assumptions for the parameters: 0 ≤ λ < (k−2)2

4 when k > 2, λ = 0 when
k = 2, 0 ≤ t, s < 2 and pt, ps > 1.

The Hardy-Sobolev-Maz’ya elliptic equation:

−∆u− λ
u

|y|2
=
|u|pt−1

|y|t
u, in Ω,

u = 0, on ∂Ω,
(1.2)
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comes from an astrophysics model with Ω = R3, λ = 0, t = 1, (see [2] for details).
The existence and regularity of the solution for problem (1.2) in bounded domain
have been studied in [3] in subcritical case, that is, pt+1 < 2N−2t

N−2 := 2∗(t), and non-
existence in super critical was obtained by Pohozaĕv identity. It is interesting to
investigate with what restrictions on pt, ps for existence solutions for system (1.1)
by more general variational identity, see [18] for details. The natural functional
corresponding to system (1.1) is

I0(u, v) =
∫

Ω

(
∇u · ∇v − λ

uv

|y|2
− 1
pt + 1

|v|pt+1

|y|t
− 1
ps + 1

|u|ps+1

|y|s
)
dx

in the space H1
0 (Ω)×H1

0 (Ω) with natural exponent region:

pt + 1 < 2∗(t) and ps + 1 < 2∗(s). (1.3)

The quadratic part of the functional I0, that is,
∫
Ω
(∇u · ∇v − λ uv

|y|2 )dx, is positive
on the infinite dimensional subspace {(u, u) ∈ H1

0 (Ω) × H1
0 (Ω)} and negative on

the infinite dimensional subspace {(u,−u) ∈ H1
0 (Ω)×H1

0 (Ω)}. The system is then
called strongly indefinite.

There were a significant amount of research on strongly indefinite elliptic systems,
see [6, 18, 10, 17]. In particular, in [6, 13], the authors did the existence solutions
for the strongly indefinite elliptic systems with the weights. They extended the
restriction of the exponent by destroying symmetry of the regularity of solution
pair, then obtained the existence results by the linking type theorem. Inspired
works in [18, 13, 3, 6], we study that the existence of infinitely many solutions for
system (1.1) with

1
pt + 1

(1− t

N
) +

1
ps + 1

(1− s

N
) >

N − 2
N

.

which contains natural exponent region (1.3). It could happen that the exponent
pt or ps is supercritical in the sense that

pt + 1 > 2∗(t) or ps + 1 > 2∗(s),

where the critical exponent 2∗(s) is from the the imbedding from Sobolev space
H1

0 (Ω) to

Lps+1
s (Ω) = {u :

∫
Ω

|u|ps+1

|y|s
dx < +∞},

which is compact if 2 ≤ ps + 1 < 2∗(s). The main point to solve the problem is to
destroy the symmetry between u and v by distributing more regularity of u than
that of v if ps ≥ pt. To this end, we define Ar := (−∆− λ

|y|2 )r/2, which a positive
operator in a fractional Sobolev space Er(Ω) := D(Ar). Then it is available to
define the functional associated with system (1.1),

I(u, v) =
∫

Ω

(
AruA2−rv − 1

pt + 1
|v|pt+1

|y|t
− 1
ps + 1

|u|ps+1

|y|s
)
dx, (1.4)

in the fractional Sobolev space E(Ω) = Er(Ω) × E2−r(Ω). The functional I has
critical points by using linking type theorem (see [12]) in fractional Sobolev spaces
E(Ω). We have then the following existence results.
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Theorem 1.1. Assume that 0 ≤ λ < (k−2)2

4 if k > 2, λ = 0 if k = 2, 0 ≤ t, s < 2
and pt, ps > 1 satisfying

1
pt + 1

(1− t

N
) +

1
ps + 1

(1− s

N
) >

N − 2
N

, (1.5)

then there are infinitely many solutions of system (1.1).
Moreover, we suppose that Ω is star-sharped with respect to the origin and as-

sumption (1.5) fails. Then system (1.1) does not have classical positive solution.

Remark 1.2. Under the assumption (1.5), we do not obtain a positive strong
solution of (1.1). Since it lacks regularity results for (1.2) from weak sense to
classical sense, then we can’t use Maximum Principle. For the regularity results,
see [3] for details.

We observe that there are not just one singular point for weight functions in
system (1.1), but a manifold {(0, z) ∈ Ω} with dimension N − k. We would like to
emphasize that the restriction hyperbola (1.5) does not depend on the dimension
number k, one reason for which is the critical exponent of imbedding from Er(Ω) ↪→
Lps+1

s (Ω) independent of k. To be more precise, 2∗(s) defined before is equal to the
critical exponent of the imbedding

H1
0 (Ω) ↪→ Lp(Ω,

1
|x|s

) :=
{
u :

∫
Ω

|u|p

|x|s
dx < +∞

}
.

This paper is organized as follows. Section §2 is devoted to study the compact
imbedding from fractional Sobolev spaces to weighted spaces. In Section §3 we prove
the existence of infinitely many solutions of (1.1). Finally, we do the nonexistence
result in Theorem 1.1 by variational identity in Section §4.

2. Compactness of fractional Sobolev space

To destroy the symmetry of regularities between u and v, it is necessary to
establish compact imbedding from fractional Sobolev spaces to the weighted spaces

Lps+1
s (Ω) = {u :

∫
Ω

|u(x)|ps+1

|y|s
dx < +∞, x = (y, z) ∈ Rk × RN−k}.

Firstly, we introduce interpolation theorem (see [13, 15]). A pair E0, E1 of Ba-
nach spaces is called an interpolation pair, if E0 and E1 are continuously imbedded
in some separated topological linear spaces B. Let A0, A1 and E0, E1 be interpo-
lation pairs, Aθ and Eθ are called interpolation spaces of exponent θ(0 < θ < 1),
with respect to A0, A1 and E0, E1 if we have the topological inclusions

A0 ∩A1 ⊂ Aθ ⊂ A0 +A1, E0 ∩ E1 ⊂ Eθ ⊂ E0 + E1,

and if each linear mapping T from a separated topological linear space A into B,
which maps Ai continuously into Ei (i = 0, 1) and maps Aθ continuously into Eθ

in such a way that
M ≤M1−θ

0 Mθ
1 ,

where M denotes the norm of T : Aθ → Eθ and Mi the norm of T : Ai → Ei(i =
0, 1).

Let E0, E1 be the interpolation pairs. It requires the following condition [13, 15]
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(H1) For each compact set K ∈ E0 there exist a constant C > 0 and D of linear
operators P : B → B, which map Ei into E0 ∩ E1(i = 0, 1) and such that

‖P‖L(Ei,Ei) ≤ C (i = 0, 1). (2.1)

Furthermore, we suppose that to each ε > 0 we can find a P ∈ D such that

‖Px− x‖E0 < ε (2.2)

for all x ∈ K.
Stronger hypothesis of (H1) is the following.

(H2) There exist a constant C > 0 and a set D of linear operators P : B → B
with P (Ei) ⊂ E0 ∩E1(i = 0, 1), such that (2.1) is satisfied and every ε > 0
and every finite set x1, . . . , xm in E0 we can find a P ∈ D so that

‖Pxk − xk‖E0 ≤ ε (k = 1, . . . ,m). (2.3)

Lemma 2.1 ([15]). Let A0, A1 and E0, E1 be interpolation pairs and suppose that
Aθ and Eθ are interpolation spaces of exponent θ(0 < θ < 1) with respect to these
pairs. Suppose further that Aθ ⊂ Aθ and E0, E1 satisfy (H1). Then, if T : A0 → E0

is compact and T : A1 → E1 is bounded, it follows that T : Aθ → Eθ is compact.

To establish suitable interpolation pairs, we define the fractional Sobolev space
Er(Ω) := D((−∆− λ

|y|2 )r/2) with 0 ≤ r ≤ 2 which is a Hilbert space endowed with
the norm ‖u‖2

Er =
∫
Ω
|Aru|2dx, induced by the inner product

〈u, v〉Er =
∫

Ω

AruArvdx,

where Ar = (−∆− λ
|y|2 )r/2.

Now we assume 0 ≤ r ≤ 2, and define the interpolation spaces

Er(Ω) = [H2(Ω) ∩H1
0 (Ω), L2(Ω)]1−r.

In fact,

−∆− λ

|y|2
: H2(Ω) ∩H1

0 (Ω) ⊂ L2(Ω) → L2(Ω)

and D(−∆ − λ
|y|2 ) = D(−∆). We have the following spaces: Es = Hs(Ω) if

0 ≤ s < 1/2; Es ⊂ Hs(Ω) if s = 1/2; Es = {u ∈ Hs(Ω) : u(x) = 0, x ∈ ∂Ω} if
1/2 < s ≤ 2, s 6= 3/2; and Es ⊂ {u ∈ Hs(Ω) : u(x) = 0, x ∈ ∂Ω} if s = 3/2. See
[12] for details.

Before using Lemma 2.1 to obtain the imbedding Er(Ω) ↪→ Lps+1
s (Ω), we first

prove some basic property of interpolation pair Lpt+1
t (Ω) and L2(Ω) as follows.

Proposition 2.2. The interpolation pair Lpt+1
t (Ω), L2(Ω) satisfies the condition

(H2).

Proof. Let f1, . . . , fm be given functions in Lpt+1
t (Ω) and we know Lpt+1

t (Ω) ↪→
L2(Ω).

Suppose ε > 0 is a given number. As the set E of all bounded measurable
functions with compact support is dense in L2(Ω), and then in Lpt+1

t (Ω), we may
assume that fj ∈ E(j = 1, . . . ,m). Let K be a compact set in Ω, outside of which
all fj vanish, and choose η > 0 such that ηmax(1, µ(K)) < ε, where µ(K) is
the Lebesgue measure of K. We may construct finite cubes {Kn := Ky

n × Kz
n ⊂
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Rk×RN−k} with µ(Kn) > 0 and K0 of measure zero such that supx,x′∈Kn
|fj(x)−

fj(x′)| < η (j = 1, . . . ,m) and the union of Kn including n = 0 covers K.
Let ϕn (n = 1, 2, . . . ) denote the characterisitic function of Kn and set

Pf :=
∑
n=1

(µ(Kn)−1

∫
Ω

fϕndx)ϕn, for all f ∈ Lpt+1
t (Ω).

We claim that (2.1) holds for operator P . Indeed, by Hölder’s inequality,∫
Ω

|Pf |pt+1

|y|t
dx

=
∑
n=1

(
µ(Kn)−1

∫
Ω

fϕndx
)pt+1

∫
Kn

ϕpt+1
n

|y|t
dx

≤
∑
n=1

[
µ(Kn)−1

( ∫
Kn

|f |pt+1

|y|t
dx

) 1
pt+1

( ∫
Kn

|y|
t

pt dx
) pt

pt+1
]pt+1

∫
Kn

1
|y|t

dx

≤
∑
n=1

[
µ(Kn)−1

∫
Kn

|y|tdx
][
µ(Kn)−1

∫
Kn

1
|y|t

dx
] ∫

Kn

|f |pt+1

|y|t
dx

=
∑
n=1

[
µ(Ky

n)−1

∫
Ky

n

|y|tdy
][
µ(Ky

n)−1

∫
Ky

n

1
|y|t

dy
] ∫

Kn

|f |pt+1

|y|t
dx

The above equality uses µ(Kn) = µ(Ky
n)µ(Kz

n) and
∫

Kn
|y|tdx = µ(Kz

n)
∫

Ky
n
|y|tdy.

So we need only prove[
µ(Ky

n)−1

∫
Ky

n

|y|tdy
][
µ(Ky

n)−1

∫
Ky

n

1
|y|t

dy
]
≤ C. (2.4)

where C > 0 is independent of n.
In fact, for µ(Ky

n) > 0, there is δn > 0 such that µ(Ky
n) = µ(Bδn

(0)), where
Bδn(0) ⊂ Rk. Since Ky

n is cube, if Ky
n ∩Bδn(0) 6= ∅, then∫

Ky
n∩Bδn

|y|tdy ≤ δt
n

∫
Bδn

dy = δt
nµ(Ky

n)

and ∫
Ky

n∩Bc
δn

|y|tdy ≤ (cδn)t

∫
Ky

n∩Bc
δn

dy ≤ ctδt
nµ(Ky

n),

where c :=
√

2µ(B1)1/k + 1 with B1 being unit ball of Rk, which imply that∫
Ky

n

|y|tdy ≤ (ct + 1)δt
nµ(Ky

n).

On the other side, there is C > 0 independent of n such that∫
Ky

n∩Bδn

|y|−tdy ≤
∫

Bδn

|y|−tdy =
C

k − t
δ−t
n µ(Ky

n)

and ∫
Ky

n∩Bc
δn

|y|−tdy ≤ δ−t
n

∫
Ky

n∩Bc
δn

dy ≤ δ−t
n µ(Ky

n),

which imply that ∫
Ky

n

|y|−tdy ≤ C + k − t

k − t
δ−t
n µ(Ky

n).
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Then we have [
µ(Ky

n)−1

∫
Ky

n

|y|tdy
][
µ(Ky

n)−1

∫
Ky

n

1
|y|t

dy
]
≤ C. (2.5)

for some C > 0 independent of n.
If Ky

n ∩Bδn(0) = ∅, then we have rn := dist(0,Ky
n) ≥ δn and∫

Ky
n

|y|tdy ≤ (rn + cδn)tµ(Ky
n),

∫
Ky

n

|y|−tdy ≤ (rn)−tµ(Ky
n),

which imply

[µ(Ky
n)−1

∫
Ky

n

|y|tdy][µ(Ky
n)−1

∫
Ky

n

1
|y|t

dy] ≤ (
rn + cδn

rn
)t ≤ (1 + c)t. (2.6)

Then (2.4) follows from (2.5) and (2.6). Thus∫
Ω

|Pf |pt+1

|y|t
dx ≤ C

∑
n=1

∫
Kn

|f |pt+1

|y|t
dx = C

∫
Ω

|f |pt+1

|y|t
dx;

that is,
‖Pf‖

L
pt+1
t (Ω)

≤ C‖f‖
L

pt+1
t (Ω)

.

Especially, setting t = 0 and pt = 1, we have (2.1). Thus the claim follows. Next,
we verify (2.3). Indeed,

Pfj(x)− fj(x) =
∑
n=1

[µ(Kn)−1

∫
Ω

fj(x′)ϕn(x′)dx′]ϕn(x)− fj(x)

=
∑
n=1

[µ(Kn)−1

∫
Ω

(fj(x′)− fj(x))ϕn(x′)dx′]ϕn(x)

and
|µ(Kn)−1

∫
Ω

(fj(x′)− fj(x))ϕn(x′)dx′| ≤ η, x ∈ Kn.

It follows that

‖Pfj − fj‖L
pt+1
t (Ω)

= ‖Pfj − fj‖L
pt+1
t (K)

≤
∑
n=1

[µ(Kn)−1

∫
Ω

(fj(x′)− fj(x))ϕn(x′)dx′]ϕn(x)

≤ η
∑
n=1

µ(Kn) = ηµ(K) < ε;

i.e., (2.3) holds. The proof is complete. �

Now we give the general imbedding theorem by the interpolation Lemma 2.1.

Theorem 2.3. The imbedding Er(Ω) ↪→ Lps+1
s (Ω) is is compact if 2 ≤ ps + 1 <

2N−2s
N−2r .

Proof. We define the interpolation space,

Lq
s(Ω) = [Lpt+1

t (Ω), L2(Ω)]1−r.

We claim next that 2 ≤ q ≤ 2N−2s
N−2r . In fact, for any u ∈ Lpt+1

t (Ω), by using Hölder’s
inequality, one obtains∫

Ω

|u|q

|y|s
dx =

∫
Ω

|u|2γ+(pt+1)(1−γ)

|y|s
dx ≤

( ∫
Ω

|u|2dx
)γ( ∫

Ω

|u|pt+1

|y|
s

1−γ
dx

)1−γ

,
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where γ = pt+1−q
pt−1 ∈ (0, 1).

Let θ = 2γ
q , then (pt+1)(1−γ)

q = 1− θ and( ∫
Ω

|u|q

|y|s
dx

) 1
q ≤ ‖u‖θ

L2(Ω)

( ∫
Ω

|u|pt+1

|y|
s

1−γ
dx

) 1−θ
pt+1

= ‖u‖θ
L2(Ω)

( ∫
Ω

|u|pt+1

|y|
2s

2−q(1−r)
dx

) 1−θ
pt+1

,

where r = 1 − θ. The critical exponent of
∫
Ω

|u|pt+1

|y|
2s

2−q(1−r)
dx is (pt + 1)∗(r) =

2(N− 2s
2−q(1−r) )

N−2 . Requiring pt + 1 ≤ (pt + 1)∗(r), we obtain

2 ≤ q ≤ 2N − 2s
N − 2r

.

Hence, the claim is true.
By Proposition 2.2, we know that interpolation pair Lpt+1

t (Ω), L2(Ω) has prop-
erty (H2). And the imbedding

H1
0 (Ω) ↪→ Lps+1

s (Ω)

is compact if 2 ≤ ps + 1 < 2∗(s). Then by Lemma 2.1, we obtain the results. �

Similarly, we have E2−r(Ω) ↪→ Lpt+1
t (Ω), if 2 ≤ pt + 1 ≤ 2N−2t

N+2r−4 . Hence we
obtain the following theorem.

Theorem 2.4. The imbedding of the fractional Sobolev space

E(Ω) = Er(Ω)× E2−r(Ω) ↪→ Lps+1
s (Ω)× Lpt+1

t (Ω)

is compact, where 2 ≤ ps + 1 < 2N−2s
N−2r , 2 ≤ pt + 1 < 2N−2t

N+2r−4 and 0 < r < 2.

Remark 2.5. If 2 ≤ ps + 1 < 2N−2s
N−2r , 2 ≤ pt + 1 < 2N−2t

N+2r−4 , where 0 < r < 2, then
(1.5) holds. Conversely, for ps, pt > 1 satisfying (1.5), then there exists r ∈ (0, 2)
such that 2 ≤ ps + 1 < 2N−2s

N−2r , 2 ≤ pt + 1 < 2N−2t
N+2r−4 .

Lemma 2.6. Suppose that Ω is an open, smooth and bounded domain and λ ∈
[0, (k − 2)2/4). Then there exists a sequence eigenvalues (µn)n and corresponding
eigenfunctions (ϕn)n of

−∆u− λ
u

|y|2
= µu,

u ∈ H1
0 (Ω)

(2.7)

such that 0 < µ1 < µ2 ≤ · · · ≤ µn · · · → +∞ as n → +∞, ‖ϕn‖H1
0 (Ω) =

µn‖ϕn‖L2(Ω), where ‖ϕn‖2
H1

0 (Ω)
=

∫
Ω
(|∇ϕn|2 − λ

ϕ2
n

|y|2 )dx.

Proof. Since λ ∈ [0, (k − 2)2/4), then the norm (
∫
Ω
|∇u|2dx)1/2 is equivalent to

[
∫
Ω
(|∇u|2 − λ u2

|y|2 )dx]2 in Hilbert space H1
0 (Ω). We observe that the operator S =

(−∆− λ
|y|2 )−1 is symmetric and compact, following the the proceeding the proof of

Theorem 2 in Chapter§6.5 in [7], we will have the results. �

We end this section with the fact that H1
0 (Ω) = spann∈N{ϕn} and the space Er

could be expressed by

Er = D(Ar) =
{
u =

+∞∑
n=1

anϕn ∈ L2(Ω) :
+∞∑
n=1

µr
na

2
n < +∞

}
.
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3. Existence of infinitely many solutions of (1.1)

In this section, we do the existence of infinitely many solutions of (1.1). We
first recall one type of linking theorem in [9] (see also [6]) that provides us with
infinitely many critical points of I. We split Hilbert space E = X⊕Y where X and
Y are both infinite dimensional subspaces. Assume there exists a sequence of finite
dimensional subspaces Xn ⊂ X, Yn ⊂ Y , En = Xn ⊕ Yn such that ∪∞n=1En = E.
Let T : E → E be a linear bounded invertible operator.

We say that the functional I satisfies the (PS)∗ condition with respect to En, if
any sequence {uj} ⊂ Enj with nj →∞ as j → +∞, such that

|I(uj)| → c and I|′Enj
(uj) → 0

possesses a subsequence converging in E.
Let Sρ = {y ∈ Y, ‖y‖E = ρ}, fix y1 ∈ Y with ‖y1‖E = 1 and subspaces Z1, Z2

such that
X ⊕ span{y1} = Z1 ⊕ Z2 and y1 ∈ Z2.

We next define, for M,σ > 0,

D = DM,σ = {x1 + x2 ∈ Z1 ⊕ Z2, ‖x1‖E ≤M, ‖x2‖E ≤ σ}.
The following linking theorem is used to prove the existence result for system (1.1).

Theorem 3.1 ([9]). Suppose that I ∈ C1(E,R) be an even functional. We assume
that:

(L1) I satisfies (PS)∗ condition with respect to En,
(L2) T : En → En, for n large, and σ, ρ > 0 satisfy σ‖Ty1‖E > ρ,
(L3) There are constants α ≤ β such that

inf
Sρ∩En

I ≥ α, sup
T (∂D∩En)

I < α and sup
T (D∩En)

I ≤ β

for all n large.
Then I has a critical value c ∈ [α, β].

To apply Theorem 3.1 for solving our problem, we recall that the functional I is
defined in (1.4) in E(Ω), which is a product Hilbert space defined by

E(Ω) = Er(Ω)× E2−r(Ω), 0 < r < 2,

with the norm

‖u‖2
E =

∫
Ω

|Aru|2 + |A2−rv|2dx = ‖u‖2
Er + ‖v‖2

E2−r , u = (u, v) ∈ E(Ω),

which is induced by inner product

〈u,w〉E = 〈u, ϕ〉Er + 〈v, ψ〉E2−r ,

where u = (u, v) ∈ E(Ω) and w = (ϕ,ψ) ∈ E(Ω).
We define E+ := {(u,Ar−2Aru)| u ∈ Er} and E− := {(u,−Ar−2Aru)| u ∈ Er},

then E has orthogonal decomposition:

E(Ω) = E+ ⊕ E− = {u = u+ + u−,u± ∈ E±}.
Let

En = span{ϕ1, . . . , ϕn} × span{ϕ1, . . . , ϕn}.
We first prove that I satisfies the (PS)∗ condition with respect to En.
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Lemma 3.2. The functional I satisfies (PS)∗ condition with respect to En.

Proof. Suppose {uj} ⊂ Enj
be a sequence such that

I(uj) → c, I|′Enj
(uj) → 0.

We claim that (uj) is bounded in E. Taking w = uj , we obtain for a sequence
positive numbers εj → 0 as j → +∞

C + εj‖uj‖E ≥ I(uj)−
1
2
〈I ′(uj),uj〉

=
∫

Ω

[
(
1
2
− 1
pt + 1

)
|vj |pt+1

|y|t
+ (

1
2
− 1
ps + 1

)
|uj |ps+1

|y|s
]
dx.

Then we have ∫
Ω

|vj |pt+1

|y|t
dx+

∫
Ω

|uj |ps+1

|y|s
dx ≤ C + εj‖uj‖E .

Noting uj = u+
j + u−j , u±j = (u±j , v

±
j ), we have

‖u±j ‖
2
E − εj‖u±j ‖E ≤ |

∫
Ω

(
|vj |pt−1

|y|t
vjv

±
j +

|uj |ps−1

|y|s
uju

±
j )dx|.

By Hölder’s inequality,

|
∫

Ω

|vj |pt−1

|y|t
vjv

±
j dx| ≤ (

∫
Ω

|vj |pt+1

|y|t
dx)

pt
pt+1 (

∫
Ω

|v±j |pt+1

|y|t
dx)

1
pt+1

≤ (
∫

Ω

|vj |pt+1

|y|t
dx)

pt
pt+1 ‖v±j ‖E2−r

≤ (
∫

Ω

|vj |pt+1

|y|t
dx)

pt
pt+1 ‖u±j ‖E .

Similarly, we have

|
∫

Ω

|uj |ps−1

|y|s
uju

±
j dx| ≤ (

∫
Ω

|uj |ps+1

|y|s
dx)

ps
ps+1 ‖u±j ‖Er

≤ (
∫

Ω

|uj |ps+1

|y|s
dx)

ps
ps+1 ‖u±j ‖E .

Then we obtain

‖u±j ‖E − εj ≤ (
∫

Ω

|vj |pt+1

|y|t
dx)

pt
pt+1 + (

∫
Ω

|uj |ps+1

|y|s
dx)

ps
ps+1

≤ (C + εj‖uj‖E)
pt

pt+1 + (C + εj‖uj‖E)
ps

ps+1 ,

which yields ‖uj‖E ≤ C uniformly in j.
By Theorem 2.3, uj and vj have subsequences which converge strongly in Lps+1

s

and Lpt+1
t , respectively. Then we obtain uj = (uj , vj) possesses a subsequence

converging in a standard way. Hence I satisfies (PS)∗ condition with respect to
En. �

Now fix j, and we split En into Xn ⊕ Yn, where Xn = (E−1 ⊕ · · · ⊕ E−n ) ⊕
(E+

1 ⊕ · · · ⊕ E+
j−1) and Yn = E+

j ⊕ · · · ⊕ E+
n with E+

i = span{(ϕi, A
r−2Arϕi)},

E−i = span{(ϕi,−Ar−2Arϕi)}. Next we define, for u = (u, v) ∈ E
Tσ(u) = (σµ−1u, σν−1v), (3.1)
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where µ, ν > 1 will be chosen latter. By (3.1), (L2) holds for T and y1 =
(ϕj , A

r−2Arϕj).
In what follows, we prove (L3) under our assumptions above.

Lemma 3.3. There exist αj > 0 and ρj > 0 independent of n such that for all
n ≥ j

inf
Sρj

∩Yn

I ≥ αj ,

where Y = E+
j ⊕· · ·⊕E+

n ⊕. . . and Sρj = {y ∈ Y, ‖y‖E = ρj}. Moreover, αj → +∞
as j → +∞.

Proof. For u = (u, v) ∈ Y , we have

‖u‖2
Er ≥ µ

min{r,2−r}
j ‖u‖2

L2 and ‖v‖2
E2−r ≥ µ

min{r,2−r}
j ‖v‖2

L2 .

By Theorem 2.3 and Hölder inequality, we have that

‖u‖ps+1

Lps+1
s

≤ ‖u‖2κ
L2‖u‖ps+1−2κ

L
ps+1−2κ

1−κ
s

1−κ

≤ C

µ
min{r,2−r}κ
j

‖u‖ps+1
Er ≤ C

µ
min{r,2−r}κ
j

‖u‖ps+1
E

and
‖v‖

L
pt+1
t

≤ C

µ
min{r,2−r}κ̄
j

‖v‖pt+1
E2−r ≤

C

µ
min{r,2−r}κ̄
j

‖u‖pt+1
E

for some constants κ, κ̄ ∈ (0, 1) such that

Er ↪→ L
ps+1−2κ

1−κ
s

1−κ
(Ω) and E2−r ↪→ L

pt+1−2κ̄
1−κ̄

t
1−κ̄

(Ω)

are continuous, and C > 0 independent of n. Then we have that for u = (u, v) ∈ Y ,

I(u) =
∫

Ω

(|Aru|2 − 1
pt + 1

|v|pt+1

|y|t
− 1
ps + 1

|u|ps+1

|y|s
)dx

≥ 1
2
‖u‖2

E − C

µ
min{r,2−r}min{κ,κ̄}
j

(‖u‖ps+1
E + ‖u‖pt+1

E ).

By choosing 2ρmax{ps+1,pt+1}
j = µ

min{r,2−r}min{κ,κ̄}
j , we have for u ∈ Sρj ∩ Yn

I(u) ≥ 1
2
ρ2

j − C =: αj ,

and we finished the proof. �

Lemma 3.4. There exist βj ≥ αj, Mj > 0 and σj > ρj independent of n such that
for all n ≥ j

sup
Tσj

(∂D∩En)

I < αj and sup
Tσj

(D∩En)

I ≤ βj ,

where
D = {u ∈ E− ⊕ E+

1 ⊕ · · · ⊕ E+
j , ‖u

−‖E ≤Mj , ‖u+‖E ≤ σj}.

Proof. Let z = Tσj (u) with u ∈ D. Then we can write

z = (σµ−1
j u+, σν−1

j Ar−2Aru+) + (σµ−1
j u−,−σν−1

j Ar−2Aru−),

where µ, ν > 1 will be chosen latter, u+ and u− can be written as

u+ =
j∑

i=1

θiϕi and u− =
j∑

i=1

γiϕi + ũ−
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where ũ− is orthogonal to ϕi, i = 1, . . . , j in L2(Ω). Using Holder’s inequality and
the equivalence of all the norms in finite dimensional space, we get

j∑
i=1

µ2r−2
i (θ2i + θiγi) = 〈u+ + u−, Ar−2Aru+〉 ≤ Cj‖u+ + u−‖Lps+1

s
‖u+‖L2 (3.2)

and
j∑

i=1

µ2r−2
i (θ2i − θiγi) = 〈v+ + v−, Ar−2Arv+〉 ≤ Cj‖v+ + v−‖

L
pt+1
t

‖u+‖L2 . (3.3)

If
∑j

i=1 θiγi ≥ 0, then (3.2) implies

‖u+‖L2 ≤ Cj‖u+ + u−‖Lps+1
s

= Cj‖u‖Lps+1
s

,

otherwise, (3.3) implies

‖u+‖L2 ≤ Cj‖v+ + v−‖
L

pt+1
t

= Cj‖v‖L
pt+1
t

.

Hence,

I(u) ≤ 1
2
σµ+ν−2

j (‖u+‖2
E − ‖u−‖2

E)− Cjσ
(ps+1)(µ−1)
j ‖u+‖ps+1

L2

or
I(u) ≤ 1

2
σµ+ν−2

j (‖u+‖2
E − ‖u−‖2

E)− Cjσ
(pt+1)(ν−1)
j ‖u+‖pt+1

L2 .

Thus we may choose ‖u+‖E = σj large enough in order to obtain σk > ρk and it is
possible to choose µ, ν > 1 such that (pt +1)(µ−1) > µ+ν−2 and (ps +1)(ν−1) >
µ+ ν − 2 if

1
pt + 1

+
1

ps + 1
< 1,

pt, ps > 1 makes sure that the estimate above holds. Then, I(u) ≤ 0.
Taking ‖u+‖E ≤ σj and ‖u−‖E = Mj , we obtain

I(z) ≤ σµ+ν−2
j (σ2

j −M2
j ) ≤ 0

if Mj ≥ σj .
Then we choose βj large so that the second inequality holds. �

Proof of existence of infinitely many solutions in Theorem 1.1. Combining
Lemma 3.2, Lemma 3.3 with Lemma 3.4, I satisfies the conditions (L1)–(L3). By
Theorem 3.1, I has a sequence of critical values in [αj , βj ] and αj → +∞ as
j → +∞, then there exist a sequence critical points of I, which are infinite many
solutions of (1.1). We finish the proof.

4. Nonexistence result

In this section, we show the nonexistence of solution in Theorem 1.1. To obtain
this nonexistence result, we introduce some lemmas.

Assume that the Euler-Lagrange equations are

div(
∂L

∂pk
i

)− ∂L

∂uk
= 0, k = 1, . . . , s. (4.1)

i = 1, . . . , N ; where u = (uk), p = (pk
i ), pk

i = ∂uk

∂xi , and Ω is a bounded and smooth
domain in RN . We have the following result.
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Lemma 4.1 ([18]). Let L ∈ C1(Ω×Rs ×RN×s) and u = (u1, . . . , us) : Ω → Rs be
a solution of (4.1) with uk ∈ C2(Ω). Let akl, h

i ∈ C1(Ω). Then

div(hiL− hj ∂uk

∂xj

∂L

∂pk
i

− aklul
∂L

∂pk
i

)

=
∂hi

∂xi
L+ hi ∂L

∂xi
− (

∂uk

∂xj

∂hj

∂xi
+ ul

∂akl

∂xi
)
∂L

∂pk
i

− akl(
∂ul

∂xi

∂L

∂pk
i

+ ul
∂L

∂uk
), in Ω.

(4.2)
Furthermore,∮

∂Ω

((hiL− hj ∂uk

∂xj

∂L

∂pk
i

− aklul
∂L

∂pk
i

), n)ds

=
∫

Ω

(
∂hi

∂xi
L+ hi ∂L

∂xi
− (

∂uk

∂xj

∂hj

∂xi
+ ul

∂akl

∂xi
)
∂L

∂pk
i

− akl(
∂ul

∂xi

∂L

∂pk
i

+ ul
∂L

∂uk
))dx,

(4.3)
where n is the outward normal on ∂Ω.

By choosing suitable functions in the above lemma, we obtain the following
result.

Lemma 4.2. Let (u, v) ∈ (C2(Ω) ∩ C1(Ω))2 be a solution of problem (1.1). Then
u and v satisfy the identity∮

∂Ω

(∇u · ∇v)(x, n)ds =
∫

Ω

{(2 + a11 + a22 −N)(∇u · ∇v − λuv

|y|2
)

+ (
N − t

pt + 1
− a22)

|v|pt+1

|y|t
+ (

N − s

ps + 1
− a11)

|u|ps+1

|y|s
}dx,

(4.4)

where a11 and a22 are constants to be chosen latter.

Proof. For our system (1.1), we define

L = ΣN
i=1p

1
i p

2
i − λ

uv

|y|2
− 1
pt + 1

|v|pt+1

|y|t
− 1
ps + 1

|u|ps+1

|y|s
, (4.5)

where p1
i = ∂u

∂xi , p
2
i = ∂v

∂xi , xi = yi if i ≤ k and (u, v) is a classical solution of
system (1.1).

We give explicitly the values of parameters for using Lemma 4.1: k = 1, 2,
a11(x) = a11, a22(x) = a22, a12(x) = a21(x) = 0 and hi(x) = xi where i = 1, . . . , N .
For the purpose of deleting the singularity of L at the domain U = {x = (y, z) ∈
Ω : y = 0}, assume that Nδ(U) = {x ∈ Ω : dist(x,U) ≤ δ} and Ωδ = Ω \ Nδ(U),
where δ > 0. And we have ∂Ωδ = (∂Ω \ ∂Nδ(U)) ∪ (∂Nδ(U) \ ∂Ω).

Since u(x) = v(x) = 0, x ∈ ∂Ω, we have

xj ∂u

∂xj

∂v

∂xi
ni =

∂u

∂xi

∂v

∂xi
xjnj ,

which follows from ∂u
∂xi = ∂u

∂nni, ∂v
∂xi = ∂v

∂nni. Then the left-hand side of (4.3) is∮
∂Nδ(U)\∂Ω

(∇u · ∇v − λ
uv

|y|2
− 1
pt + 1

|v|pt+1

|y|t
− 1
ps + 1

|u|ps+1

|y|s
)(x, n)ds

−
∮

∂Nδ(U)\∂Ω

((ΣN
j=1x

j ∂u

∂xj

∂v

∂xi
+ ΣN

j=1x
j ∂v

∂xj

∂u

∂xi
+ a11u

∂v

∂xi
+ a22v

∂u

∂xi
), n)ds
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−
∮

∂Ω\∂Nδ(U)

(∇u · ∇v)(x, n)ds.

We claim that the first two terms in the quantity above go to zero as δ → 0.
In fact, |∇u|, |∇v|, u and v are bounded and limδ→0 |∂Nδ(U) \ ∂Ω| = 0, we have
the first two terms go to zero. For the third term, since limδ→0 ∂Ω \ ∂Nδ(U) =
∂Ω \ {(0, z) ∈ ∂Ω} and |∂Ω \ {(0, z) ∈ ∂Ω}| = |∂Ω|, we obtain that this term tends
to

−
∮

∂Ω

(∇u · ∇v)(x, n)ds.

Hence, the left hand of (4.3) tends to

−
∮

∂Ω

(∇u · ∇v)(x, n)ds.

In the following, we do estimate the right hand side of (4.3). After calculating,
the right hand side of (4.3) with integrate domain being Ωδ,∫

Ωδ

{
(N − 2− a11 − a22)(∇u · ∇v −

λuv

|y|2
)− (

N − t

pt + 1
− a22)

|v|pt+1

|y|t

− (
N − s

ps + 1
− a11)

|u|ps+1

|y|s
}dx.

Since limδ→0+ Ωδ = Ω \ U and |Ω \ U | = |Ω|, the right-hand side of (4.3) tends to∫
Ω

{(N − 2− a11 − a22)(∇u · ∇v −
λuv

|y|2
)− (

N − t

pt + 1
− a22)

|v|pt+1

|y|t

− (
N − s

ps + 1
− a11)

|u|ps+1

|y|s
}dx.

Thus, using the Lemma 4.1, this yields (4.4). �

Now we use Lemma 4.2 to obtain the following nonexistence result.

Theorem 4.3. Suppose that Ω is star-sharped with respect to the origin. Let 0 ≤
λ < (k−2)2

4 if k > 2, λ = 0 if k = 2, 0 ≤ t, s < 2 and pt, ps > 1 satisfying

1
pt + 1

(1− t

N
) +

1
ps + 1

(1− s

N
) ≤ N − 2

N
. (4.6)

Then system (1.1) does not have any classical positive solution.

Proof. Suppose (u, v) is classical positive solution of system (1.1), then u(x) =
v(x) = 0, x ∈ ∂Ω. Since Ω is star-shaped with respect to the origin, then (x0, n) ≥ 0
for all x0 ∈ ∂Ω and (x0, n) > 0 on some subset of ∂Ω of positive measure (see [16]).
And applying Hopf’s Lemma (see [7]), we have

∂u

∂n
(x0) = (∇u, n)|x=x0 < 0,

∂v

∂n
(x0) = (∇v, n)|x=x0 < 0,

and ∂u
∂xi = ∂u

∂nni, ∂v
∂xi = ∂v

∂nni when x ∈ ∂Ω, which implies

(∇u · ∇v)|x=x0 =
∂u

∂n

∂v

∂n
|x=x0 > 0.

Then the left-hand side of (4.4) in Lemma 4.2 is∮
∂Ω

(∇u · ∇v)(x, n)ds > 0,
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and now by choosing a11 = N − 2− N−t
pt+1 , a22 = N−t

pt+1 in (4.4), it yields∫
Ω

[
N − s

ps + 1
− (N − 2− N − t

pt + 1
)]
|u|ps+1

|y|s
dx > 0.

Therefore, we obtain ps, pt satisfy the formulation
N − s

ps + 1
− (N − 2− N − t

pt + 1
) > 0,

which contradicts (4.6). This complete the proof of Theorem 4.3. �
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