Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 118, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

MULTIPLE POSITIVE SOLUTIONS FOR A THIRD-ORDER THREE-POINT BVP WITH SIGN-CHANGING GREEN'S FUNCTION

JIAN-PING SUN, JUAN ZHAO

$$
\begin{aligned}
& \text { Abstract. This article concerns the third-order three-point boundary-value } \\
& \text { problem } \\
& \qquad u^{\prime \prime \prime}(t)=f(t, u(t)), \quad t \in[0,1] \\
& \qquad u^{\prime}(0)=u(1)=u^{\prime \prime}(\eta)=0 \\
& \text { Although the corresponding Green's function is sign-changing, we still obtain } \\
& \text { the existence of at least } 2 m-1 \text { positive solutions for arbitrary positive integer } \\
& m \text { under suitable conditions on } f .
\end{aligned}
$$

1. Introduction

Third-order differential equations arise from a variety of areas of applied mathematics and physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer beam, electromagnetic waves or gravity driven flows and so on [5].

Recently, the existence of single or multiple positive solutions to some thirdorder three-point boundary-value problems (BVPs for short) has received much attention from many authors. For example, in 1998, by using the Leggett-Williams fixed point theorem, Anderson [2] proved the existence of at least three positive solutions to the problem

$$
\begin{gathered}
-x^{\prime \prime \prime}(t)+f(x(t))=0, \quad t \in[0,1], \\
x(0)=x^{\prime}\left(t_{2}\right)=x^{\prime \prime}(1)=0,
\end{gathered}
$$

where $t_{2} \in\left[\frac{1}{2}, 1\right)$. In 2003, Anderson [1] obtained some existence results of positive solutions for the problem

$$
\begin{gathered}
x^{\prime \prime \prime}(t)=f(t, x(t)), \quad t_{1} \leq t \leq t_{3} \\
x\left(t_{1}\right)=x^{\prime}\left(t_{2}\right)=0, \quad \gamma x\left(t_{3}\right)+\delta x^{\prime \prime}\left(t_{3}\right)=0
\end{gathered}
$$

The main tools used were the Guo-Krasnosel'skii and Leggett-Williams fixed point theorems. In 2005, Sun [13] studied the existence of single and multiple positive

[^0]solutions for the singular BVP
\[

$$
\begin{gathered}
u^{\prime \prime \prime}(t)-\lambda a(t) F(t, u(t))=0, \quad t \in(0,1), \\
u(0)=u^{\prime}(\eta)=u^{\prime \prime}(1)=0
\end{gathered}
$$
\]

where $\eta \in\left[\frac{1}{2}, 1\right), \lambda$ was a positive parameter and $a(t)$ was a nonnegative continuous function defined on $(0,1)$. His main tool was the Guo-Krasnosel'skii fixed point theorem. In 2008, by using the Guo-Krasnosel'skii fixed point theorem, Guo, Sun and Zhao [6] obtained the existence of at least one positive solution for the problem

$$
\begin{gathered}
u^{\prime \prime \prime}(t)+h(t) f(u(t))=0, \quad t \in(0,1) \\
u(0)=u^{\prime}(0)=0, \quad u^{\prime}(1)=\alpha u^{\prime}(\eta)
\end{gathered}
$$

where $0<\eta<1$ and $1<\alpha<1 / \eta$. For more results concerning the existence of positive solutions to third-order three-point BVPs, one can refer to [3, 4, 9, 10, 12, 14.

It is necessary to point out that all the above-mentioned works are achieved when the corresponding Green's functions are positive, which is a very important condition. A natural question is that whether we can obtain the existence of positive solutions to some third-order three-point BVPs when the corresponding Green's functions are sign-changing. It is worth mentioning that Palamides and Smyrlis [8] discussed the existence of at least one positive solution to the singular third-order three-point BVP with an indefinitely signed Green's function

$$
\begin{array}{cl}
u^{\prime \prime \prime}(t)=a(t) f(t, u(t)), & t \in(0,1), \\
u(0)=u(1)=u^{\prime \prime}(\eta)=0, & \eta \in\left(\frac{17}{24}, 1\right)
\end{array}
$$

Their technique was a combination of the Guo-Krasnosel'skii fixed point theorem and properties of the corresponding vector field. The following equality

$$
\begin{equation*}
\max _{t \in[0,1]} \int_{0}^{1} G(t, s) a(s) f(s, u(s)) d s=\int_{0}^{1} \max _{t \in[0,1]} G(t, s) a(s) f(s, u(s)) d s \tag{1.1}
\end{equation*}
$$

played an important role in the process of their proof. Unfortunately, the equality (1.1) is not right. For a counterexample, one can refer to our paper [11].

Motivated greatly by the above-mentioned works, in this paper we study the following third-order three-point BVP

$$
\begin{gather*}
u^{\prime \prime \prime}(t)=f(t, u(t)), \quad t \in[0,1] \\
u^{\prime}(0)=u(1)=u^{\prime \prime}(\eta)=0 \tag{1.2}
\end{gather*}
$$

where $f \in C([0,1] \times[0,+\infty),[0,+\infty))$ and $\eta \in\left(\frac{1}{2}, 1\right)$. Although the corresponding Green's function is sign-changing, we still obtain the existence of at least $2 m-1$ positive solutions for arbitrary positive integer m under suitable conditions on f.

In the remainder of this section, we state some fundamental concepts and the Leggett-Williams fixed point theorem [7].

Let E be a real Banach space with cone P. A map $\sigma: P \rightarrow(-\infty,+\infty)$ is said to be a concave functional if

$$
\sigma(t x+(1-t) y) \geq t \sigma(x)+(1-t) \sigma(y)
$$

for all $x, y \in P$ and $t \in[0,1]$. Let a and b be two numbers with $0<a<b$ and σ be a nonnegative continuous concave functional on P. We define the following convex
sets

$$
\begin{gathered}
P_{a}=\{x \in P:\|x\|<a\} \\
P(\sigma, a, b)=\{x \in P: a \leq \sigma(x),\|x\| \leq b\}
\end{gathered}
$$

Theorem 1.1 (Leggett-Williams fixed point theorem). Let $A: \overline{P_{c}} \rightarrow \overline{P_{c}}$ be completely continuous and σ be a nonnegative continuous concave functional on P such that $\sigma(x) \leq\|x\|$ for all $x \in \overline{P_{c}}$. Suppose that there exist $0<d<a<b \leq c$ such that
(i) $\{x \in P(\sigma, a, b): \sigma(x)>a\} \neq \emptyset$ and $\sigma(A x)>a$ for $x \in P(\sigma, a, b)$;
(ii) $\|A x\|<d$ for $\|x\| \leq d$;
(iii) $\sigma(A x)>a$ for $x \in P(\sigma, a, c)$ with $\|A x\|>b$.

Then A has at least three fixed points x_{1}, x_{2}, x_{3} in $\overline{P_{c}}$ satisfying

$$
\left\|x_{1}\right\|<d, a<\sigma\left(x_{2}\right),\left\|x_{3}\right\|>d, \sigma\left(x_{3}\right)<a
$$

2. Preliminaries

In this article, we assume that Banach space $E=C[0,1]$ is equipped with the norm $\|u\|=\max _{t \in[0,1]}|u(t)|$.

For any $y \in E$, we consider the BVP

$$
\begin{gather*}
u^{\prime \prime \prime}(t)=y(t), \quad t \in[0,1], \\
u^{\prime}(0)=u(1)=u^{\prime \prime}(\eta)=0 \tag{2.1}
\end{gather*}
$$

After a simple computation, we obtain the following expression of Green's function $G(t, s)$ of the BVP 2.1): for $s \geq \eta$,

$$
G(t, s)= \begin{cases}-\frac{(1-s)^{2}}{2}, & 0 \leq t \leq s \leq 1 \\ \frac{t^{2}-2 s t+2 s-1}{2}, & 0 \leq s \leq t \leq 1\end{cases}
$$

and for $s<\eta$,

$$
G(t, s)= \begin{cases}\frac{-t^{2}-s^{2}+2 s}{2}, & 0 \leq t \leq s \leq 1 \\ -s t+s, & 0 \leq s \leq t \leq 1\end{cases}
$$

Obviously, $G(t, s) \geq 0$ for $0 \leq s<\eta$, and $G(t, s) \leq 0$ for $\eta \leq s \leq 1$. Moreover, for $s \geq \eta$,

$$
\max \{G(t, s): t \in[0,1]\}=G(1, s)=0
$$

and for $s<\eta$,

$$
\max \{G(t, s): t \in[0,1]\}=G(0, s)=-\frac{s^{2}}{2}+s
$$

To obtain the existence of positive solutions for 1.2 , we need to construct a suitable cone in E. Let u be a solution of 1.2 . Then it is easy to verify that $u(t) \geq 0$ for $t \in[0,1]$ provided that $u^{\prime}(1) \leq 0$. In fact, since f is nonnegative, we know that $u^{\prime \prime \prime}(t) \geq 0$ for $t \in[0,1]$, which together with $u^{\prime \prime}(\eta)=0$ implies that

$$
\begin{equation*}
u^{\prime \prime}(t) \leq 0 \text { for } t \in[0, \eta] \quad \text { and } \quad u^{\prime \prime}(t) \geq 0 \text { for } t \in[\eta, 1] \tag{2.2}
\end{equation*}
$$

In view of 2.2 and $u^{\prime}(0)=0$, we have

$$
\begin{equation*}
u^{\prime}(t) \leq 0 \text { for } t \in[0, \eta] \quad \text { and } \quad u^{\prime}(t) \leq u^{\prime}(1) \text { for } t \in[\eta, 1] \tag{2.3}
\end{equation*}
$$

If $u^{\prime}(1) \leq 0$, then it follows from 2.3 that $u^{\prime}(t) \leq 0$ for $t \in[0,1]$, which together with $u(1)=0$ implies that $u(t) \geq 0$ for $t \in[0,1]$. Therefore, we define a cone in E as follows:

$$
\hat{P}=\{y \in E: y(t) \text { is nonnegative and decreasing on }[0,1]\}
$$

Lemma 2.1 (11]). Let $y \in \hat{P}$ and $u(t)=\int_{0}^{1} G(t, s) y(s) d s, t \in[0,1]$. Then $u \in \hat{P}$ and u is the unique solution of 2.1). Moreover, u satisfies

$$
\min _{t \in[1-\theta, \theta]} u(t) \geq \theta^{*}\|u\|
$$

where $\theta \in\left(\frac{1}{2}, \eta\right)$ and $\theta^{*}=(\eta-\theta) / \eta$.

3. Main Results

In the remainder of this paper, we assume that $f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous and satisfies the following two conditions:
(D1) For each $x \in[0,+\infty)$, the mapping $t \mapsto f(t, x)$ is decreasing;
(D2) For each $t \in[0,1]$, the mapping $x \mapsto f(t, x)$ is increasing.
Let

$$
P=\left\{u \in \hat{P}: \min _{t \in[1-\theta, \theta]} u(t) \geq \theta^{*}\|u\|\right\}
$$

Then it is easy to check that P is a cone in E. Now, we define an operator A on P by

$$
(A u)(t)=\int_{0}^{1} G(t, s) f(s, u(s)) d s, \quad t \in[0,1]
$$

Obviously, if u is a fixed point of A in P, then u is a nonnegative solution of 1.2 . For convenience, we denote

$$
H_{1}=\int_{0}^{\eta}\left(-\frac{s^{2}}{2}+s\right) d s, \quad H_{2}=\min _{t \in[1-\theta, \theta]} \int_{1-\theta}^{\theta} G(t, s) d s
$$

Theorem 3.1. Assume that there exist numbers d, a and c with $0<d<a<\frac{a}{\theta^{*}} \leq c$ such that

$$
\begin{gather*}
f(t, u)<\frac{d}{H_{1}}, \quad t \in[0, \eta], u \in[0, d] \tag{3.1}\\
f(t, u)>\frac{a}{H_{2}}, \quad t \in[1-\theta, \theta], u \in\left[a, \frac{a}{\theta^{*}}\right] \tag{3.2}\\
f(t, u)<\frac{c}{H_{1}}, \quad t \in[0, \eta], u \in[0, c] . \tag{3.3}
\end{gather*}
$$

Then 1.2) has at least three positive solutions u, v and w satisfying

$$
\|u\|<d, \quad a<\min _{t \in[1-\theta, \theta]} v(t), \quad d<\|w\|, \quad \min _{t \in[1-\theta, \theta]} w(t)<a .
$$

Proof. For $u \in P$, we define

$$
\sigma(u)=\min _{t \in[1-\theta, \theta]} u(t) .
$$

It is easy to check that σ is a nonnegative continuous concave functional on P with $\sigma(u) \leq\|u\|$ for $u \in P$ and that $A: P \rightarrow P$ is completely continuous.

We first assert that if there exists a positive number r such that $f(t, u)<\frac{r}{H_{1}}$ for $t \in[0, \eta]$ and $u \in[0, r]$, then $A: \overline{P_{r}} \rightarrow P_{r}$. Indeed, if $u \in \overline{P_{r}}$, then

$$
\begin{aligned}
\|A u\| & =\max _{t \in[0,1]} \int_{0}^{1} G(t, s) f(s, u(s)) d s \\
& \leq \int_{0}^{1} \max _{t \in[0,1]} G(t, s) f(s, u(s)) d s \\
& =\int_{0}^{\eta} \max _{t \in[0,1]} G(t, s) f(s, u(s)) d s+\int_{\eta}^{1} \max _{t \in[0,1]} G(t, s) f(s, u(s)) d s \\
& =\int_{0}^{\eta}\left(-\frac{s^{2}}{2}+s\right) f(s, u(s)) d s \\
& <\frac{r}{H_{1}} \int_{0}^{\eta}\left(-\frac{s^{2}}{2}+s\right) d s=r
\end{aligned}
$$

that is, $A u \in P_{r}$.
Hence, we have shown that if 3.1 and 3.3 hold, then A maps $\overline{P_{d}}$ into P_{d} and $\overline{P_{c}}$ into ${ }_{c}$.

Next, we assert that $\left\{u \in P\left(\sigma, a, \frac{a}{\theta^{*}}\right): \sigma(u)>a\right\} \neq \emptyset$ and $\sigma(A u)>a$ for all $u \in P\left(\sigma, a, \frac{a}{\theta^{*}}\right)$. In fact, the constant function $\frac{a+\frac{a}{\theta^{*}}}{2}$ belongs to $\left\{u \in P\left(\sigma, a, \frac{a}{\theta^{*}}\right)\right.$: $\sigma(u)>a\}$.

On the one hand, for $u \in P\left(\sigma, a, \frac{a}{\theta^{*}}\right)$, we have

$$
\begin{equation*}
a \leq \sigma(u)=\min _{t \in[1-\theta, \theta]} u(t) \leq u(t) \leq\|u\| \leq \frac{a}{\theta^{*}} \tag{3.4}
\end{equation*}
$$

for all $t \in[1-\theta, \theta]$.
Also, for any $u \in P$ and $t \in[1-\theta, \theta]$, we have

$$
\begin{aligned}
& \int_{0}^{1-\theta} G(t, s) f(s, u(s)) d s+\int_{\theta}^{\eta} G(t, s) f(s, u(s)) d s+\int_{\eta}^{1} G(t, s) f(s, u(s)) d s \\
& \geq \int_{0}^{1-\theta}(1-t) s f(s, u(s)) d s-\int_{\eta}^{1} \frac{(1-s)^{2}}{2} f(s, u(s)) d s \\
& \geq f(\eta, u(\eta))\left[\int_{0}^{1-\theta}(1-t) s d s-\int_{\eta}^{1} \frac{(1-s)^{2}}{2} d s\right] \\
& \geq f(\eta, u(\eta))\left[\int_{0}^{1-\theta}(1-t) s d s-\int_{\theta}^{1} \frac{(1-s)^{2}}{2} d s\right] \\
& =f(\eta, u(\eta))\left[\frac{(1-t)(1-\theta)^{2}}{2}-\frac{(1-\theta)^{3}}{6}\right] \\
& \geq f(\eta, u(\eta))\left[\frac{(1-\theta)(1-\theta)^{2}}{2}-\frac{(1-\theta)^{3}}{6}\right] \\
& =f(\eta, u(\eta)) \frac{(1-\theta)^{3}}{3} \geq 0
\end{aligned}
$$

which together with (3.2) and (3.4) implies

$$
\sigma(A u)=\min _{t \in[1-\theta, \theta]} \int_{0}^{1} G(t, s) f(s, u(s)) d s
$$

$$
\begin{aligned}
& \geq \min _{t \in[1-\theta, \theta]} \int_{1-\theta}^{\theta} G(t, s) f(s, u(s)) d s \\
& >\frac{a}{H_{2}} \min _{t \in[1-\theta, \theta]} \int_{1-\theta}^{\theta} G(t, s) d s=a
\end{aligned}
$$

for $u \in P\left(\sigma, a, \frac{a}{\theta^{*}}\right)$.
Finally, we verify that if $u \in P(\sigma, a, c)$ and $\|A u\|>a / \theta^{*}$, then $\sigma(A u)>a$. To see this, we suppose that $u \in P(\sigma, a, c)$ and $\|A u\|>a / \theta^{*}$. Then it follows from $A u \in P$ that

$$
\sigma(A u)=\min _{t \in[1-\theta, \theta]}(A u)(t) \geq \theta^{*}\|A u\|>a
$$

To sum up, all the hypotheses of the Leggett-Williams fixed point theorem are satisfied. Therefore, A has at least three fixed points; that is, 1.2 has at least three positive solutions u, v and w satisfying

$$
\|u\|<d, \quad a<\min _{t \in[1-\theta, \theta]} v(t), \quad d<\|w\|, \quad \min _{t \in[1-\theta, \theta]} w(t)<a
$$

Theorem 3.2. Let m be an arbitrary positive integer. Assume that there exist numbers $d_{i}(1 \leq i \leq m)$ and $a_{j}(1 \leq j \leq m-1)$ with $0<d_{1}<a_{1}<\frac{a_{1}}{\theta^{*}}<d_{2}<$ $a_{2}<\frac{a_{2}}{\theta^{*}}<\cdots<d_{m-1}<a_{m-1}<\frac{a_{m-1}}{\theta^{*}}<d_{m}$ such that

$$
\begin{gather*}
f(t, u)<\frac{d_{i}}{H_{1}}, \quad t \in[0, \eta], u \in\left[0, d_{i}\right], 1 \leq i \leq m \tag{3.5}\\
f(t, u)>\frac{a_{j}}{H_{2}}, \quad t \in[1-\theta, \theta], u \in\left[a_{j}, \frac{a_{j}}{\theta^{*}}\right], 1 \leq j \leq m-1 \tag{3.6}
\end{gather*}
$$

Then 1.2 has at least $2 m-1$ positive solutions in $\overline{P_{d_{m}}}$.
Proof. We use induction on m. First, for $m=1$, we know from 3.5 that A : $\overline{P_{d_{1}}} \rightarrow P_{d_{1}}$. Then it follows from Schauder fixed point theorem that 1.2 has at least one positive solution in $\overline{P_{d_{1}}}$.

Next, we assume that this conclusion holds for $m=k$. To show that this conclusion also holds for $m=k+1$, we suppose that there exist numbers $d_{i}(1 \leq$ $i \leq k+1)$ and $a_{j}(1 \leq j \leq k)$ with $0<d_{1}<a_{1}<\frac{a_{1}}{\theta^{*}}<d_{2}<a_{2}<\frac{a_{2}}{\theta^{*}}<\cdots<d_{k}<$ $a_{k}<\frac{a_{k}}{\theta^{*}}<d_{k+1}$ such that

$$
\begin{gather*}
f(t, u)<\frac{d_{i}}{H_{1}}, \quad t \in[0, \eta], u \in\left[0, d_{i}\right], 1 \leq i \leq k+1 \tag{3.7}\\
f(t, u)>\frac{a_{j}}{H_{2}}, \quad t \in[1-\theta, \theta], u \in\left[a_{j}, \frac{a_{j}}{\theta^{*}}\right], 1 \leq j \leq k \tag{3.8}
\end{gather*}
$$

By assumption, 1.2 has at least $2 k-1$ positive solutions $u_{i}(i=1,2, \ldots, 2 k-1)$ in $\overline{P_{d_{k}}}$. At the same time, it follows from Theorem 3.1, (3.7) and (3.8) that 1.2 has at least three positive solutions u, v and w in $\overline{P_{d_{k+1}}}$ such that

$$
\|u\|<d_{k}, \quad a_{k}<\min _{t \in[1-\theta, \theta]} v(t), \quad d_{k}<\|w\|, \quad \min _{t \in[1-\theta, \theta]} w(t)<a_{k}
$$

Obviously, v and w are different from $u_{i}(i=1,2, \ldots, 2 k-1)$. Therefore, 1.2 has at least $2 k+1$ positive solutions in $\overline{P_{d_{k+1}}}$, which shows that this conclusion also holds for $m=k+1$.

Example 3.3. We consider the BVP

$$
\begin{gather*}
u^{\prime \prime \prime}(t)=f(t, u(t)), \quad t \in[0,1] \\
u^{\prime}(0)=u(1)=u^{\prime \prime}\left(\frac{2}{3}\right)=0 \tag{3.9}
\end{gather*}
$$

where

$$
f(t, u)= \begin{cases}(1-t)(u+1)^{2}, & (t, u) \in[0,1] \times[0,1] \\ (1-t)[122(u-1)+4], & (t, u) \in[0,1] \times[1,2] \\ 14(1-t)(u+1)^{2}, & (t, u) \in[0,1] \times[2,20] \\ 6174(1-t), & (t, u) \in[0,1] \times[20,+\infty)\end{cases}
$$

Let $\theta=3 / 5$. Then $\theta^{*}=1 / 10$. A simple calculation shows that $H_{1}=14 / 81$ and $H_{2}=1 / 25$. If we choose $d=1, a=2, c=1068$, then all the conditions of Theorem 3.1 are satisfied. Therefore, it follows from Theorem 3.1 that 3.9 has at least three positive solutions.

References

[1] D. Anderson; Green's function for a third-order generalized right focal problem, J. Math. Anal. Appl. 288 (2003), 1-14.
[2] D. Anderson; Multiple positive solutions for a three-point boundary-value problem, Math. Comput. Modelling 27 (1998), 49-57.
[3] D. Anderson, J. M. Davis; Multiple solutions and eigenvalues for third-order right focal boundary-value problems, J. Math. Anal. Appl. 267 (2002), 135-157.
[4] Z. Bai, X. Fei; Existence of triple positive solutions for a third order generalized right focal problem, Math. Inequal. Appl. 9 (2006), 437-444.
[5] M. Gregus; Third Order Linear Differential Equations, in: Math. Appl., Reidel, Dordrecht, 1987.
[6] L. -J. Guo, J. -P. Sun, Y. -H. Zhao; Existence of positive solution for nonlinear third-order three-point boundary-value problem, Nonl. Anal. 68 (2008), 3151-3158.
[7] R. W. Leggett, L. R. Williams; Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979) 673-688.
[8] Alex P. Palamides, George Smyrlis; Positive solutions to a singular third-order three-point boundary-value problem with indefinitely signed Green's function, Nonl. Anal. 68 (2008), 2104-2118.
[9] Alex P. Palamides, Nikolaos M. Stavrakakis; Existence and uniqueness of a positive solution for a third-order three-point boundary-value problem, Electronic Journal of Differential Equations 155 (2010), 1-12.
[10] Kapula R. Prasad, Nadakuduti V. V. S. S. Narayana; Solvability of a nonlinear third-order three-point general eigenvalue problem on time scales, Electronic Journal of Differential Equations 57 (2010), 1-12.
[11] J. -P. Sun, J. Zhao; Positive solution for a third-order three-point boundary-value problem with sign-changing Green's function, Communications in Applied Analysis, accepted.
[12] Y. Sun; Positive solutions for third-order three-point nonhomogeneous boundary-value problems, Appl. Math. Lett. 22 (2009), 45-51.
[13] Y. Sun; Positive solutions of singular third-order three-point boundary-value problem, J. Math. Anal. Appl. 306 (2005), 589-603.
[14] Q. Yao; The existence and multipilicity of positive solutions for a third-order three-point boundary-value problem, Acta Math. Appl. Sinica 19 (2003), 117-122.

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address, Jian-Ping Sun: jpsun@lut.cn
E-mail address, Juan Zhao: z_1111z@163.com

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B18.
 Key words and phrases. Third-order three-point boundary-value problem;
 sign-changing Green's function; positive solution.
 © 2012 Texas State University - San Marcos.
 Submitted May 29, 2012. Published July 14, 2012.

