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NON-EXISTENCE OF GLOBAL SOLUTIONS TO GENERALIZED
DISSIPATIVE KLEIN-GORDON EQUATIONS WITH POSITIVE

ENERGY

MAXIM OLEGOVICH KORPUSOV

Abstract. In this article the initial-boundary-value problem for generalized
dissipative high-order equation of Klein-Gordon type is considered. We con-
tinue our study of nonlinear hyperbolic equations and systems with arbitrary
positive energy. The modified concavity method by Levine is used for proving
blow-up of solutions.

1. Introduction

We consider the initial-boundary-value problem

utt + µut + ∆h1(x,∆u)− div(h2(x, |∇u|)∇u) + div(h3(x, |∇u|)∇u) = 0, (1.1)

u|∂Ω =
∂u

∂nx

∣∣
∂Ω

= 0, u(x, 0) = u0(x), u′(x, 0) = u1(x), µ ≥ 0, (1.2)

in a bounded domain Ω ⊂ RN with smooth boundary ∂Ω ∈ C4,δ for δ ∈ (0, 1].
Finite time blow-up of solutions of generalized Klein-Gordon equation have been

studied by many authors; see for example [2, 3, 6, 4, 24, 5, 16]. In these ref-
erences, the authors considere problems either for negative energy or for weaker
conditions than a condition of negative initial energy (see [16, 23]). Other authors
have assumed a condition of positive energy under other two conditions on the ini-
tial functions. However, the mentioned authors have not studied the compatibility
of these conditions, which is come times hard to understand. Finally these condi-
tions for any fixed u0 and sufficiently large u1 are not compatible. These authors
have used the classic concavity Levine’s method. In this paper we use a modified
method, developed in [1], that provide two conditions for which their compatibility
is easily checked.

Let us remember that there are five well-known methods for studying a blow-
up phenomena. The first method is the concavity method developed by Levine
[13, 14, 19, 20, 22, 15]. The second method is the test functions developed by
Pokhozhaev, Mitidieri and Zhang [17, 18, 7, 25]. And the third method based
on different criterion of comparison and was developed by Samarskii, Galaktionov,
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Kurdyumov, Mikhailov [8, 21]. The forth method based of positive averageswas
developed by Keller and Glassey [12, 10]. The fifth method, for nonlinear damping,
was developed by by Georgiev and Todorova [9].

2. Main differential inequality

Consider the important differential inequality

ΦΦ′′ − α(Φ′)2 + γΦ′Φ + βΦ ≥ 0, α > 1, β ≥ 0, γ ≥ 0, (2.1)

where Φ(t) ∈ C(2)([0, T ]), Φ(t) ≥ 0, Φ(0) > 0. Dividing both sides (2.1) by Φ1+α,
we obtain ( Φ′

Φα

)′
+ γ

Φ′

Φα
+ βΦ−α ≥ 0.

Therefore,
1

1− α
(Φ1−α)′′ +

γ

1− α
(Φ1−α)′ + βΦ−α ≥ 0. (2.2)

By definition, putZ(t) = Φ1−α(t). Then, from (2.2) we obtain

Z ′′ + γZ ′ − β(α− 1)Zα1 ≤ 0, α1 =
α

α− 1
. (2.3)

Also by definition, put Y (t) = eγtZ(t); hence from (2.3) we obtain

Y ′′ − γY ′ − β(α− 1)e−δtY α1 ≤ 0, δ =
γ

α− 1
. (2.4)

It is easily shown that the following chain of equalities holds:

Y ′ =
(
Φ1−αeγt

)′
= Φ−α(α− 1)eγt

[
− Φ′(t) +

γ

α− 1
Φ(t)

]
. (2.5)

Take the initial condition
Φ′(0) >

γ

α− 1
Φ(0); (2.6)

then there exists t0 > 0 such that

Φ′(t) >
γ

α− 1
Φ(t) for t ∈ [0, t0). (2.7)

Combining (2.7) and (2.5), we obtain

Y ′(t) < 0 for t ∈ [0, t0).

Since −γY ′(t) ≥ 0, for t ∈ [0, t0), it follows from (2.4) that

Y ′′ − β(α− 1)e−δtY α1 ≤ 0, δ =
γ

α− 1
for t ∈ [0, t0). (2.8)

Now multiplying both sides (2.8) by Y ′, we obtain

Y ′Y ′′ − β(α− 1)e−δtY α1Y ′ ≥ 0, δ =
γ

α− 1
for t ∈ [0, t0). (2.9)

Let us remark that

e−δtY α1Y ′ =
d

dt
[e−δtY 1+α1 ] + δe−δtY 1+α1 − α1e

−δtY α1Y ′,

Thus we have

e−δtY α1Y ′ =
1

1 + α1

d

dt
[e−δtY 1+α1 ] +

1
1 + α1

δe−δtY 1+α1 . (2.10)

Combining (2.10) with (2.9), we obtain

Y ′Y ′′ − β(α− 1)
1 + α1

d

dt
[e−δtY 1+α1 ]− β(α− 1)δ

1 + α1
e−δtY 1+α1 ≥ 0 for t ∈ [0, t0),
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clearly, from this inequality we obtain

Y ′Y ′′ − β(α− 1)
1 + α1

d

dt
[e−δtY 1+α1 ] ≥ 0 for t ∈ [0, t0). (2.11)

Integrating the above expression,

(Y ′)2 ≥ A2 +
2β(α− 1)2

2α− 1
e−δtY 1+α1 ≥ A2, (2.12)

where

A2 ≡ (Y ′(0))2 − 2β(α− 1)2

2α− 1
Y 1+α1(0). (2.13)

We assume the condition
A2 > 0.

The reader will have no difficulty in showing that this condition is equivalent to the
condition

A2 = (α− 1)2Φ−2α(0)[
(
Φ′(0)− γ

α− 1
Φ(0)

)2 − 2β

2α− 1
Φ(0)

]
> 0. (2.14)

Therefore, the condition A2 > 0 and the following condition are equivalent.(
Φ′(0)− γ

α− 1
Φ(0)

)2

>
2β

2α− 1
Φ(0). (2.15)

Thus, combining (2.12) and (2.14), we obtain

Y ′(t) ≤ −A < 0⇒ Φ′(t0) >
γ

α− 1
Φ(t0).

But now we have that Y ′(t0) < 0. Therefore, using this algorithm of “continue in
time”, we obtain

Y ′(t) < 0 for all t ∈ [0, T ].

This implies that

|Y ′| ≥ A > 0⇒ Y ′(t) ≤ −A⇒ Y (t) ≤ Y (0)−At⇒

⇒ Φ1−α(t) ≤ e−γt[Φ1−α(0)−At]⇒ Φ(t) ≥ eγt/(α−1)

[Φ1−α(0)−At]1/(α−1)
.

The result is the following theorem.

Theorem 2.1. Suppose Φ(t) ∈ C(2)([0, T ]), satisfies inequality (2.1) and

Φ′(0) >
γ

α− 1
Φ(0), (2.16)(

Φ′(0)− γ

α− 1
Φ(0)

)2
>

2β

2α− 1
Φ(0) (2.17)

where Φ(t) ≥ 0, Φ(0) > 0, then the time T > 0 can not be arbitrarily large, but the
following inequality holds

T ≤ T∞ ≤ Φ1−α(0)A−1,

A2 ≡ (α− 1)2Φ−2α(0)
[(

Φ′(0)− γ

α− 1
Φ(0)

)2 − 2β

2α− 1
Φ(0)

]
,

where lim supt↑T Φ(t) = +∞.
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3. Conditions

We begin with conditions on the functions h1(x, s), h2(x, s), and h3(x, s).
Conditions on h1(x, s):
(H1.1) h1(x, s) : Ω× R1 → R1 is a Caratheodory function;
(H1.2) for almost all x ∈ Ω the function h1(x, s) ∈ C(1)(R1) and a “growth condi-

tions” take place

|h1(x, s)| ≤ c1 + c2|s|p1−1, |h′1s(x, s)| ≤ c1 + c2|s|p1−2 for p1 ≥ 2; (3.1)

(H1.3) for any v(x) ∈ W2,p1
0 (Ω) there exist the inequalities

0 ≤
∫

Ω

h1(x,∆v(x))∆v(x) dx ≤ θ1

∫
Ω

H1(x,∆v(x)) dx, (3.2)

where θ1 > 0 and H1(x, s) =
∫ s

0
dσ h1(x, σ);

conditions on h2(x, s):
(H2.1) h2(x, s) : Ω× R1

+ → R1
+ is a Caratheodory function;

(H2.2) for almost all x ∈ Ω the function h2(x, s) ∈ C(1)(R1
+) and we suppose the

following inequalities

0 ≤ h2(x, s) ≤ c3 + c4s
p2−2, |h′2s(x, s)s| ≤ c3 + c4s

p2−2 for p2 ≥ 2; (3.3)

(H2.3) for any v(x) ∈ W1,p2
0 (Ω) an inequality holds

0 ≤
∫

Ω

h2(x, |∇v|)|∇v|2 dx ≤ θ2

∫
Ω

dx H2(x, |∇v|) for θ2 > 0, (3.4)

where H2(x, s) =
∫ s

0
dσ h2(x, σ)σ.

Conditions on h3(x, s):
(H3.1) h3(x, s) : Ω× R1

+ → R1
+ is a Caratheodory function;

(H3.2) for almost all x ∈ Ω the function h3(x, s) ∈ C(1)(R1
+) and

0 ≤ h3(x, s) ≤ c5 + c6s
p3−2, |h′3s(x, s)s| ≤ c5 + c6s

p3−2, p3 > 2; (3.5)

(H3.3) for all v(x) ∈ W1,p3
0 (Ω) we assume that∫

Ω

h3(x, |∇v|)|∇v|2 dx ≥ θ3

∫
Ω

dx H3(x, |∇v|) for θ3 > 2, (3.6)

where H3(x, s) =
∫ s

0
dσ h3(x, σ)σ.

We define

p∗ =

{
Np/(N − p), for N > p;
+∞, for N ≤ p.

It can easily be checked that from the conditions on the functions h1(x, s), h2(x, s),
and h3(x, s) we have

∆h1(x,∆v) : W2,p1
0 (Ω)→ W−2,p′

1(Ω), p′1 = p1/(p1 − 1),

div(h2(x, |∇v|)∇v) : W1,p2
0 (Ω)→ W−1,p′

2(Ω), p2 = p2/(p2 − 1),

div(h3(x, |∇v|)∇v) : W1,p3
0 (Ω)→ W−1,p′

3(Ω), p3 = p3/(p3 − 1),

and this operators are continuous in the corresponding topologies.
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Definition 3.1. A strong generalized solution of (1.1), (1.2) is a function u(x)(t)
in the class

u(x)(t) ∈ C(2)([0, T ]; W2,p1
0 (Ω)), T > 0,

for some large s > 0, if the following condition hold:∫
Ω

u′′(x)(t)w(x) dx + µ

∫
Ω

u′(x)(t)w(x) dx +
∫

Ω

h1(x,∆u)∆w(x) dx

+
∫

Ω

h2(x, |∇u|)(∇u,∇w) dx−
∫

Ω

h3(x, |∇u|)(∇u,∇w) dx = 0, t ∈ [0, T ]
(3.7)

for all w(x) ∈ W2,p1
0 (Ω); and

u(x)(0) = u0(x) ∈ W2,p1
0 (Ω), u′(x)(0) = u1(x) ∈ L2(Ω). (3.8)

4. Blow-up of solutions

Assume that there is a weak solution u(x)(t) in the class C(2)([0, T ]; W2,p1
0 (Ω))

for some T > 0. Let us put w = u(x)(t) in equation (3.7), then we obtain the first
energy equality

1
2

d2Φ
dt2

+
µ

2
dΦ
dt
− J +

∫
Ω

h1(x,∆u)∆u dx +
∫

Ω

h2(x, |∇u|)|∇u|2 dx

=
∫

Ω

h3(x, |∇u|)|∇u|2 dx,

(4.1)

where we denote
Φ(t) ≡

∫
Ω

|u|2 dx, J(t) ≡
∫

Ω

|u′|2 dx.

Let us put w = u′(x)(t) in (3.7), we obtain the second energy equality
d

dt

(1
2
J +

∫
Ω

H1(x,∆u) dx +
∫

Ω

H2(x, |∇u|) dx
)

+ µJ

=
d

dt

∫
Ω

H3(x, |∇u|) dx.

(4.2)

Furthermore, integrating (4.2) over time, we obtain the inequality
1
2
J +

∫
Ω

H1(x,∆u) dx +
∫

Ω

H2(x, |∇u|) dx− E(0) ≤
∫

Ω

H3(x, |∇u|) dx, (4.3)

where

E(0) ≡ 1
2

∫
Ω

|u1|2 dx +
∫

Ω

H1(x,∆u0) dx

+
∫

Ω

H2(x, |∇u0|) dx−
∫

Ω

H3(x, |∇u0|) dx.

(4.4)

By (4.3) we obtain the inequality
θ3

2
J + θ3

∫
Ω

H1(x,∆u) dx + θ3

∫
Ω

H2(x, |∇u|) dx− θ3E(0)

≤ θ3

∫
Ω

H3(x, |∇u|) dx,

combining this with the condition (H3.3), we obtain
θ3

2
J + θ3

∫
Ω

H1(x,∆u) dx + θ3

∫
Ω

H2(x, |∇u|) dx− θ3E(0)



6 M. O. KORPUSOV EJDE-2012/119

≤
∫

Ω

h3(x, |∇u|)|∇u|2 dx.

Using the above inequality and (4.1), we obtain

1
2

d2Φ
dt2

+
µ

2
dΦ
dt
− J +

∫
Ω

h1(x,∆u)∆u dx +
∫

Ω

h2(x, |∇u|)|∇u|2 dx

≥ θ3

2
J + θ3

∫
Ω

H1(x,∆u) dx + θ3

∫
Ω

H2(x, |∇u|) dx− θ3E(0).
(4.5)

Now taking into account the conditions (H3.1) and (H3.2), from (4.5) we obtain

1
2

d2Φ
dt2

+
µ

2
dΦ
dt
− J + θ1

∫
Ω

H1(x,∆u) dx + θ2

∫
Ω

H2(x, |∇u|) dx

≥ θ3

2
J + θ3

∫
Ω

H1(x,∆u) dx + θ3

∫
Ω

H2(x, |∇u|) dx− θ3E(0).
(4.6)

Under the conditions θ3 ≥ θ1, θ3 ≥ θ2 using the inequalities∫
Ω

H1(x,∆u) dx ≥ 0,

∫
Ω

H2(x, |∇u|) dx ≥ 0,

from (4.6), we obtain

1
2

d2Φ
dt2

+
µ

2
dΦ
dt

+ θ3E(0) ≥
(
1 +

θ3

2
)
J(t). (4.7)

Using the Cauchy-Bunyakovsky-Schwarz inequality, it is easily shown the differen-
tial inequality

(Φ′)2 ≤ 4JΦ. (4.8)
Combining (4.7) and (4.8), we obtain the important differential inequality

ΦΦ′′ − 1
2
(
1 +

θ3

2
)
(Φ′)2 + µΦΦ′ + 2θ3E(0)Φ ≥ 0. (4.9)

Comparing this differential inequality with (2.1), we obtain that

α =
1
2
(
1 +

θ3

2
)

> 1 for θ3 > 2,

β = 2θ3E(0), γ = µ,
2β

2α− 1
= 8E(0),

γ

α− 1
=

4µ

θ3 − 2
.

We assume the following conditions

Φ′(0) >
4µ

θ3 − 2
Φ(0) > 0, (4.10)(

Φ′(0)− 4µ

θ3 − 2
Φ(0)

)2

> 8E(0)Φ(0), (4.11)

E(0) ≡ 1
2

∫
Ω

|u1|2 dx +
∫

Ω

H1(x,∆u0) dx

+
∫

Ω

H2(x, |∇u0|) dx−
∫

Ω

H3(x, |∇u0|) dx > 0,

(4.12)

Under conditions (4.10)–(4.12), the time T > 0 of existence of u(x)(t) is bounded
from above

T ≤ Φ(2−θ3)/4(0)A−1,

A2 ≡
(θ3 − 2

4
)2Φ−1−θ3/2(0)

[(
Φ′(0)− 4µ

θ3 − 2
Φ(0)

)2

− 8E(0)Φ(0)
]
,
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at the same time

Φ(t) ≥ e4µt/(θ3−2)

[Φ(2−θ3)/4(0)−At]4/(θ3−2)
, (4.13)

where

Φ′(0) = 2
∫

Ω

u1(x)u0(x) dx, Φ(0) =
∫

Ω

|u0|2 dx.

Therefore, our main result of is the following theorem.

Theorem 4.1. Assume all conditions on h1, h2 and h3 hold. Under the following
conditions

Φ′(0) >
4µ

θ3 − 2
Φ(0) + (8E(0)Φ(0))1/2 > 0, E(0) > 0, (4.14)

θ3 ≥ θ1, θ3 ≥ θ2, (4.15)

there exists the estimation from above for the time of solution existence T ,

T1 ≤ T∞ = Φ(2−θ3)/4(0)A−1;

i. e., we have that lim supt↑T1
Φ(t) = +∞, where

Φ(0) =
∫

Ω

|u0|2 dx, Φ′(0) = 2
∫

Ω

u1u0 dx,

E(0) ≡ 1
2

∫
Ω

|u1|2 dx +
∫

Ω

H1(x,∆u0) dx

+
∫

Ω

H2(x, |∇u0|) dx−
∫

Ω

H3(x, |∇u0|) dx,

A2 ≡
(θ3 − 2

4
)2Φ−1−θ3/2(0)

[(
Φ′(0)− 4µ

θ3 − 2
Φ(0)

)2 − 8E(0)Φ(0)
]
.

Remark 4.2. Now we shall see that all conditions (4.14) are compatible for enough
small µ ≥ 0. Indeed, first we shall choose u0 ∈ W2,p1

0 (Ω) enough large to satisfy
the inequality∫

Ω

H3(x, |∇u0|) dx

>

∫
Ω

H1(x,∆u0) dx +
∫

Ω

H2(x, |∇u0|) dx +
2

θ3 − 2

∫
Ω

|u0|2 dx.

(4.16)

Secondly we fix u0 and choose u1 = λu0 for λ > 2µ/(θ3 − 2). In this case we have

Φ′(0)− 4µ

θ3 − 2
Φ(0) = 2

(
λ− 2µ

θ3 − 2

)
Φ(0) > 0. (4.17)

Finally we choose λ > 2µ/(θ3 − 2) enough large to satisfy the inequality

E(0) =
λ2

2

∫
Ω

|u0|2 dx +
∫

Ω

H1(x,∆u0) dx

+
∫

Ω

H2(x, |∇u0|) dx−
∫

Ω

H3(x, |∇u0|) dx > 0.

Under condition (4.17), inequality (4.14) is equivalent to(
Φ′(0)− 4µ

θ3 − 2
Φ(0)

)2

> 8E(0)Φ(0), (4.18)
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by our substitution we obtain from the left and right side of this inequality(
Φ′(0)− 4µ

θ3 − 2
Φ(0)

)2

= 4
(
λ− 2µ

θ3 − 2

)2

Φ2(0)

=
(
4λ2 − 16µλ

θ3 − 2
+

16µ2

(θ3 − 2)2
)
Φ2(0),

(4.19)

and

8E(0)Φ(0) = 4λ2Φ2(0) + 8Φ(0)
[ ∫

Ω

H1(x,∆u0) dx

+
∫

Ω

H2(x, |∇u0|) dx−
∫

Ω

H3(x, |∇u0|) dx
] (4.20)

Combining (4.18) with (4.19) and (4.20), we obtain that(
Φ′(0)− 4µ

θ3 − 2
Φ(0)

)2

=
(
4λ2 − 16µλ

θ3 − 2
+

16µ2

(θ3 − 2)2
)
Φ2(0) > 8E(0)Φ(0)

= 4λ2Φ2(0) + 8Φ(0)
[ ∫

Ω

H1(x,∆u0) dx

+
∫

Ω

H2(x, |∇u0|) dx−
∫

Ω

H3(x, |∇u0|) dx
]
,

(4.21)

Now it is not hard to prove that∫
Ω

H3(x, |∇u0|) dx +
2µ2

(θ3 − 2)2

∫
Ω

|u0|2 dx

>
2µλ

θ3 − 2

∫
Ω

|u0|2 dx +
∫

Ω

H1(x,∆u0) dx +
∫

Ω

H2(x, |∇u0|) dx.

(4.22)

Moreover, we choose

λ =
1
µ

for µ ∈
(
0, (

θ3 − 2
2

)1/2
)
,

and if µ = 0, then λ > 0 and large enough. We see that all foregoing conditions are
satisfied for small enough µ ≥ 0. Now combining this large enough λ and (4.22),
we obtain the inequality∫

Ω

H3(x, |∇u0|) dx +
2µ2

(θ3 − 2)2

∫
Ω

|u0|2 dx

>
2

θ3 − 2

∫
Ω

|u0|2 dx +
∫

Ω

H1(x,∆u0) dx +
∫

Ω

H2(x, |∇u0|) dx.

Obviously, this inequality holds by (4.16). Therefore, we have to prove (4.16) for
some functions on h1(x, s), h2(x, s), and h3(x, s). At the same time we check the
condition (4.15). Suppose

h1(x, s) = |s|p1−2s, h2(x, s) = sp2−2, h3(x, s) = sp3−2,

where p3 > p1 > 2, p3 > p2 ≥ 2. Then

H1(x, s) =
|s|p1

p1
, H2(x, s) =

|s|p2

p2
, H3(x, s) =

|s|p3

p3
,

and θ3 = p3 > θ1 = p1 > 2, θ3 = p3 > θ2 = p2. Therefore, first note that the
condition (4.15) holds, and further note that for large enough u0(x) ∈ W2,p1

0 (Ω) the
condition (4.16) also holds.
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