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EXISTENCE AND UNIQUENESS OF WEAK AND ENTROPY
SOLUTIONS FOR HOMOGENEOUS NEUMANN

BOUNDARY-VALUE PROBLEMS INVOLVING VARIABLE
EXPONENTS

BERNARD K. BONZI, ISMAEL NYANQUINI, STANISLAS OUARO

Abstract. In this article we study the nonlinear homogeneous Neumann
boundary-value problem

b(u)− div a(x,∇u) = f in Ω

a(x,∇u).η = 0 on ∂Ω,

where Ω is a smooth bounded open domain in RN , N ≥ 3 and η the outer unit
normal vector on ∂Ω. We prove the existence and uniqueness of a weak solution
for f ∈ L∞(Ω) and the existence and uniqueness of an entropy solution for
L1-data f . The functional setting involves Lebesgue and Sobolev spaces with
variable exponents.

1. Introduction

The paper is motivated by phenomena which are described by a homogeneous
Neumann boundary value problem of the type

b(u)− div a(x,∇u) = f in Ω,

a(x,∇u).η = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded open domain in RN , N ≥ 3 and η the outer unit
normal vector on ∂Ω.

The study of problems involving variable exponents has received considerable
attention in recent years (see [5], [7]-[17], [19]-[23], [26]-[30], [33]-[36]) due to the fact
that they can model various phenomena which arise in the study of elastic mechanics
(see [4]), electrorheological fluids (see [11, 22, 28, 29]) or image restauration (see
[9]).

When the boundary value condition is a Neumann boundary condition in the
context of variable exponent, we must work in general with the space W 1,p(·)(Ω)
instead of the common space W

1,p(·)
0 (Ω). The main difficulty which appears in

this case for the existence and also the uniqueness of solutions is that the famous
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Poincaré inequality does not apply (see [8]). The same can be said for the Poincaré-
Wirtinger inequality which does not apply for general data f considered in this work
(see [27]). Recently, Ouaro and Soma [27] studied the problem

−div a(x,∇u) + |u|p(x)−2u = f in Ω,
∂u

∂ν
= 0 on ∂Ω,

(1.2)

under the assumption

p(·) : Ω → R is a measurable function and 1 < p− ≤ p+ < +∞, (1.3)

where p− := ess infx∈Ω p(x) and p+ := ess supx∈Ω p(x).
For the vector fields a(·, ·) in [27], the authors assumed that a(x, ξ) : Ω×RN →

RN is Carathéodory and is the continuous derivative with respect to ξ of the map-
ping A : Ω× RN → R, A = A(x, ξ); i.e., a(x, ξ) = ∇ξA(x, ξ) such that:

• for almost every x ∈ Ω,

A(x, 0) = 0; (1.4)

• there exists a positive constant C1 such that

|a(x, ξ)| ≤ C1(j(x) + |ξ|p(x)−1) (1.5)

for almost every x ∈ Ω and for every ξ ∈ RN where j is a nonnegative
function in Lp′(·)(Ω), with 1/p(x) + 1/p′(x) = 1;

• the following inequality hold for almost every x ∈ Ω and for every ξ, η ∈ RN

with ξ 6= η,
(a(x, ξ)− a(x, η)).(ξ − η) > 0; (1.6)

• for almost every x ∈ Ω and for every ξ ∈ RN ,

|ξ|p(x) ≤ a(x, ξ).ξ ≤ p(x)A(x, ξ) (1.7)

Under assumptions (1.3)-(1.7), Ouaro and Soma [27] proved the existence and
uniqueness of entropy solutions to (1.2) for L1−data f . The assumption on the
function A and the use of the quantity |u|p(x)−2u allowed them in particular to use
a minimization method for the proof of the existence of a weak solution for (1.2)
when the right-hand side is in L∞(Ω) (see [27, Theorem 3.1]). Note also that the
uniqueness of weak and entropy solutions u of [27, (1.2)] is due to the fact that
s 7→ |s|p(x)−2s is increasing.

In this article we improve the result in [27]. We make restrictive assumptions on
the data a and b. For this reason, we can not use the minimization methods used
in [27] to get our existence result of weak solutions. We use an auxiliary result due
to Le (see [21, Theorem 3.1]). Indeed, Le [21] proved in particular some existence
results of weak solutions for the Neumann and Robin boundary value problem

−div a(x,∇u) + f(x, u) = 0 in Ω,

a(x,∇u).η = −g(x, u) on ∂Ω,

where a : Ω× RN → R is a Carathéodory function satisfying the growth condition

|a(x, ξ)| ≤ a1(x) + b1|ξ|p(x)−1, for a. e. x ∈ Ω and all ξ ∈ RN ,

with p ∈ C+(Ω) = {p ∈ C(Ω) such that p(x) > 1 for x ∈ Ω}, a1 ∈ Lp′(·)(Ω), p′(·) is
the Hölder conjugate of p(·) and b1 > 1. Moreover, a is monotone; i.e.,

(a(x, ξ)− a(x, ξ′)).(ξ − ξ′) ≥ 0, for a. e. x ∈ Ω and all ξ, ξ′ ∈ RN ,
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and coercive in the following sense: there exist a2 ∈ L1(Ω) and b2 > 0 such that

a(x, ξ).ξ ≥ b2|ξ|p(x) − a2(x), for a. e. x ∈ Ω and all ξ ∈ RN .

f : Ω× R → R and g : ∂Ω → R are Carathéodory functions such that

|f(x, u)| ≤ a3(x), |g(ξ, v)| ≤ ã3(ξ)

for a. e. x ∈ Ω, ξ ∈ ∂Ω, where a3 ∈ Lq(·)(Ω), ã3 ∈ Leq(∂Ω) with q(x) < p∗(x), for
all x ∈ Ω, q̃(x) < p̃∗(x), for all x ∈ ∂Ω, q ∈ C+(Ω), q̃ ∈ C+(∂Ω). Here, p∗ is the
Sobolev conjugate exponent of p(x),

p∗(x) =

{
Np(x)

N−p(x) if N > p(x),

+∞ if N ≤ p(x);

p̃∗(x) =

{
(N−1)p(x)

N−p(x) if N > p(x),

+∞ if N ≤ p(x).

The proof of the existence results in [21] uses the sub and super solution methods.
In this article, our assumptions are the following:

p(·) : Ω → R is a continuous function such that 1 < p− ≤ p+ < +∞ (1.8)

and

b : R → R is a continuous, nondecreasing function, surjective such that b(0) = 0.
(1.9)

For the vector field a(·, ·) we assume that a(x, ξ) : Ω× RN → RN is Carathéodory
such that:

• there exists a positive constant C2 with

|a(x, ξ)| ≤ C2(j(x) + |ξ|p(x)−1) (1.10)

for almost every x ∈ Ω and for every ξ ∈ RN , where j is a nonnegative
function in Lp′(·)(Ω) with 1

p(x) + 1
p′(x) = 1;

• there exists a positive constant C3 such that for every x ∈ Ω and for every
ξ, η ∈ RN with ξ 6= η, the following two inequalities hold

(a(x, ξ)− a(x, η)).(ξ − η) > 0, (1.11)

a(x, ξ).ξ ≥ C3|ξ|p(x) (1.12)

for almost every x ∈ Ω and for every ξ ∈ RN .

We remark that [27, Assumption 1.3] is more restrictive than (1.8). This is due
to the use of the results in [21] to get the existence of a weak solution to the problem
(1.1).

The remaining part of the paper is the following: in section 2, we introduce some
notations/functional spaces. In section 3, we prove the existence and uniqueness
of a weak solution of (1.1) when the right-hand side f ∈ L∞(Ω). Using the results
of section 3, we study in section 4, the question of the existence and uniqueness of
entropy solutions of (1.1) for f ∈ L1(Ω).
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2. Assumptions and preliminaries

As the exponent p(·) appearing in (1.10) and (1.12) depends on the variable x, we
must work with Lebesgue and Sobolev spaces with variable exponents. We define
the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all measurable
functions u : Ω → R for which the convex modular

ρp(·)(u) :=
∫

Ω

|u|p(x)dx

is finite. If the exponent is bounded; i.e., if p+ < +∞, then the expression

|u|p(·) = inf{λ > 0 : ρp(·)(u/λ) ≤ 1}

defines a norm in Lp(·)(Ω), called the Luxembourg norm. The space (Lp(·)(Ω), |.|p(·))
is a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(·)(Ω) is
uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω),
where 1

p(x) + 1
p′(x) = 1. Finally, we have the Hölder type inequality:

|
∫

Ω

uvd x| ≤ (
1
p−

+
1

(p′)−
)|u|p(·)|v|p′(·) (2.1)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).
Let

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)},
which is a Banach space equipped with the norm

‖u‖1,p(·) = |u|p(·) + |(|∇u|)|p(·).

The space (W 1,p(·)(Ω), ‖.‖1,p(·)) is a separable and reflexive Banach space.
An important role in manipulating the generalized Lebesgue and Sobolev spaces

is played by the modular ρp(·) of the space Lp(·)(Ω). We have the following result
(see [16]).

Lemma 2.1. If un, u ∈ Lp(·)(Ω) and p+ < +∞, then the following properties hold:

(i) |u|p(·) > 1 ⇒ |u|p−p(·) ≤ ρp(·)(u) ≤ |u|
p+

p(·);
(ii) |u|p(·) < 1 ⇒ |u|p+

p(·) ≤ ρp(·)(u) ≤ |u|
p−
p(·);

(iii) |u|p(·) < 1 (respectively = 1;> 1) ⇔ ρp(·)(u) < 1 (respectively = 1;> 1);
(iv) |un|p(·) → 0 (respectively → +∞) ⇔ ρp(·)(un) → 0 (respectively → +∞);
(v) ρp(·)(u/|u|p(·)) = 1

For a measurable function u : Ω → R, we introduce the function

ρ1,p(·)(u) =
∫

Ω

|u|p(x) dx+
∫

Ω

|∇u|p(x) dx.

Then we have the following lemma (see [33, 35]).

Lemma 2.2. If u ∈W 1,p(·)(Ω), then the following properties hold:

(i) ‖u‖1,p(·) > 1 ⇒ ‖u‖p−
1,p(·) ≤ ρ1,p(·)(u) ≤ ‖u‖

p+

1,p(·);
(ii) ‖u‖p(·) < 1 ⇒ ‖u‖p+

1,p(·) ≤ ρ1,p(·)(u) ≤ ‖u‖
p−
1,p(·);

(iii) ‖u‖1,p(·) < 1 (respectively = 1;> 1) ⇔ ρ1,p(·)(u) < 1 (respectively = 1;> 1);
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Given two bounded measurable functions p(·), q(·) : Ω → R, we write

q(·) � p(·) if ess infx∈Ω(p(x)− q(x)) > 0.

For more details about Lebesgue and Sobolev spaces with variable exponent, we
refer to [10, 24, 25, 30, 32, 36] and the references therein.

3. Existence and uniqueness of weak solutions

In this part, we study the existence and uniqueness of a weak solution of (1.1)
for the right-hand side f ∈ L∞(Ω). The concept of uniqueness is the same as in [2].

Definition 3.1. A weak solution of (1.1) is a measurable function such that

u ∈W 1,p(·)(Ω), b(u) ∈ L∞(Ω)

and ∫
Ω

a(x,∇u).∇ϕdx+
∫

Ω

b(u)ϕdx =
∫

Ω

fϕ dx, ∀ϕ ∈W 1,p(·)(Ω). (3.1)

The main result of this part is the following.

Theorem 3.2. Assume that (1.8)–(1.12) hold true and f ∈ L∞(Ω). Then there
exists a unique weak solution of (1.1).

Proof. (Part 1: Existence). For k > 0, we consider the following approximated
problem.

Tk(b(uk))− div a(x,∇uk) = f in Ω

a(x,∇uk).η = 0 on ∂Ω,
(3.2)

where Tk(s) := max{−k,min{k, s}} is the truncation of Tk, for any k > 0. Note
that as Tk(b(uk)) ∈ L∞(Ω), by [21, Theorem 3.1], there exists uk ∈ W 1,p(·)(Ω)
which is a weak solution of (3.2). We now show that |b(uk)| ≤ ‖f‖∞ for all k > 0.
We recall that for any ε > 0,

Hε(s) = min(
s+

ε
, 1),

sign+
0 (s) =

{
1 if s > 0
0 if s ≤ 0

and if γ is a maximal monotone operator defined on R, we denote by γ0 the main
section of γ; i.e.,

γ0(s) =


minimal absolute value of γ(s) if γ(s) 6= ∅,
+∞ if [s,+∞) ∩D(γ) = ∅,
−∞ if (−∞, s] ∩D(γ) = ∅.

We take ϕ = Hε(uk −M) as a test function in (3.1) for the weak solution uk and
M > 0 a constant to be chosen later. We have∫

Ω

a(x,∇uk).∇Hε(uk−M) dx+
∫

Ω

Tk(b(uk))Hε(uk−M) dx =
∫

Ω

fHε(uk−M)dx.

(3.3)
Let us denote J =

∫
Ω
a(x,∇uk).∇Hε(uk −M) dx. We deduce that

J =
1
ε

∫
{0<uk−M<ε}

a(x,∇uk).∇(uk −M) dx ≥ 0,
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Then, according to (3.3), we obtain∫
Ω

Tk(b(uk))Hε(uk −M) dx ≤
∫

Ω

fHε(uk −M) dx,

which is equivalent to saying∫
Ω

(Tk(b(uk))−Tk(b(M)))Hε(uk−M) dx ≤
∫

Ω

(f−Tk(b(M)))Hε(uk−M) dx. (3.4)

We now let ε approach 0 in the above inequality,∫
Ω

(Tk(b(uk))− Tk(b(M)))+ dx ≤
∫

Ω

(f − Tk(b(M))) sign+
0 (uk −M) dx. (3.5)

Choosing now M = b−1
0 (‖f‖∞) in (3.5) (since b is surjective) to obtain∫

Ω

(Tk(b(uk))− Tk(‖f‖∞))+ dx ≤
∫

Ω

(f − Tk(‖f‖∞)) sign+
0 (uk − b−1

0 (‖f‖∞)) dx.

(3.6)
Hence for all k > ‖f‖∞, we have∫

Ω

(Tk(b(uk))− Tk(‖f‖∞))+ dx ≤
∫

Ω

(f − ‖f‖∞) sign+
0 (uk − b−1

0 (‖f‖∞)) dx ≤ 0.

Then for all k > ‖f‖∞, (Tk(b(uk)) − ‖f‖∞)+ = 0 a.e. in Ω which is equivalent to
saying

Tk(b(uk)) ≤ ‖f‖∞ for all k > ‖f‖∞. (3.7)

It remains to prove that Tk(b(uk)) ≥ −‖f‖∞ a.e. in Ω for all k > ‖f‖∞. �

Let us remark that as uk is a weak solution of (3.2), then (−uk) is a weak solution
to the following problem

Tk(b̃(uk))− div ã(x,∇uk) = f̃ in Ω

ã(x,∇uk).η = 0 on ∂Ω,
(3.8)

where ã(x, ξ) = −a(x,−ξ), b̃(s) = −b(−s) and f̃ = −f . According to (3.7), we
deduce that

Tk(−b(uk)) ≤ ‖f‖∞ a.e. in Ω for all k > ‖f‖∞.
Therefore, we obtain

Tk(b(uk)) ≥ −‖f‖∞ ∀k > ‖f‖∞. (3.9)

It follows from (3.7) and (3.9) that for all k > ‖f‖∞, |Tk(b(uk))| ≤ ‖f‖∞ which
implies

|b(uk)| ≤ ‖f‖∞ a.e. in Ω. (3.10)

We now fix k = ‖f‖∞ + 1 in (3.2) to end the proof of the existence result.
Part 2: Uniqueness. Let u1 and u2 be two weak solutions of (1.1). Let us take

ϕ = Tk(u1 − u2) as a test function in (3.1) for u1 and also for u2, to get∫
Ω

a(x,∇u1).∇Tk(u1 − u2) dx+
∫

Ω

b(u1)Tk(u1 − u2) dx =
∫

Ω

fTk(u1 − u2) dx,

and∫
Ω

a(x,∇u2).∇Tk(u1 − u2) dx+
∫

Ω

b(u2)Tk(u1 − u2) dx =
∫

Ω

fTk(u1 − u2) dx.
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Adding the two preceding relations, we obtain∫
Ω

(a(x,∇u1)− a(x,∇u2)).∇Tk(u1−u2) dx+
∫

Ω

(b(u1)− b(u2))Tk(u1−u2) dx = 0.

(3.11)
From (3.11) we deduce that∫

Ω

(a(x,∇u1)− a(x,∇u2)).∇Tk(u1 − u2) dx = 0, (3.12)∫
Ω

(b(u1)− b(u2))Tk(u1 − u2) dx = 0. (3.13)

Thanks to (3.12) and inequality (1.11), we obtain

u1 − u2 = c a.e. in Ω (3.14)

and the relation (3.13) gives

lim
k→0

∫
Ω

(b(u1)− b(u2))
1
k
Tk(u1 − u2) dx =

∫
Ω

|b(u1)− b(u2)| dx = 0.

Finally, we obtain
u1 − u2 = c a.e. in Ω

and b(u1) = b(u2).
(3.15)

4. Entropy solutions

In this section, we study the existence and uniqueness of entropy solutions to
problem (1.1) when the right-hand side f ∈ L1(Ω). We first recall some notations.
Set

T 1,p(·)(Ω) = {u : Ω → R, measurable such that Tk(u) ∈W 1,p(·)(Ω) for any k > 0}.

As in [6] (see also [1]), we can prove the following result.

Proposition 4.1. Let u ∈ T 1,p(·)(Ω). Then there exists a unique measurable func-
tion v : Ω → RN such that ∇Tk(u) = vχ{|u|<k} for all k > 0. The function v is
denoted by ∇u. Moreover, if u ∈ W 1,p(·)(Ω) then v ∈ (Lp(·)(Ω))N and v = ∇u in
the usual sense.

We define T 1,p(·)
H (Ω) as the set of functions u ∈ T 1,p(·)(Ω) such that there exists

a sequence (un)n ⊂W 1,p(·)(Ω) satisfying the following conditions:

(C1) un → u a.e. in Ω.
(C2) ∇Tk(un) → ∇Tk(u) in L1(Ω) for any k > 0.

The symbolH in the notation is related to the fact that we consider here Homoge-
neous Neumann Boundary condition. For the Nonhomogeneous Neumann Bound-
ary condition, we need to add the definition of the set in the following boundary
condition, to give meaning to the solution at the boundary.

(C3) There exists a measurable function v on ∂Ω, such that un → v a.e. in ∂Ω.

In this case, the set will be T 1,p(·)
tr (Ω) where tr is related to the trace of an element

u ∈ T 1,p(·)
tr (Ω) (see [3, 6]).

We can now introduce the notion of an entropy solution of (1.1).
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Definition 4.2. A measurable function u is an entropy solution to problem (1.1)
if u ∈ T 1,p(·)

H (Ω), b(u) ∈ L1(Ω) and for every k > 0,∫
Ω

a(x,∇u).∇Tk(u− ϕ)dx+
∫

Ω

b(u)Tk(u− ϕ)dx ≤
∫

Ω

f(x)Tk(u− ϕ)dx, (4.1)

for all ϕ ∈W 1,p(·)(Ω) ∩ L∞(Ω).

Our main result in this section is the following.

Theorem 4.3. Assume (1.8)-(1.12) and f ∈ L1(Ω). Then there exists a unique
entropy solution u to (1.1).

To prove the above theorem, we need the following propositions among which,
some can be proved following [7] with necessary changes in detail. But those which
are new will be proved.

Proposition 4.4. Assume (1.8)-(1.12), f ∈ L1(Ω) and q(·) : Ω → [1,+∞) a
measurable function. Let u be an entropy solution of (1.1). If there exists a positive
constant M such that ∫

{|u|>k}
kq(x)dx ≤M for all k > 0 (4.2)

then ∫
{|∇u|α(·)>k}

kq(x)dx ≤ C‖f‖1 +M for all k > 0,

where α(·) = p(·)/(q(·) + 1) and C is a positive constant.

Proposition 4.5. Assume that (1.8)-(1.12) hold and f ∈ L1(Ω). Let u be an
entropy solution of (1.1). Then∫

Ω

|∇Tk(u)|p(x)dx ≤ C ′k‖f‖1 for all k > 0 (4.3)

and
‖b(u)‖1 ≤ C ′′ meas(Ω)‖f‖1, (4.4)

where C ′ and C ′′ are positive constants.

Proposition 4.6. Assume that (1.8)-(1.12) hold and f ∈ L1(Ω). Let u be an
entropy solution of (1.1). Then∫

{|u|≤k}
|∇Tk(u)|p−dx ≤ C ′′′(k + 1) for all k > 0, (4.5)

where C ′′′ is a positive constant.

Proposition 4.7. Assume that (1.8)-(1.12) hold true and f ∈ L1(Ω). Let u be an
entropy solution of (1.1). Then

meas{|u| > h} ≤ ‖f‖1
min(b(h), |b(−h)|)

for all h large enough (4.6)

and

meas{|∇u| > h} ≤ const(‖f‖1, p−)
hp−−1

for all h ≥ 1. (4.7)
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Proof. We first prove (4.6). Indeed, by (4.4) (see [7, proof of (4.4)], we have∫
{|u|>h}

|b(u)|dx ≤ ‖f‖1.

From this inequality, we deduce that

min(b(h), |b(−h)|)
∫
{|u|>h}

dx ≤ ‖f‖1.

The proof of (4.7) is similar to that of [7, Proposition 4.8]. �

We remark that since b is continuous and surjective, by (4.6), we deduce that

meas{|u| > h} → 0 as h→ +∞.

4.1. Proof of Theorem 4.3. Uniqueness of entropy solution. Let h > 0
and u1, u2 be two entropy solutions of (1.1). We write the entropy inequality (4.1)
corresponding to the solution u1 with Th(u2) as a test function and to the solution
u2 with Th(u1) as a test function. Upon addition, we obtain∫

{|u1−Th(u2)|≤k}
a(x,∇u1).∇(u1 − Th(u2))dx

+
∫
{|u2−Th(u1)|≤k}

a(x,∇u2).∇(u2 − Th(u1))dx

+
∫

Ω

b(u1)Tk(u1 − Th(u2))dx+
∫

Ω

b(u2)Tk(u2 − Th(u1))dx

≤
∫

Ω

f(x)
(
Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))

)
dx.

(4.8)

Now define

E1 := {|u1 − u2| ≤ k, |u2| ≤ h}, E2 := E1 ∩ {|u1| ≤ h}, E3 := E1 ∩ {|u1| > h}.

We start with the first integral in (4.8). By (1.12), we have∫
{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1 − Th(u2))dx

=
∫
{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1 − Th(u2))dx

+
∫
{|u1−Th(u2)|≤k}∩{|u2|>h}

a(x,∇u1).∇(u1 − Th(u2))dx

=
∫
{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1 − u2)dx

+
∫
{|u1−hsign(u2)|≤k}∩{|u2|>h}

a(x,∇u1).∇u1dx

≥
∫
{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1 − u2)dx (4.9)

=
∫

E1

a(x,∇u1).∇(u1 − u2)dx

=
∫

E2

a(x,∇u1).∇(u1 − u2)dx+
∫

E3

a(x,∇u1).∇(u1 − u2)dx
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=
∫

E2

a(x,∇u1).∇(u1 − u2)dx+
∫

E3

a(x,∇u1).∇u1dx−
∫

E3

a(x,∇u1).∇u2dx

≥
∫

E2

a(x,∇u1).∇(u1 − u2)dx−
∫

E3

a(x,∇u1).∇u2dx.

Using (1.10) and (2.1), we estimate the last integral in (4.9) as follows.

|
∫

E3

a(x,∇u1).∇u2dx|

≤ C1

∫
E3

(j(x) + |∇u1|p(x)−1)|∇u2|dx

≤ C1

(
|j|p′(·) + ||∇u1|p(x)−1|p′(·),{h<|u1|≤h+k}

)
|∇u2|p(·),{h−k<|u2|≤h},

(4.10)

where
∣∣|∇u1|p(x)−1

∣∣
p′(·),{h<|u1|≤h+k} =

∥∥|∇u1|p(x)−1
∥∥

Lp′(·)({h<|u1|≤h+k}).
Since u1 is an entropy solution of (1.1), by taking ϕ = Th(u1) in the entropy

inequality (4.1), and using (1.12), we obtain∫
{h<|u1|≤h+k}

|∇u1|p(x)dx ≤ Ck‖f‖1.

So by Lemma 2.1, ∣∣|∇u1|p(x)−1
∣∣
p′(·),{h<|u1|≤h+k} ≤ C ′ < +∞,

where C ′ is a constant which does not depend on h. Therefore,

C1(|j|p′(·) + ||∇u1|p(x)−1|p′(·),{h<|u1|≤h+k}) ≤ C1

(
|j|p′(·) + C ′

)
< +∞.

Since u2 is an entropy solution to problem (1.1), by taking ϕ = Th(u2) in the
entropy inequality (4.1) and using (1.12), we obtain∫

{h<|u2|≤h+k}
|∇u2|p(x)dx ≤ Ck

∫
{|u2|>h}

|f |dx.

Using inequality (4.6), we have meas{|u2| > h} → 0 as h→ +∞. As f ∈ L1(Ω) we
obtain

Ck

∫
{|u2|>h}

|f |dx→ 0 as h→ +∞ for any fixed number k > 0.

From the above convergence we deduce that

lim
h→+∞

∫
{h<|u2|≤h+k}

|∇u2|p(x)dx = 0, for any fixed number k > 0.

Hence

lim
h→+∞

∫
{h−k<|u2|≤h}

|∇u2|p(x)dx = lim
l→+∞

∫
{l<|u2|≤l+k}

|∇u2|p(x)dx = 0,

for any fixed k > 0 with l = h− k. So by Lemma 2.1, |∇u2|p(·),{h−k<|u2|≤h} → 0 as
h→ +∞, for any fixed number k > 0. Therefore, from (4.9) and (4.10), we obtain∫
{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1 − Th(u2))dx ≥ Ih +
∫

E2

a(x,∇u1).∇(u1 − u2)dx,

(4.11)
where Ih converges to zero as h→ +∞.
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We may adopt the same procedure for study the second term in (4.8) to obtain∫
{|u2−Th(u1)|≤k}

a(x,∇u2).∇(u2 − Th(u1))dx ≥ Jh −
∫

E2

a(x,∇u2).∇(u1 − u2)dx,

(4.12)
where Jh converges to zero as h→ +∞. Now for all h, k > 0, set

Kh =
∫

Ω

b(u1)Tk(u1 − Th(u2))dx+
∫

Ω

b(u2)Tk(u2 − Th(u1))dx.

We have

b(u1)Tk(u1 − Th(u2)) → b(u1)Tk(u1 − u2) a.e. in Ω as h→ +∞
and

|b(u1)Tk(u1 − Th(u2))| ≤ k|b(u1)| ∈ L1(Ω).
Then by Lebesgue Theorem, we deduce that

lim
h→+∞

∫
Ω

b(u1)Tk(u1 − Th(u2))dx =
∫

Ω

b(u1)Tk(u1 − u2)dx. (4.13)

Similarly, we have

lim
h→+∞

∫
Ω

b(u2)Tk(u2 − Th(u1))dx =
∫

Ω

b(u2)Tk(u2 − u1)dx. (4.14)

Using (4.13) and (4.14), we obtain

lim
h→+∞

Kh =
∫

Ω

(b(u1)− b(u2))Tk(u1 − u2)dx. (4.15)

We next examine the right-hand side of (4.8). For all k > 0,

f(x)
(
Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))

)
→ f(x)

(
Tk(u1 − u2) + Tk(u2 − u1)

)
= 0

a.e. in Ω as h→ +∞ and

|f(x)
(
Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))

)
| ≤ 2k|f(x)| ∈ L1(Ω).

Lebesgue Theorem allows us to write

lim
h→+∞

∫
Ω

f(x)
(
Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))

)
dx = 0. (4.16)

Using (4.11), (4.12), (4.15) and (4.16), we obtain∫
{|u1−u2|≤k}

(
a(x,∇u1)− a(x,∇u2)

)
.
(
∇u1 −∇u2

)
dx

+
∫

Ω

(b(u1)− b(u2))Tk(u1 − u2)dx ≤ 0.
(4.17)

Therefore, ∫
Ω

(b(u1)− b(u2))Tk(u1 − u2)dx = 0, (4.18)

from which we deduce that

lim
k→0

∫
Ω

(b(u1)− b(u2))
1
k
Tk(u1 − u2) dx =

∫
Ω

|b(u1)− b(u2)| dx = 0. (4.19)

It also follows from (4.17) that∫
{|u1−u2|≤k}

(
a(x,∇u1)− a(x,∇u2)

)
.
(
∇u1 −∇u2

)
dx = 0. (4.20)
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Hence, from (4.19) and (4.20), we obtain

u1 − u2 = c a.e. in Ω.

and b(u1) = b(u2).

Existence of entropy solution. Let fn = Tn(f); then {fn}+∞n=1 is a sequence
of bounded functions which strongly converges to f ∈ L1(Ω) and is such that

‖fn‖1 ≤ ‖f‖1, for all n ∈ N. (4.21)

We consider the problem
−div a(x,∇un) + b(un) = fn in Ω,

a(x,∇un).η = 0 on ∂Ω.
(4.22)

It follows from Theorem 3.2 that there exists a unique function un ∈ W 1,p(·)(Ω)
such that ∫

Ω

a(x,∇un).∇ϕdx+
∫

Ω

b(un)ϕdx =
∫

Ω

fnϕdx (4.23)

for all ϕ ∈ W 1,p(·)(Ω). Our aim is to prove that these approximated solutions un

tend, as n goes to infinity, to a measurable function u which is an entropy solution
to the limit problem (1.1). To start with, we prove the following lemma.

Lemma 4.8. For any k > 0,

‖Tk(un)‖1,p(·) ≤ 1 + C,

where C = C(C3, k, f, p−, p+,meas(Ω)) is a positive constant.

Proof. By taking ϕ = Tk(un) in (4.23), we obtain∫
Ω

a(x,∇un).∇Tk(un)dx+
∫

Ω

b(un)Tk(un)dx =
∫

Ω

fnTk(un)dx.

Since all the terms in the left-hand side of equality above are nonnegative and∫
Ω

fnTk(un)dx ≤ k‖fn‖1 ≤ k‖f‖1,

by using (1.12) we obtain ∫
Ω

|∇Tk(un)|p(x)dx ≤ Ck‖f‖1. (4.24)

We also have that∫
Ω

|Tk(un)|p(x)dx =
∫
{|un|≤k}

|Tk(un)|p(x)dx+
∫
{|un|>k}

|Tk(un)|p(x)dx.

Furthermore,∫
{|un|>k}

|Tk(un)|p(x)dx =
∫
{|un|>k}

kp(x)dx ≤

{
kp+ meas(Ω) if k ≥ 1,
meas(Ω) if k < 1

and ∫
{|un|≤k}

|Tk(un)|p(x)dx ≤
∫
{|un|≤k}

kp(x)dx ≤

{
kp+ meas(Ω) if k ≥ 1,
meas(Ω) if k < 1.

This allows us to write∫
Ω

|Tk(un)|p(x)dx ≤ 2(1 + kp+) meas(Ω). (4.25)
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Hence, adding (4.24) and (4.25) yields

ρ1,p(·)(Tk(un)) ≤ Ck‖f‖1 + (1 + kp+) meas(Ω) = C(C3, k, f, p+,meas(Ω)). (4.26)

For ‖Tk(un)‖1,p(·) ≥ 1, we have

‖Tk(un)‖p−
1,p(·) ≤ ρ1,p(·)(Tk(un)) ≤ C(C3, k, f, p+,meas(Ω)),

which is equivalent to

‖Tk(un)‖1,p(·) ≤
(
C(C3, k, f, p+,meas(Ω))

)1/p−
= C(C3, k, f, p−, p+,meas(Ω)).

The above inequality gives

‖Tk(un)‖1,p(·) ≤ 1 + C(C3, k, f, p−, p+,meas(Ω)).

The proof is complete. �

From Lemma 4.8 we deduce that for any k > 0, the sequence {Tk(un)}+∞n=1 is
uniformly bounded in W 1,p(·)(Ω) and so in W 1,p−(Ω). Then, up to a subsequence
we can assume that for any k > 0, Tk(un) converges weakly to σk in W 1,p−(Ω),
and so Tk(un) strongly converges to σk in Lp−(Ω).

Proposition 4.9. . Assume that (1.8)-(1.12) hold and un ∈ W 1,p(·)(Ω) is the
solution of (4.22). Then the sequence {un}+∞n=1 is Cauchy in measure. In particular,
there exists a measurable function u and a subsequence still denoted {un}+∞n=1 such
that un → u in measure.

Proof. Let s > 0 and k > 0 be fixed. Define

En := {|un| > k}, Em := {|um| > k}, En,m := {|Tk(un)− Tk(um)| > s} .
Note that

{|un − um| > s} ⊂ En ∪ Em ∪ En,m

and hence

meas{|un − um| > s} ≤ meas(En) + meas(Em) + meas(En,m). (4.27)

Let ε > 0. Using Proposition 4.7, we choose k = k(ε) such that

meas(En) ≤ ε/3 and meas(Em) ≤ ε/3. (4.28)

Since Tk(un) converges strongly in Lp−(Ω), then it is a Cauchy sequence in Lp−(Ω).
Thus

meas(En,m) ≤ 1
sp−

∫
Ω

|Tk(un)− Tk(um)|p−dx ≤ ε

3
, (4.29)

for all n,m ≥ n0(s, ε). Finally, from (4.27), (4.28) and (4.29), we obtain

meas{|un − um| > s} ≤ ε for all n,m ≥ n0(s, ε). (4.30)

Relations (4.30) imply that the sequence {un}+∞n=1 is a Cauchy sequence in measure
and the proof is complete. �

Note that as un → u in measure, up to a subsequence, we can assume that
un → u a. e. in Ω. In the sequel, we need the following two technical lemmas (see
[18, 30]).

Lemma 4.10. Let {vn}+∞n=1 be a sequence of measurable functions in Ω. If vn

converges in measure to v and is uniformly bounded in Lp(·)(Ω) for some 1 �
p(·) ∈ L∞(Ω), then vn → v strongly in L1(Ω).
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The second technical lemma is a well known result in the measure theory [18].

Lemma 4.11. Let (X,M, µ) be a measure space such that µ(X) < +∞. Consider
a measurable function γ : X → [0,+∞] such that

µ({x ∈ X : γ(x) = 0}) = 0.

Then, for every ε > 0, there exists δ > 0, such that

µ(A) < ε, for all A ∈M with
∫

A

γdµ < δ.

We are ready for proving that the function u in the Proposition 4.9 is an entropy
solution of (1.1). Let ϕ ∈ W 1,p(·)(Ω) ∩ L∞(Ω). For any k > 0, choose Tk(un − ϕ)
as a test function in (4.23). We obtain∫

Ω

a(x,∇un).∇Tk(un − ϕ)dx+
∫

Ω

b(un)Tk(un − ϕ)dx

=
∫

Ω

fn(x)Tk(un − ϕ)dx.
(4.31)

The following proposition is useful to pass to the limit in the first term of (4.31).

Proposition 4.12. Assume that (1.8)–(1.12) hold and un ∈W 1,p(·)(Ω) is the weak
solution to (4.22). Then

(i) ∇un converges in measure to the weak gradient of u;
(ii) For all k > 0, ∇Tk(un) converges to ∇Tk(u) in (L1(Ω))N .
(iii) For all t > 0, a(x,∇Tt(un)) converges strongly to a(x,∇Tt(u)) in (L1(Ω))N

and weakly in (Lp′(·)(Ω))N .

Proof. (i) We claim that the sequence {∇un}+∞n=1 is Cauchy in measure. Indeed, let
s > 0 and consider

An,m := {|∇un| > h} ∪ {|∇um| > h}, Bn,m := {|un − um| > k}

and

Cn,m := {|∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ k, |∇un −∇um| > s},

where h and k will be chosen later. Note that

|∇un −∇um| > s} ⊂ An,m ∪Bn,m ∪ Cn,m. (4.32)

Let ε > 0. By Proposition 4.7 (relation (4.7)), we may choose h = h(ε) large enough
such that

meas(An,m) ≤ ε/3, (4.33)

for all n,m ≥ 0. On the other hand, by Proposition 4.9,

meas(Bn,m) ≤ ε/3, (4.34)

for all n,m ≥ n0(k, ε). Moreover, since a(x, ξ) is continuous with respect to ξ for
a.e. x ∈ Ω, by assumption (1.11) there exists a real valued function γ : Ω → [0,+∞]
such that meas({x ∈ Ω : γ(x) = 0}) = 0 and

(a(x, ξ)− a(x, ξ′)).(ξ − ξ′) ≥ γ(x), (4.35)

for all ξ, ξ′ ∈ RN such that |ξ| ≤ h, |ξ′| ≤ h, |ξ − ξ′| ≥ s, for a.e. x ∈ Ω. Let
δ = δ(ε) be given by Lemma 4.11, replacing ε and A by ε/3 and Cn,m respectively.
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As un is a weak solution of (4.22), using Tk(un − um) as a test function in (4.23),
we obtain ∫

Ω

a(x,∇un).∇Tk(un − um)dx+
∫

Ω

b(un)Tk(un − um)dx

=
∫

Ω

fnTk(un − um)dx ≤ k‖f‖1.

Similarly for um, we have∫
Ω

a(x,∇um).∇Tk(um − un)dx+
∫

Ω

b(um)Tk(um − un)dx

=
∫

Ω

fmTk(um − un)dx ≤ k‖f‖1.

Adding these two inequalities yields∫
{|un−um|≤k}

(a(x,∇un)− a(x,∇um)).(∇un −∇um)dx

+
∫

Ω

(
b(un)− b(um)

)
Tk(un − um)dx ≤ 2k‖f‖1.

Since the second term of the above inequality is nonnegative, by using (4.35) we
obtain∫

Cn,m

γ(x)dx ≤
∫

Cn,m

(a(x,∇un)− a(x,∇um)).(∇un −∇um)dx ≤ 2k‖f‖1 < δ,

where k = δ/4‖f‖1. From Lemma 4.11, it follows that

meas(Cn,m) ≤ ε/3. (4.36)

Thus, using (4.32), (4.33), (4.34) and (4.36), we obtain

meas({|∇un −∇um| > s}) ≤ ε, for all n,m ≥ n0(s, ε) (4.37)

and then the claim is proved. Consequently, {∇un}+∞n=1 converges in measure to
some measurable function v. To complete the proof of (i), we need the following
lemma.

Lemma 4.13. (a) For a.e. t ∈ R, ∇Tt(un) converges in measure to vχ{|u|<t};
(b) for a.e. t ∈ R, ∇Tt(u) = vχ{|u|<t};
(c) ∇Tt(u) = vχ{|u|<t} holds for all t ∈ R.

Proof. Proof of part (a). We know that∇un → v in measure. Thus, χ{|u|<t}∇un →
χ{|u|<t}v in measure. Now, let us show that (χ{|un|<t} − χ{|u|<t})∇un → 0 in
measure. For that, it is sufficient to show that (χ{|un|<t}−χ{|u|<t}) → 0 in measure.
Now, for all δ > 0,

{|χ{|un|<t} − χ{|u|<t}‖∇un| > δ}
⊂ {|χ{|un|<t} − χ{|u|<t}| 6= 0}
⊂ {|u| = t} ∪ {un < t < u} ∪ {u < t < un} ∪ {un < −t < u} ∪ {u < −t < un}.

Thus,
meas{|χ{|un|<t} − χ{|u|<t}‖∇un| > δ}
≤ meas{|u| = t}+ meas{un < t < u}+ meas{u < t < un}

+ meas{un < −t < u}+ meas{u < −t < un}.
(4.38)



16 B. K. BONZI, I. NYANQUINI, S. OUARO EJDE-2012/12

Note that meas{|u| = t} ≤ meas{t−h < u < t+h}+meas{−t−h < u < −t+h} → 0
as h→ 0 for a.e. t, since u is a fixed function. Next,

meas{un < t < u} ≤ meas{t < u < t+ h}+ meas{|u− un| > h}
for all h > 0. Due to Proposition 4.9, for all fixed h > 0, we have meas{|u− un| >
h} → 0 as n→ +∞. Since meas{t < u < t+h} → 0 as h→ 0, for all ε > 0, one can
find N such that for all n > N , meas{un < t < u} < ε/2 + ε/2 = ε by choosing h
and then N . Each of the other terms in the right-hand side of (4.38) can be treated
in the same way as for meas{un < t < u}. Thus, meas{|χ{|un|<t}−χ{|u|<t}‖∇un| >
δ} → 0 as n→ +∞. Finally, since ∇Tt(un) = ∇unχ{|un|<t}, the claim (a) follows.

Proof of part (b). Let ψt be the weak W 1,p(·)-limit of Tt(un), then it is also the
strong L1-limit of Tt(un). But, as Tt is a Lipschitz function, the convergence in
measure of un to u implies the convergence in measure of Tt(un) to Tt(u). Thus,
by the uniqueness of the limit in measure, ψt is identified with Tt(u), we conclude
that ∇Tt(un) → ∇Tt(u) weakly in Lp(·)(Ω).

The previous convergence also ensures that ∇Tt(un) converges to ∇Tt(u) weakly
in L1(Ω). On the other hand, by (a), ∇Tt(un) converges to vχ{|u|<t} in measure.
By Lemma 4.10, since ∇Tt(un) is uniformly bounded in Lp−(Ω), the convergence
is actually strong in L1(Ω); thus it is also weak in L1(Ω). By the uniqueness of a
weak L1-limit, vχ{|u|<t} coincides with ∇Tt(u).
Proof of part (c). Let 0 < t < s, and s be such that vχ{|u|<s} coincides with
∇Ts(u). Then

∇Tt(u) = ∇Tt(Ts(u)) = ∇Ts(u)χ{|Ts(u)|<t} = vχ{|u|<s}χ{|u|<t} = vχ{|u|<t}.

Now, we complete the proof of (i), by combining Lemma 4.13-(c) and Proposition
4.1.

(ii) Let s > 0, k > 0 and consider

Fn,m = {|∇un −∇um| > s, |un| ≤ k, |um| ≤ k},
Gn,m = {|∇um| > s, |un| > k, |um| ≤ k},

Hn,m = {|∇un| > s, |um| > k, |un| ≤ k}, In,m = {0 > s, |um| > k, |un| > k}.
Note that

{|∇Tk(un)−∇Tk(um)| > s} ⊂ Fn,m ∪Gn,m ∪Hn,m ∪ In,m. (4.39)

Let ε > 0. By Proposition 4.7, we may choose k(ε) such that

meas(Gn,m) ≤ ε

4
, meas(Hn,m) ≤ ε

4
and meas(In,m) ≤ ε

4
. (4.40)

Therefore, using (4.37), (4.39) and (4.40), we obtain

meas({|∇Tk(un)−∇Tk(um)| > s}) ≤ ε, for all n,m ≥ n1(s, ε). (4.41)

Consequently, ∇Tk(un) converges in measure to ∇Tk(u). Then, using lemmas 4.8
and 4.10, (ii) follows.

(iii) By lemmas 4.10 and 4.13, for all t > 0, a(x,∇Tt(un)) converges strongly to
a(x,∇Tt(u)) in (L1(Ω))N , and a(x,∇Tt(un)) converges weakly to χt ∈ (Lp′(·)(Ω))N

in (Lp′(·)(Ω))N . Since each of the convergence implies the weak L1-convergence, χt

can be identified with a(x,∇Tt(u)); thus, a(x,∇Tt(u)) ∈ (Lp′(·)(Ω))N . The proof
of (iii) is then complete. Thus the proof is complete. �
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We are now able to pass to the limit in the identity (4.31). For the right-hand
side, the convergence is obvious since fn converges strongly to f in L1(Ω) and
Tk(un − ϕ) converges weakly-∗ to Tk(u− ϕ) in L∞(Ω) and a.e. in Ω.

For the second term of (4.31), we have∫
Ω

b(un)Tk(un − ϕ)dx =
∫

Ω

(b(un)− b(ϕ))Tk(un − ϕ)dx+
∫

Ω

b(ϕ)Tk(un − ϕ)dx.

The quantity (b(un) − b(ϕ))Tk(un − ϕ) is nonnegative and since for all s ∈ R,
s 7→ b(s) is continuous, we obtain

(b(un)− b(ϕ))Tk(un − ϕ) → (b(u)− b(ϕ))Tk(u− ϕ) a.e. in Ω.

Then, it follows by Fatou’s Lemma that

lim inf
n→+∞

∫
Ω

(b(un)− b(ϕ))Tk(un − ϕ)dx ≥
∫

Ω

(b(u)− b(ϕ))Tk(u− ϕ)dx.

We have b(ϕ) ∈ L1(Ω). Since Tk(un−ϕ) converges weakly-∗ to Tk(u−ϕ) in L∞(Ω)
and b(ϕ) ∈ L1(Ω), it follows that

lim
n→+∞

∫
Ω

b(ϕ)Tk(un − ϕ)dx =
∫

Ω

b(ϕ)Tk(u− ϕ)dx.

Next, we write the first term in (4.31) in the form∫
{|un−ϕ|≤k}

a(x,∇un).∇undx−
∫
{|un−ϕ|≤k}

a(x,∇un).∇ϕdx. (4.42)

Set l = k + ‖ϕ‖∞. The second integral in (4.42) is equal to∫
{|un−ϕ|≤k}

a(x,∇Tl(un)).∇ϕdx.

Since a(x,∇Tl(un)) is uniformly bounded in (Lp′(·)(Ω))N (by (1.10) and (4.24)), by
Proposition 4.12-(iii), it converges weakly to a(x,∇Tl(u)) in (Lp′(·)(Ω))N . There-
fore,

lim
n→+∞

∫
{|un−ϕ|≤k}

a(x,∇Tl(un)).∇ϕdx =
∫
{|u−ϕ|≤k}

a(x,∇Tl(u)).∇ϕdx.

Moreover, a(x,∇un).∇un is nonnegative and converges a.e. in Ω to a(x,∇u).∇u.
Thanks to Fatou’s Lemma, we obtain

lim inf
n→+∞

∫
{|un−ϕ|≤k}

a(x,∇un).∇undx ≥
∫
{|u−ϕ|≤k}

a(x,∇u).∇udx.

Gathering results, we obtain∫
Ω

a(x,∇u).∇Tk(u− ϕ)dx+
∫

Ω

b(u)Tk(u− ϕ)dx ≤
∫

Ω

fTk(u− ϕ)dx.

We conclude that u is an entropy solution of (1.1). �
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